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Abstract: To reduce numerical instability and increase forecast accuracy of a numerical weather
prediction (NWP) model, one approach is to subtract a reference atmosphere from atmospheric
governing equations. In the past, scientists have proposed one-dimensional, two-dimensional,
and three-dimensional static (in time) reference atmospheres with respect to temperature and pres-
sure. These three reference atmospheres were first reviewed, and their corresponding perturbation
equations were derived. Then, a new four-dimensional (space and time) all-variable (temperature,
pressure, wind, moisture, etc.) reference atmosphere was defined using observed climatic states.
Unlike the previous three approaches, the perturbations derived from this new method are actual
anomalies relative to climate and directly a part of individual weather systems in both structure and
strength. By subtracting climatic states, anomaly equations were derived and analyzed. Finally, the
benefits and challenges of the anomaly-equation-based NWP model were discussed. Theoretically, an
anomaly model should reduce model systematic errors (bias) and should avoid model climate drift
to significantly enhance a model’s performance. An example of tropical cyclone track forecasts using
the Beta advection model (vorticity) was demonstrated. The separation of model physics into climatic
and anomalous physics is a significant challenge if a pure anomaly-equation-based NWP model is
desired. Fortunately, a model including both anomaly and climatic equations should work with
current full physics. In an anomaly climate mixed model, the anomaly part needs to be predicted and
the climate parts are precalculated constants. It is hoped that this study will inspire model developers
to explore the approach, which could be a possible new direction in developing next-generation NWP
models. A high-resolution reanalysis is also key to the success of this new approach.

Keywords: numerical weather prediction; governing equation; anomaly equation; climatic reference
atmosphere

1. Introduction

Atmospheric governing equations are used in numerical weather prediction (NWP)
models. Because nonlinear differential equations are difficult to solve analytically, they are
solved numerically by writing them into a discrete format following a chosen numerical
scheme. Consequently, during equation integration in discrete format, small numerical
errors can accumulate with time and lead to large errors in forecasts. To improve accu-
racy in solving these equations, many approximations have been made under various
situations [1–14]. One main issue of solving the atmospheric governing equations is the
“small difference between two large-value terms” [15]. Since weather change is driven
by those small differences or disturbances (departing from large-value balances such as
hydrostatic and geostrophic balances), relatively small differences in those large-value
terms often result in big errors in final forecasts. Therefore, it is desirable that large-value
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background terms (satisfying dominant atmospheric balances) be avoided or eliminated
during model calculation to improve forecast accuracy as well as to reduce numerical
instability in the calculations.

Along this line of thinking, researchers have proposed reference atmosphere to de-
compose atmospheric governing equations into perturbation equations [4,16–24]. Some of
these approaches have already been applied to both grid and spectral general circulation
models [20,22,25–28]. During the last half century, the reference atmosphere concept has
been expanded from one (1D) to two (2D), and then three (3D) dimensional spaces. How-
ever, these past-proposed reference atmospheres are only with respect to a few variables
(mainly temperature and pressure through hydrostatic relationship) and static (with no
time evolution). Their perturbations also have no direct relation to weather systems. In this
paper, we propose a new four-dimensional (4D) reference atmosphere for all atmospheric
variables. The new reference atmosphere changes not only in three-dimensional space but
also in time. More importantly, perturbations are directly a part of weather systems both in
structure and strength. The advantages and challenges of this new approach are discussed,
which provide model developers with possibly a new way of thinking in developing
next-generation NWP models.

In this paper, in Section 2, first the previously proposed 1D, 2D, and 3D reference
atmospheres are outlined and derive their corresponding perturbation equations derived.
In Section 3, the new 4D reference atmosphere is proposed, related perturbation equations
are derived, and its application to NWP model is discussed. A summary is given in
Section 4.

2. Perturbation Equations under 1D, 2D, and 3D Reference Atmospheres
2.1. Atmospheric Governing Equations

Assuming that the earth is a perfect sphere with a radius of a, the hydrostatic (dry)
atmospheric governing equations can be written, in latitude-longitude coordinates, as fol-
lows (which can be seen in dynamic meteorology textbook or numerical weather prediction
articles such as [29–31]:

du
dt

= −
Cpθ

a cos ϕ

∂π

∂λ
+ f v + Fu (1)

dv
dt

= −
Cpθ

a
∂π

∂ϕ
− f u + Fv (2)

dw
dt

= −Cpθ
∂π

∂z
− g + Fw (3)

dπ

dt
= − 1

(γ− 1)
π·D3 +

1
(γ− 1)

Fθ

θ
(4)

dθ

dt
=

Fθ

π
(5)

T = πθ (6)

where λ is longitude (
→
i direction); ϕ is latitude (

→
j direction); r = z + a, z is vertical height

above the earth surface (
→
k direction); t is time;

→
V = u

→
i + v

→
j + w

→
k three-dimensional

vector wind; D3 = ∇·
→
V = 1

r cos ϕ
∂u
∂λ + 1

r cos ϕ
∂v cos ϕ

∂ϕ + 1
r2

∂r2w
∂r three-dimensional wind

convergence; T is temperature; θ potential temperature, π =
(

p
p0

) R
Cp ; p is air pressure

at height z; p0 air pressure at z = 0; γ = Cp/R; heat capacity Cp = 1004 JK−1kg−1; gas
constant R = 8.314 JK−1mL−1; f = 2Ω sin ϕ the Coriolis force; Ω = 7.292× 10−5rad/s the
angular velocity of the earth rotation; Fu, Fv, and Fw are frictions; Fθ is heating and cooling;
and g = 9.8 ms−2 the earth gravity at earth surface.

Equations (1)–(3) describe air motion (wind) in three-dimensional space, Equation (4)
describes the air pressure (mass) change, Equation (5) describes thermal state (temperature
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change), and Equation (6) is the relationship between temperature and potential temper-
ature. Note that the above equations are for dry atmosphere only, since moisture is not
considered.

Because there are five independent governing equations (Equations (1)–(5)), the five
variables (u, v, w, π, and θ or T) can be solved through these prognostic equations to predict
basic atmospheric states at a future time t. The perturbation format of these equations will
be derived below using 1D, 2D, and 3D reference atmospheres, respectively.

2.2. One-Dimensional Static Temperature as a Reference Atmosphere

One main characteristic of the earth atmosphere is the vertical layered structure of
temperature. Therefore, Chao [16,17], Zeng [19,32], and Zeng et al. [20] proposed a reference
atmosphere with a one-dimensional static temperature, where temperature varies only
with height T(z), and reference pressure π(z) satisfies the hydrostatic balance:

Cpθ(z)
∂π(z)

∂z
= −g (7)

The reference potential temperature is:

θ(z) = T(z)/π(z) (8)

T(z), π(z) and θ(z) are globally averaged values and could be obtained from historical
observation data or current observation.

Under this assumption, the perturbed variables are:

T′(λ, ϕ, z, t) = T(λ, ϕ, z, t)− T(z) (9)

π′(λ, ϕ, z, t) = π(λ, ϕ, z, t)− π(z) (10)

θ′(λ, ϕ, z, t) = θ(λ, ϕ, z, t)− θ(z) (11)

Using Equations (7)–(11), the atmospheric governing equations (Equations (1)–(6)) become:

du
dt

= −
Cpθ′

a cos ϕ

∂π′

∂λ
−

Cpθ

a cos ϕ

∂π′

∂λ
+ f v + Fu (12)

dv
dt

= −
Cpθ′

a
∂π′

∂ϕ
−

Cpθ

a
∂π′

∂ϕ
− f u + Fv (13)

dw
dt

= −Cpθ′
∂π′

∂z
− Cpθ

∂π′

∂z
− Cpθ′

∂π

∂z
+ Fw (14)

dπ′

dt
= − 1

(γ− 1)
π′·D3 −

1
(γ− 1)

π·D3 +
1

(γ− 1)
Fθ + Fθ′

θ + θ′
+ w

g
Cpθ

(15)

dθ′

dt
=

Fθ + Fθ′

π + π′
− w

∂θ

∂z
(16)

T′ = π′θ′ + πθ′ + π′θ (17)

where wind (u, v, w) is full wind with no decomposition. Equations (12)–(17) are the
perturbation form of the governing equations after eliminating the one-dimensional static-
temperature reference atmosphere. Note that the physical process term Fθ is also decom-
posed into reference and perturbed terms, i.e., Fθ = Fθ + Fθ′ .

If we consider π � π′ and θ � θ′, Equations (12)–(17) could be further simplified into:

du
dt

= −
Cpθ

a cos ϕ

∂π′

∂λ
+ f v + Fu (18)
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dv
dt

= −
Cpθ

a
∂π′

∂ϕ
− f u + Fv (19)

dw
dt

= −Cpθ
∂π′

∂z
− Cpθ′

∂π

∂z
+ Fw (20)

dπ′

dt
= − 1

(γ− 1)
π·D3 +

1
(γ− 1)

Fθ + Fθ′

θ
+ w

g
Cpθ

(21)

dθ′

dt
=

Fθ + Fθ′

π
− w

∂θ

∂z
(22)

T′ = πθ′ + π′θ (23)

All terms on the right side of Equations (18)–(22) are linear. It has been reported that
this decomposition approach of 1D reference atmosphere was used by the ECMWF spectral
model and that it improved its medium-range forecast accuracy [22,33].

2.3. Two-Dimensional Static Temperature as a Reference Atmosphere

Considering the prominent north-south temperature gradient in real atmosphere,
Zhang et al. [34] extended this static-temperature reference atmosphere from one-dimensional
to two-dimensional in space, i.e., temperature is not only a function of height but also
latitude T(ϕ, z). So, reference pressure through the hydrostatic balance is:

Cpθ(ϕ, z)
∂π(ϕ, z)

∂z
= −g (24)

and the reference potential temperature is:

θ(ϕ, z) = T(ϕ, z)/π(ϕ, z) (25)

T(ϕ, z), π(ϕ, z) and θ(ϕ, z) are zonally averaged values and could be obtained from histor-
ical observation data or current observation.

Similarly, to obtain the perturbation equations, the temperature, pressure, and poten-
tial temperature can be decomposed as follows:

T′(λ, ϕ, z, t) = T(λ, ϕ, z, t)− T(ϕ, z) (26)

π′(λ, ϕ, z, t) = π(λ, ϕ, z, t)− π(ϕ, z) (27)

θ′(λ, ϕ, z, t) = θ(λ, ϕ, z, t)− θ(ϕ, z) (28)

Using Equations (24)–(28), the atmospheric governing equations (Equations (1)–(6))
become:

du
dt

= −
Cpθ′

a cos ϕ

∂π′

∂λ
−

Cpθ

a cos ϕ

∂π′

∂λ
+ f v + Fu (29)

dv
dt

= −
Cpθ′

a
∂π′

∂ϕ
−

Cpθ

a
∂π′

∂ϕ
−

Cpθ

a
∂π

∂ϕ
−

Cpθ′

a
∂π

∂ϕ
− f u + Fv (30)

dw
dt

= −Cpθ′
∂π′

∂z
− Cpθ

∂π′

∂z
− Cpθ′

∂π

∂z
+ Fw (31)

dπ′

dt
= − 1

(γ− 1)
π′ · D3 −

1
(γ− 1)

π · D3 +
1

(γ− 1)
Fθ + Fθ′

θ + θ′
− v

∂π

a∂ϕ
− w

∂π

∂z
(32)

dθ′

dt
= +

Fθ + Fθ′

π + π′
− v

∂θ

a∂ϕ
− w

∂θ

∂z
(33)

T′ = π′θ′ + πθ′ + π′θ (34)
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where wind (u, v, w) is full wind with no decomposition. Equations (29)–(34) are the
perturbation form of the governing equations after eliminating the two-dimensional static-
temperature reference atmosphere.

If we consider π � π′ and θ � θ′, Equations (29)–(34) could be further simplified into:

du
dt

= −
Cpθ

a cos ϕ

∂π′

∂λ
+ f v + Fu (35)

dv
dt

= −
Cpθ

a
∂π′

∂ϕ
−

Cpθ

a
∂π

∂ϕ
− f u + Fv (36)

dw
dt

= −Cpθ
∂π′

∂z
− Cpθ′

∂π

∂z
+ Fw (37)

dπ′

dt
= − 1

(γ− 1)
π·D3 +

1
(γ− 1)

Fθ + Fθ′

θ
− v

∂π

a∂ϕ
− w

∂π

∂z
(38)

dθ′

dt
=

Fθ + Fθ′

π
− v

∂θ

a∂ϕ
− w

∂θ

∂z
(39)

T′ = πθ′ + π′θ (40)

All terms on the right side of Equations (35)–(39) are also linear. Zhang et al. [34]
compared the 1D and 2D approaches and found that the latter could increase numerical
stability for a model.

2.4. Three-Dimensional Static Temperature as a Reference Atmosphere

The two-dimensional reference atmosphere was further expanded to three-dimensional
atmosphere by Wood et al. [35] and Su et al. [36,37]. Reference temperature T(λ, ϕ, z) is not
only a function of height and latitude but also longitude. The hydrostatic balance in the
three-dimensional reference atmosphere is:

Cpθ(λ, ϕ, z)
∂π(λ, ϕ, z)

∂z
= −g (41)

The potential temperature becomes:

θ(λ, ϕ, z) = T(λ, ϕ, z)/π(λ, ϕ, z) (42)

T(λ, ϕ, z), π(λ, ϕ, z) and θ(λ, ϕ, z) could be time-averaged values from historical ob-
servation data [36,37] or an observation and even a forecast at a selected time, such as
model initial condition or any moment during a model integration [35]. Although T(λ, ϕ, z)
is still static (i.e., no time dimension), it is a real atmosphere.

To obtain the perturbation equations, the temperature, pressure, and potential temper-
ature can be decomposed as follows:

T′(λ, ϕ, z, t) = T(λ, ϕ, z, t)− T(λ, ϕ, z) (43)

π′(λ, ϕ, z, t) = π(λ, ϕ, z, t)− π(λ, ϕ, z) (44)

θ′(λ, ϕ, z, t) = θ(λ, ϕ, z, t)− θ(λ, ϕ, z) (45)

Using Equations (41)–(45), the atmospheric governing equations (Equations (1)–(6)) become:

du
dt

= −
Cpθ′

a cos ϕ

∂π′

∂λ
−

Cpθ

a cos ϕ

∂π′

∂λ
−

Cpθ

a cos ϕ

∂π

∂λ
−

Cpθ′

a cos ϕ

∂π

∂λ
+ f v + Fu (46)

dv
dt

= −
Cpθ′

a
∂π′

∂ϕ
−

Cpθ

a
∂π′

∂ϕ
−

Cpθ

a
∂π

∂ϕ
−

Cpθ′

a
∂π

∂ϕ
− f u + Fv (47)
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dw
dt

= −Cpθ′
∂π′

∂z
− Cpθ

∂π′

∂z
− Cpθ′

∂π

∂z
+ Fw (48)

dπ′

dt
= − 1

(γ− 1)
π′·D3 −

1
(γ− 1)

π·D3 +
1

(γ− 1)
Fθ + Fθ′

θ + θ′
− u

a cos ϕ

∂π

∂λ
− v

∂π

a∂ϕ
− w

∂π

∂z
(49)

dθ′

dt
=

Fθ + Fθ′

π + π′
− u

a cos ϕ

∂θ

∂λ
− v

∂θ

a∂ϕ
− w

∂θ

∂z
(50)

T′ = π′θ′ + πθ′ + π′θ (51)

where wind (u, v, w) is full wind with no decomposition. Equations (46)–(51) are the
perturbation forms of the governing equations after eliminating the three-dimensional
static-temperature reference atmosphere.

If we consider π � π′ and θ � θ′, Equations (46)–(51) could be further simplified into:

du
dt

= −
Cpθ

a cos ϕ

∂π′

∂λ
−

Cpθ

a cos ϕ

∂π

∂λ
−

Cpθ′

a cos ϕ

∂π

∂λ
+ f v + Fu (52)

dv
dt

= −
Cpθ

a
∂π′

∂ϕ
−

Cpθ

a
∂π

∂ϕ
−

Cpθ′

a
∂π

∂ϕ
− f u + Fv (53)

dw
dt

= −Cpθ
∂π′

∂z
− Cpθ′

∂π

∂z
+ Fw (54)

dπ′

dt
= − 1

(γ− 1)
π·D3 +

1
(γ− 1)

Fθ + Fθ′

θ
− u

a cos ϕ

∂π

∂λ
− v

∂π

a∂ϕ
− w

∂π

∂z
(55)

dθ′

dt
=

Fθ + Fθ′

π
− u

a cos ϕ

∂θ

∂λ
− v

∂θ

a∂ϕ
− w

∂θ

∂z
(56)

T′ = πθ′ + π′θ (57)

All terms on the right side of Equations (52)–(56) are linear. The 3D approach can effec-
tively improve numerical precision in a model’s dynamical core [36,37]. Notably, Wood [35]
suggested that using temperature and pressure at a previous moment as reference atmo-
sphere for the next moment in a model introduced time dimension to reference atmosphere.

3. Four-Dimensional All-Variable Climate as a Reference Atmosphere

The three previous reference atmospheres are all only with respect to temperature
and pressure and do not evolve in time. Recently, Smolarkiewicz et al. [24] proposed a
generalized perturbation form of partial differential equations for all-scale global atmo-
spheric flow, with respect to any assumed “ambient” state. Here, we propose to use a
four-dimensional (space and time) all-variable (temperature, pressure, wind, moisture, etc.)
climate as reference atmosphere to decompose atmospheric governing equations. For a
variable A, its climate Ã (λ, ϕ, z, t) is defined as follows:

Ã(λ, ϕ, z, t) =
M

∑
y=1

Ay(λ, ϕ, z, t)/M (58)

which can be derived from global reanalysis data over the past M years (y), Ay(λ, ϕ, z, t). M
is the number of past years and normally set to 30 years or more. Depending on temporal
resolution of available reanalysis data, time t can be in seconds, minutes, or hours for every
day within a calendar year. The currently available temporal resolution is in hours [38].

Therefore, for a variable A, its anomalous state A′ can be obtained as follows [39]:

A′(λ, ϕ, z, t) = A(λ, ϕ, z, t)− Ã(λ, ϕ, z, t) (59)
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For individual variables, they are:

u′(λ, ϕ, z, t) = u(λ, ϕ, z, t)− ũ(λ, ϕ, z, t) (60)

v′(λ, ϕ, z, t) = v(λ, ϕ, z, t)− ṽ(λ, ϕ, z, t) (61)

w′(λ, ϕ, z, t) = w(λ, ϕ, z, t)− w̃(λ, ϕ, z, t) (62)

π′(λ, ϕ, z, t) = π(λ, ϕ, z, t)− π̃(λ, ϕ, z, t) (63)

θ′(λ, ϕ, z, t) = θ(λ, ϕ, z, t)− θ̃(λ, ϕ, z, t) (64)

T′(λ, ϕ, z, t) = T(λ, ϕ, z, t)− T̃(λ, ϕ, z, t) (65)

q′(λ, ϕ, z, t) = q(λ, ϕ, z, t)− q̃(λ, ϕ, z, t) (66)

where q is specific humidity (g/kg).

3.1. Climatic Equations

The climatic states satisfy the atmospheric governing equations (Equations (1)–(6)):

dũ
dt

=
∂ũ
∂t

+
ũ

a cos ϕ

∂ũ
∂λ

+
ṽ
a

∂ũ
∂ϕ

+ w̃
∂ũ
∂z

= −
Cp θ̃

a cos ϕ

∂π̃

∂λ
+ f ṽ + Fũ (67)

dṽ
dt

=
∂ṽ
∂t

+
ṽ

a cos ϕ

∂ṽ
∂λ

+
ṽ
a

∂ṽ
∂ϕ

+ w̃
∂ṽ
∂z

= −
Cp θ̃

a
∂π̃

∂ϕ
− f ũ + Fṽ (68)

dw̃
dt

=
∂w̃
∂t

+
ũ

a cos ϕ

∂w̃
∂λ

+
ṽ
a

∂w̃
∂ϕ

+ w̃
∂w̃
∂z

= −Cp θ̃
∂π̃

∂z
− g + Fw̃ (69)

dπ̃

dt
=

∂π̃

∂t
+

ũ
a cos ϕ

∂π̃

∂λ
+

ṽ
a

∂π̃

∂ϕ
+ w̃

∂π̃

∂z
= − 1

(γ− 1)
π̃·D̃3 +

1
(γ− 1)

F
θ̃

θ̃
(70)

dθ̃

dt
=

∂θ̃

∂t
+

ũ
a cos ϕ

∂θ̃

∂λ
+

ṽ
a

∂θ̃

∂ϕ
+ w̃

∂θ̃

∂z
=

F
θ̃

π̃
(71)

T̃ = π̃θ̃ (72)

where Fũ, Fṽ, Fw̃ are frictions due to climatic flows, and F
θ̃
= F

θ̃a + F
θ̃d + F

θ̃ f represents
annual solar cycle (F

θ̃a), daily solar cycle (F
θ̃d), and other climatically constant heating

and cooling (F
θ̃ f ). The climate is an equilibrium state which is maintained by the balance

between energy source (radiative heating and other heating) and energy sink (frictions and
cooling). If we expand the total derivative ( dÃ

dt ) into local derivative ( ∂Ã
∂t ), the general form

of the above climatic equations can be rewritten as follows:

∂Ã
∂t

= − ũ
a cos ϕ

∂Ã
∂λ
− ṽ

a
∂Ã
∂ϕ
− w̃

∂Ã
∂z

+ Ñ + L̃ + D̃ (73)

where − ũ
a cos ϕ

∂Ã
∂λ −

ṽ
a

∂Ã
∂ϕ − w̃ ∂Ã

∂z is an advection term; Ñ, L̃, and D̃ are nonlinear, linear,
and diffusion terms, respectively. Since all terms on the right side can be precalculated
from climatology and are known, the local variation on the left side is similar to a slow-
motion movie evolving with time and repeats yearly. In other words, the climatic equations
(Equations (67)–(71)) do not need to be solved in time (i.e., no prediction is needed for
climatic states) but are precalculated from climatology data. This slow-motion movie
includes all “averaged” meteorological features such as seasonal monsoon, daily sea
breeze, diurnal temperature variation, the intertropical convergence zone (ITCZ), Walker
circulation, Hadley circulation, and storm tracks.
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3.2. Anomaly Equations

Inserting the decomposition (Equations (60)–(65)) into the full-variable atmospheric
governing equations (Equations (1)–(6)), and then being subtracted by the climatic equa-
tions (Equations (67)–(72)), the anomaly equations can be obtained as follows:

du′
dt = ∂u′

∂t + u
a cos ϕ

∂u′
∂λ + v

a
∂u′
∂ϕ + w ∂u′

∂z = ∂u′
∂t + ũ+u′

a cos ϕ
∂u′
∂λ + ṽ+v′

a
∂u′
∂ϕ + (w̃ + w′) ∂u′

∂z

= − CPθ′

a cos φ
∂π′
∂λ −

CP θ̃
a cos φ

∂π′
∂λ −

CPθ′

a cos φ
∂π̃
∂λ −

u′
a cos ϕ

∂ũ
∂λ − v′ ∂ũ

a∂ϕ − w′ ∂ũ
∂z + f v′ + Fu′

(74)

dv′
dt = ∂v′

∂t + u
a cos ϕ

∂v′
∂λ + v

a
∂v′
∂ϕ + w ∂v′

∂z = ∂v′
∂t + ũ+u′

a cos ϕ
∂v′
∂λ + ṽ+v′

a
∂v′
∂ϕ + (w̃ + w′) ∂v′

∂z

= −CPθ′

a
∂π′
∂ϕ −

CP θ̃
a

∂π′
∂ϕ −

CPθ′

a
∂π̃
∂ϕ −

u′
a cos ϕ

∂ṽ
∂λ − v′ ∂ṽ

a∂ϕ − w′ ∂v̌
∂z − f u′ + Fv′

(75)

dw′
dt = ∂w′

∂t + u
a cos ϕ

∂w′
∂λ + v

a
∂w′
∂ϕ + w ∂w′

∂z = ∂w′
∂t + ũ+u′

a cos ϕ
∂w′
∂λ + ṽ+v′

a
∂w′
∂ϕ + (w̃ + w′) ∂w′

∂z

= −CPθ′ ∂π′
∂z − CP θ̃ ∂π′

∂z − CPθ′ ∂π̃
∂z −

u′
a cos ϕ

∂w̃
∂λ − v′ ∂w̃

a∂ϕ − w′ ∂w̌
∂z + Fw′

(76)

dπ′
dt = ∂π′

∂t + u
a cos ϕ

∂π′
∂λ + v

a
∂π′
∂ϕ + w ∂π′

∂z = ∂π′
∂t + ũ+u′

a cos ϕ
∂π′
∂λ + ṽ+v′

a
∂π′
∂ϕ + (w̃ + w′) ∂π′

∂z

= − 1
(γ−1)π′ · D′3 − 1

(γ−1) π̃ · D′3 − 1
(γ−1)π′ · D̃3 +

1
(γ−1)

F
θ̃

θ̃+θ′
− 1

(γ−1)
F

θ̃

θ̃

+ 1
(γ−1)

Fθ′
θ̃+θ′
− u′

a cos ϕ
∂π̃
∂λ − v′ ∂π̃

a∂ϕ − w′ ∂π̌
∂z

(77)

dθ′
dt = ∂θ′

∂t + u
a cos ϕ

∂θ′
∂λ + v

a
∂θ′
∂ϕ + w ∂θ′

∂z = ∂θ′
∂t + ũ+u′

a cos ϕ
∂θ′
∂λ + ṽ+v′

a
∂θ′
∂ϕ + (w̃ + w′) ∂θ′

∂z

=
F

θ̃
π̃+π′ −

F
θ̃

π̃ +
Fθ′

π̃+π′ −
u′

acosϕ
∂θ̃
∂λ − v′ ∂θ̃

a∂ϕ − w′ ∂θ̃
∂z

(78)

T′ = π′θ′ + π̃θ′ + π′ θ̃ (79)

Equations (74)–(79) are the perturbation form of the governing equations after elimi-
nating the four-dimensional all-variable reference atmosphere. Similar to Fθ , friction term
Fu is also decomposed into climatic and perturbed terms, i.e., Fu = Fũ + Fu′ . Since the per-
turbations are relative to climatic states, these perturbation equations are meteorologically
“anomaly equations”. Note that wind in the advection term on the left side is full wind,
i.e., dA′

dt = ∂A′
∂t + u

a cos ϕ
∂A′
∂λ + v

a
∂A′
∂ϕ + w ∂A′

∂z = ∂A′
∂t + ũ+u′

a cos ϕ
∂A′
∂λ + ṽ+v′

a
∂A′
∂ϕ + (w̃ + w′) ∂A′

∂z .

If we consider π � π′ and θ � θ′ (note, wind perturbation is not necessarily smaller
than background wind, and sometimes could even exceeds the background wind such as
in a storm area), Equations (74)–(79) could be further simplified into:

du′
dt = ∂u′

∂t + ũ+u′
a cos ϕ

∂u′
∂λ + ṽ+v′

a
∂u′
∂ϕ + (w̃ + w′) ∂u′

∂z

= − CP θ̃
a cos φ

∂π′
∂λ −

CPθ′

a cos φ
∂π̃
∂λ −

u′
a cos ϕ

∂ũ
∂λ − v′ ∂ũ

a∂ϕ − w′ ∂ũ
∂z + f v′ + Fu′

(80)

dv′
dt = ∂v′

∂t + ũ+u′
a cos ϕ

∂v′
∂λ + ṽ+v′

a
∂v′
∂ϕ + (w̃ + w′) ∂v′

∂z

= −CP θ̃
a

∂π′
∂ϕ −

CPθ′

a
∂π̃
∂ϕ −

u′
a cos ϕ

∂ṽ
∂λ − v′ ∂ṽ

a∂ϕ − w′ ∂v̌
∂z − f u′ + Fv′

(81)
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dw′
dt = ∂w′

∂t + ũ+u′
a cos ϕ

∂w′
∂λ + ṽ+v′

a
∂w′
∂ϕ + (w̃ + w′) ∂w′

∂z

= −CP θ̃ ∂π′
∂z − CPθ′ ∂π̃

∂z −
u′

a cos ϕ
∂w̃
∂λ − v′ ∂w̃

a∂ϕ − w′ ∂w̌
∂z + Fw′

(82)

dπ′
dt = ∂π′

∂t + ũ+u′
a cos ϕ

∂π′
∂λ + ṽ+v′

a
∂π′
∂ϕ + (w̃ + w′) ∂π′

∂z

= − 1
(γ−1) π̃ · D′3 − 1

(γ−1)π′ · D̃3 +
1

(γ−1)
Fθ′
θ̃
− u′

a cos ϕ
∂π̃
∂λ − v′ ∂π̃

a∂ϕ − w′ ∂π̌
∂z

(83)

dθ′

dt
=

∂θ′

∂t
+

ũ + u′

a cos ϕ

∂θ′

∂λ
+

ṽ + v′

a
∂θ′

∂ϕ
+
(
w̃ + w′

)∂θ′

∂z
=

Fθ′

π̃
− u′

a cos ϕ

∂θ̃

∂λ
− v′

∂θ̃

a∂ϕ
− w′

∂θ̃

∂z
(84)

T′ = π̃θ′ + π′ θ̃ (85)

All terms on the far-right side of the prognostic Equations (80)–(84) are linear.
The x-y coordinate is commonly used for regional models. Under the x-y coordinate,

the complete anomaly equations (Equations (74)–(79)) could be written as follows:

∂u′
∂t = −[u′ ∂u′

∂x + v′ ∂u′
∂y + w′ ∂u′

∂z ]− [u′ ∂ũ
∂x + v′ ∂ũ

∂y + w′ ∂ũ
∂z ]− [ũ ∂u′

∂x + ṽ ∂u′
∂y + w̃ ∂u′

∂z ]

−[CPθ′ ∂π′
∂x + CP θ̃ ∂π′

∂x +CPθ′ ∂π̃
∂x ] + f v′ + Fu′

(86)

∂v′
∂t = −

[
u′ ∂v′

∂x + v′ ∂v′
∂y + w′ ∂v′

∂z

]
−
[
u′ ∂ṽ

∂x + v′ ∂ṽ
∂y + w′ ∂ṽ

∂z

]
−
[
ũ ∂v′

∂x + ṽ ∂v′
∂y + w̃ ∂v′

∂z

]
−[CPθ′ ∂π′

∂y +CP θ̃ ∂π′
∂y + CPθ′ ∂π̃

∂y ]− f u′ + Fv′
(87)

∂w′
∂t = −

[
u′ ∂w′

∂x + v′ ∂w′
∂y + w′ ∂w′

∂z

]
−
[
u′ ∂w̃

∂x + v′ ∂w̃
∂y + w′ ∂w̃

∂z

]
−
[
ũ ∂w′

∂x + ṽ ∂w′
∂y + w̃ ∂w′

∂z

]
−
[
CPθ′ ∂π′

∂z + CP θ̃ ∂π′
∂z + CPθ′ ∂π̃

∂z

]
+ Fw′

(88)

∂π′
∂t = −

[
u′ ∂π′

∂x + v′ ∂π′
∂y + w′ ∂π′

∂z

]
−
[
u′ ∂π̃

∂x + v′ ∂π̃
∂y + w′ ∂π̃

∂z

]
−
[
ũ ∂π′

∂x + ṽ ∂π′
∂y + w̃ ∂π′

∂z

]
−
[

1
(γ−1)π′ · D′3 + 1

(γ−1) π̃ · D′3 + 1
(γ−1)π′ · D̃3

]
+ [ 1

(γ−1)
F

θ̃

θ̃+θ′
− 1

(γ−1)
F

θ̃

θ̃

+ 1
(γ−1)

Fθ′
θ̃+θ′

]

(89)

∂θ′
∂t = −

[
u′ ∂θ′

∂x + v′ ∂θ′
∂y + w′ ∂θ′

∂z

]
−
[
u′ ∂θ̃

∂x + v′ ∂θ̃
∂y + w′ ∂θ̃

∂z

]
−
[
ũ ∂θ′

∂x + ṽ ∂θ′
∂y + w̃ ∂θ′

∂z

]
+[

F
θ̃

π̃+π′ −
F

θ̃
π̃ +

Fθ′
π̃+π′ ]

(90)

T′ = π′θ′ + π̃θ′ + π′ θ̃ (91)

The motion equations (Equations (86)–(88)) show that the local change of anomaly
flow is controlled by six factors: interaction with anomalous environment, interaction
with climatic flow, advection by climatic flow, pressure gradient force, earth rotation effect
(Coriolis force, except for vertical motion), and dissipation to friction. The local pressure
anomaly change (Equation (89)) is controlled by five factors: interaction with anomalous
environment, interaction with climatic pressure, advection by climatic flow, air inflow
and outflow, and adiabatic heating and cooling. The local temperature anomaly change
(Equation (90)) is controlled by four factors: interaction with anomalous environment,
interaction with background temperature, advection by climatic flow, and adiabatic heating



Meteorology 2022, 1 136

and cooling. Since climatic states are precalculated and given, all terms related to climate
on the right side are linear.

Under the assumption of π � π′ and θ � θ′, the simplified version is:

∂u′
∂t = −[u′ ∂u′

∂x + v′ ∂u′
∂y + w′ ∂u′

∂z ]− [u′ ∂ũ
∂x + v′ ∂ũ

∂y + w′ ∂ũ
∂z ]− [ũ ∂u′

∂x + ṽ ∂u′
∂y + w̃ ∂u′

∂z ]

−[CP θ̃ ∂π′
∂x + CPθ′ ∂π̃

∂x ]+ f v′ + Fu′
(92)

∂v′
∂t = −

[
u′ ∂v′

∂x + v′ ∂v′
∂y + w′ ∂v′

∂z

]
−
[
u′ ∂ṽ

∂x + v′ ∂ṽ
∂y + w′ ∂ṽ

∂z

]
−
[
ũ ∂v′

∂x + ṽ ∂v′
∂y + w̃ ∂v′

∂z

]
−[CP θ̃ ∂π′

∂y +CPθ′ ∂π̃
∂y ]− f u′ + Fv′

(93)

∂w′
∂t = −

[
u′ ∂w′

∂x + v′ ∂w′
∂y + w′ ∂w′

∂z

]
−
[
u′ ∂w̃

∂x + v′ ∂w̃
∂y + w′ ∂w̃

∂z

]
−
[
ũ ∂w′

∂x + ṽ ∂w′
∂y + w̃ ∂w′

∂z

]
−
[
CP θ̃ ∂π′

∂z + CPθ′ ∂π̃
∂z

]
+ Fw′

(94)

∂π′
∂t = −

[
u′ ∂π′

∂x + v′ ∂π′
∂y + w′ ∂π′

∂z

]
−
[
u′ ∂π̃

∂x + v′ ∂π̃
∂y + w′ ∂π̃

∂z

]
−
[
ũ ∂π′

∂x + ṽ ∂π′
∂y + w̃ ∂π′

∂z

]
−
[

1
(γ−1) π̃·D′3 + 1

(γ−1)π′·D̃3

]
+ 1

(γ−1)
Fθ′
θ̃

(95)

∂θ′

∂t
= −

[
u′

∂θ′

∂x
+ v′

∂θ′

∂y
+ w′

∂θ′

∂z

]
−
[

u′
∂θ̃

∂x
+ v′

∂θ̃

∂y
+ w′

∂θ̃

∂z

]
−
[

ũ
∂θ′

∂x
+ ṽ

∂θ′

∂y
+ w̃

∂θ′

∂z

]
+

Fθ′

π̃
(96)

T′ = π̃θ′ + π′ θ̃ (97)

The anomaly equations have been discussed so far are all in dry version with no
moisture. In real world, moisture plays an important role in daily evolving weather. Below
gives a derivation of anomaly moisture equation. In x-y coordinate, the full-field moisture
equation is:

∂q
∂t

= −
[

u
∂q
∂x

+ v
∂q
∂y

+ w
∂q
∂z

]
+ Qsource −Qsink (98)

where Qsource is moisture source such as evaporation and evapotranspiration, and Qsink
moisture sink such as condensation and precipitation. By decomposing specific humidity,
Qsource, and Qsink into climatic and anomalous components:

q′(x, y, z, t) = q(x, y, z, t)− q̃(x, y, z, t) (99)

Qsource(x, y, x, t) = Q̃source(x, y, z, t) + Q′source(x, y, z, t) (100)

Qsink(x, y, z, t) = Q̃sink(x, y, z, t) + Q′sink(x, y, z, t) (101)

We have climatic moisture equation:

∂q̃
∂t

= −
[

ũ
∂q̃
∂x

+ ṽ
∂q̃
∂y

+ w̃
∂q̃
∂z

]
+ Q̃source − Q̃sink (102)

Decomposing the full equation (Equation (98)) by Equations (99)–(101) etc., and then
subtracting the climatic equation (Equation (102)), the anomaly moisture equation can
be obtained:

∂q′

∂t
= −

[
u′

∂q′

∂x
+ v′

∂q′

∂y
+ w′

∂q′

∂z

]
−
[

u′
∂q̃
∂x

+ v′
∂q̃
∂y

+ w′
∂q̃
∂z

]
−
[

ũ
∂q′

∂x
+ ṽ

∂q′

∂y
+ w̃

∂q′

∂z

]
+ Q′source −Q′sink (103)
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In addition, for saturated moist air, the potential temperature θ needs to be replaced by
equivalent potential temperature θe in the anomaly equations (such as Equations (86)–(91)):

θe = θ exp (
Lqs

CpT
) (104)

where L is latent heat, and qs saturated specific humidity. These moisture-related terms are
connected to many complex physical processes such as evaporation, evapotranspiration,
land surface features (soil moisture, vegetation, lakes, and ocean etc.), convection (conden-
sation and latent heat), cloud micro-physics (water phase changes), and different types of
precipitation (liquid and solid).

As for physical or meteorological meaning, the 4D climate-decomposition-based
anomaly equations derived in this section clearly have advantages over the other three
versions (1D, 2D, and 3D decomposition based) of perturbation equations derived in
Section 2. The perturbations from the previous three versions are only departures from
their own reference atmosphere and do not have direct connection to predicted individual
weather systems, while the anomalies from the climate-decomposition-based anomaly
equations are directly a part of predicted individual weather systems both in structure and
strength [38].

3.3. Advantage and Challenge

Since background atmosphere has been removed in anomaly prognostic equations, an
anomaly-equation-based model can avoid numerical errors accumulated from background
atmosphere prediction and, therefore, might improve forecast accuracy. Theoretically
speaking, anomaly model should greatly reduce model systematic errors (bias) and avoid
model climate drift problem. Qian et al. [40] and Huang et al. [41] have demonstrated this
advantage in hurricane track prediction using a vorticity equation.

At a non-divergence level, the full-field vorticity equation (with no friction) is:

∂ς

∂t
= −u

∂ς

∂x
− v

∂ς

∂y
− βv (105)

where ζ = ∂v
∂x −

∂u
∂y , β = (d f /dy) = 2Ω cos ϕ/a. Equation (105) is the full-field-based Beta

advection model (BAM).
The climatic equation is:

∂ζ̃

∂t
= −ũ

∂ζ̃

∂x
− ṽ

∂ζ̃

∂y
− βṽ (106)

where ζ̃ = ∂ṽ
∂x −

∂ũ
∂y .

By subtracting Equation (106) from Equation (105), the anomaly equation can be obtained:

∂ς′

∂t
= −[

(
ũ + u′

)∂ς′

∂x
+ (ṽ + v′)

∂ς′

∂y
]− [u′

∂ζ̃

∂x
+ v′

∂ζ̃

∂y
]− βv′ (107)

where ς′ = ∂v′
∂x −

∂u′
∂y . Equation (107) is the anomaly-based Beta advection model. In an

environment with strong tropical storms, Huang et al. [41] showed that u′ ∂ζ̃
∂x + v′ ∂ζ̃

∂y �

(ũ + u′) ∂ς′

∂x + (ṽ + v′) ∂ς′

∂y , Equation (107) can then be simplified as:

∂ς′

∂t
= −[

(
ũ + u′

)∂ς′

∂x
+ (ṽ + v′)

∂ς′

∂y
]− [u′

∂ζ̃

∂x
+ v′

∂ζ̃

∂y
]− βv′ (108)
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This simplified version of the anomaly-based Beta advection model (Equation (108))
is called the generalized Beta advection model (GBAM) and used in Qian et al. [40] and
Huang et al. [41].

Qian et al. [40] and Huang et al. [41] demonstrated that using the anomaly-based
GBAM could more accurately predict tropical cyclone’s track than the full-field-based BAM.
For example, Huang et al. [41] reported that the GBAM steadily outperformed the BAMs for
both normal and unusual tracks after examining 133 tropical cyclones. One of the reasons
why the GBAM is superior to the BAM is that the steering flow level can be precisely esti-
mated from anomalous vorticity or divergence field. The track prediction is more accurate,
and it is also easier to perform sensitivity experiments to investigate controlling factors
of storm track because the GBAM has two clearly distinct terms: one is the interaction
with surrounding anomalous environment (−u′ ∂ς′

∂x − v′ ∂ς′

∂y ), and another is the impact of

background flow (−ũ ∂ς′

∂x − ṽ ∂ς′

∂y ), while the BAM has more complex interaction terms.
Although for simple pure-dynamic anomaly models such as the GBAM, it seems to

work well, it will be a challenge to apply complete anomaly equations (such as Equations
(74)–(79) or Equations (86)–(91)) to the state-of-the-art NWP model. We will try our best to
elaborate some of them since it is an untouched area till now. The first task is to develop a
dynamical core with anomaly equations. Since climatic states are precalculated, most of
terms on the right side of anomaly prognostic equations are linear with only a few nonlinear
terms. For those linear and nonlinear terms, we might already have matured numerical
schemes [42–44] in NWP to solve them. In a decomposed anomaly climate mixed NWP
model, only anomaly-related terms need to be integrated or predicted over time, while
climatic terms do not need to be calculated but are precalculated constants. Although state
variables are decomposed, it is still a full-field model and, therefore, works with current
physics package. This approach is an analog to the perturbation model developed by
Juang at NCEP [45]. The perturbation model produces a perturbed forecast, and then adds
the perturbed forecast to a background forecast (a global model forecast) to have a more
accurate downscaled forecast. In this case, the background is observed climate instead of a
global model forecast. To realize this method, very high-resolution (both in space and time)
climatology or reanalysis data would be needed, which is currently lacking.

What if a pure anomaly-equation-based NWP model such as the BAMS [40,41] used in
tropical cyclone’s track prediction is desired, where climatic equations are excluded? In such
a pure anomaly model, physics processes (parameterized or AI based) must be decomposed
into climatic and anomalous ones too to match model dynamics. This physics separation
would be a significant challenge which has not yet been explored. Physics is an important
part of the anomaly equations. For example, the terms Fu′ , Fv′ , and Fw′ in Equations (86)–(88)
are frictions, which are related to “anomalous” surface layer, planetary boundary layer,
turbulence, etc. physical processes. The term Fθ′ in Equations (89)–(90) is heating and
cooling effects, which are related to “anomalous” radiation, and adiabatic heating and
cooling processes. Q′source and Q′sink in Equation (103) are related to anomalous evaporation
and precipitation processes. Some physical processes might be easier to decompose than
others. For example, average solar radiation can be easily identified, and topography
including sea-land distribution is always climatic (means that no topography is needed in
an anomaly-equation-based model). While some others, including multi-scale processes,
will be challenging to separate them into climatic and anomaly portions, not to mention
that such a separation of physics might not be realistic in the real world. Nowadays,
a longer-range NWP model (earth simulator) is often coupled with ocean, cryosphere,
biosphere, and aerosol, so that chemical and biological processes are also involved in
addition to physical processes. This makes such a separation even more difficult, if not
impossible. One day in the future, if all model physics can be explicitly resolved by a model
itself, this challenging physics decomposition issue might be overcome. For forecasts with
strong flow dynamics but less physics feedback, an anomaly form of pure dynamical model
(without physics) might work well, as demonstrated by the 1–2 days tropical cyclone’s
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track forecasts [40,41]. Such forecasts might include very short-range weather forecasts of
certain types or large-scale seasonal forecasts with strong anomaly ENSO-like forcing.

4. Summary

To reduce numerical instability and increase NWP model forecast accuracy, one ap-
proach is to avoid or eliminate large-value background terms. Atmospheric scientists had
proposed the 1D, 2D, and 3D static reference atmospheres with respect to temperature and
pressure in the past. By subtracting a reference atmosphere from the atmospheric governing
equations, perturbation equations can be constructed. The perturbation-equation-based
model does run more stable numerically and have higher accuracy. These three reference at-
mospheres were reviewed in this paper. Perturbation equations under these three reference
atmospheres were derived accordingly for reader’s reference.

However, the existing 1D, 2D, and 3D reference atmospheres are only with respect
to temperature and pressure with no time evolution. The resulting perturbations have no
direct connection to weather systems. Therefore, we proposed a four-dimensional (space
and time) all-variable (temperature, pressure, wind, moisture, etc.) climatic state as a
reference atmosphere to decompose the atmospheric governing equations. In this way, the
resulting perturbations are anomalies relative to climate and directly a part of individual
weather systems in both structure and strength. The anomaly equations were derived
and analyzed.

Finally, the benefits and challenges of the anomaly-equation-based NWP model were
discussed. Theoretically, an anomaly model should greatly reduce model systematic errors
(bias) and avoid model climate drift problem due to the removal of climatic flow prediction.
The anomaly-based Beta advection model (vorticity equation) did consistently outperform
the full-field-based model in tropical cyclone track forecasts. However, if a purely anomaly-
equation-based model is applied to a real-world NWP model, the model’s complex physics
will also need to be separated into climatic physics (physics tendency) and anomalous
physics (physics tendency). This separation of physics will be a significant challenge, not to
mention if it is physically a valid option in real world. Fortunately, if both anomaly and
climatic equations are included in an NWP model, it is still a full-field model. Therefore,
model physics should still work as it does now. In such a decomposed anomaly climate
mixed NWP model, only anomaly-related terms need to be integrated or predicted over
time, while climatic terms do not need to be calculated but are precalculated constants.
This anomaly climate mixed approach requires very high-resolution (both in space and
time) climatology or reanalysis data, which is lacking now. Developing a high spatial
and temporal resolution global reanalysis dataset is a key priority. This research might
have opened a new door for NWP model development. For now, we encourage model
developers to establish an anomaly climate mixed NWP model based on the anomaly
and climatic equations derived in this study, which should advance next-generation NWP
model development.

Author Contributions: Funding acquisition, W.Q.; Investigation, W.Q. and J.D.; Methodology, W.Q.
and J.D.; Writing—original draft, W.Q. and J.D. All authors have read and agreed to the published
version of the manuscript.

Funding: The Weihong Qian was funded by the Pearl River Talent Recruitment Program (grant number:
2019ZT08G669) and the National Natural Science Foundation of China (grant number: 41775067).

Acknowledgments: The authors would like to thank the two anonymous reviewers for their con-
structive comments in improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Meteorology 2022, 1 140

References
1. Bolin, B. An improved barotropic model and some aspects of using the balanced equation for three-dimensional flow. Tellus 1956,

8, 61–75. [CrossRef]
2. Ogura, Y.; Philips, N.A. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 1962, 19, 173–179.

[CrossRef]
3. Phillips, N.A. Equation of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmos. Sci. 1966, 23,

626–628. [CrossRef]
4. Wilhemson, R.; Ogura, Y. The pressure perturbation and the numerical modeling of a cloud. J. Atmos. Sci. 1972, 29, 1295–1307.

[CrossRef]
5. Lipps, F.B.; Hemler, R.S. A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 1982,

39, 2192–2210. [CrossRef]
6. Durran, D.R. Improving the anelastic approximation. J. Atmos. Sci. 1989, 46, 1453–1461. [CrossRef]
7. Durran, D.R. A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified

flow. J. Fluid Mech. 2008, 601, 365–379. [CrossRef]
8. Bannon, P.R. Potential vorticity, conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci. 1995, 52,

2302–2312. [CrossRef]
9. Bannon, P.R. On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 1996, 53, 3618–3628. [CrossRef]
10. Davies, T.; Staniforth, A.; Wood, N.; Thuburn, J. Validity of anelastic and other equation sets as inferred from normal-mode

analysis. Q. J. R. Meteorol. Soc. 2003, 129, 2761–2775. [CrossRef]
11. White, A.A.; Hoskins, B.J.; Roulstone, I.; Staniforth, A. Consistent approximate models of the global atmosphere: Shallow, deep,

hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc. 2005, 131, 2081–2107. [CrossRef]
12. Bannon, P.R.; Chagnon, J.M.; James, R.P. Mass conservation and the anelastic approximation. Mon. Weather Rev. 2006, 134,

2989–3005. [CrossRef]
13. Durran, D.R.; Arakawa, A. Generalizing the Boussinesq Approximation to Stratified Compressible Flow. C. R. Mech. 2007, 355,

655–664. [CrossRef]
14. Arakawa, A. and Konor. Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Weather Rev. 2009, 137,

710–716. [CrossRef]
15. Richardson, L.F. Weather Prediction by Numerical Process; Cambridge University Press: Dover, UK, 1922; 262p, ISBN 0-521-68044-1.
16. Chao, J.P. A non-linear analysis of heat convection developing within stratified atmosphere. Acta Meteorol. Sin. 1961, 31, 191–204.

(In Chinese)
17. Chao, J.P. On the basic problems of small-scale dynamical processes in the atmosphere. Acta Meteorol. Sin. 1962, 32, 104–118. (In Chinese)
18. Chao, J.P. On the non-linear impact of stratified atmosphere and wind field on small-scale perturbation developing. Acta Meteorol.

Sin. 1962, 32, 164–176. (In Chinese)
19. Zeng, Q.C. Characteristic parameter and dynamical equation of atmospheric motions. Acta Meteorol. Sin. 1963, 33, 427–483. (In Chinese)
20. Zeng, Q.C.; Yuan, C.G.; Zhang, X.H.; Bao, N. A test for the difference scheme of a general circulation model. Acta Meteorol. Sin.

1985, 43, 441–449. (In Chinese)
21. Phillips, N.A. Principles of Large-Scale Numerical Weather Prediction. In Dynamic Meteorology; Motel, P., Ed.; D. Reidel Publishing

Co.: Dordrecht, The Netherlands, 1973; pp. 1–96.
22. Chen, J.B.; Simmons, A.J. Sensitivity of medium-range weather forecasts to the use of reference atmosphere. Adv. Atmos. Sci.

1989, 7, 275–293.
23. Liao, D.X.; Zhu, H. A multilevel perturbation method-hydrostatic deduction and its applicability to designing the nonhydrostatic

model. Chin. J. Atmos. Sci. 2012, 10, 1–9. (In Chinese)
24. Smolarkiewicz, P.K.; Kühnlein, C.; Wedi, N.P. Semi-implicit integrations of perturbation equations for all-scale atmospheric

dynamics. J. Comput. Phys. 2019, 376, 145–159. [CrossRef]
25. Liang, X.Z. Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci. 1996, 13, 269–298.
26. Chen, J.B.; Shu, J.J. Application of reference atmosphere to numerical weather prediction of medium-range and climate simulation.

Sci. Atmos. Sin. 1994, 18, 660–673. (In Chinese)
27. Zuo, R.T.; Zhang, M.; Zhang, D.L.; Wang, A.H.; Zeng, Q.C. Designing and climatic numerical modeling of 21-level AGCM (IAP

AGCM-III) Part I: Dynamical framework. Chin. J. Atmos. Sci. 2004, 28, 659–674. (In Chinese)
28. Zhang, H.; Lin, Z.H.; Zeng, Q.C. The computational scheme and the test for dynamical framework of IAP AGCM-4. Chin. J.

Atmos. Sci. 2009, 33, 1267–1285. (In Chinese)
29. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; University of Cambridge Press: Cambridge, UK, 2003; p. 368,

ISBN 978-0521796293.
30. Chen, Z.T.; Xu, D.S.; Dai, G.F.; Zhang, Y.X.; Zhong, S.X.; Huang, Y.Y. Technical scheme and operational system of tropical

high-resolution model (TRAMS-V3.0). J. Trop. Meteorol. 2020, 36, 444–454.
31. Chen, D.H.; Xue, J.S.; Yang, X.S. New generation of a multi-scale NWP system (GRAPES): General scientific design. Chin. Sci.

Bull. 2008, 53, 433–445. [CrossRef]
32. Zeng, Q.C. Physical and Mathematical Foundation for Weather Forecast; Science Press: Beijing, China, 1979; pp. 22–25; 543p. (In Chinese)

http://doi.org/10.3402/tellusa.v8i1.8941
http://doi.org/10.1175/1520-0469(1962)019&lt;0173:SAODAS&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1966)023&lt;0626:TEOMFA&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1972)029&lt;1295:TPPATN&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1982)039&lt;2192:ASAODM&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1989)046&lt;1453:ITAA&gt;2.0.CO;2
http://doi.org/10.1017/S0022112008000608
http://doi.org/10.1175/1520-0469(1995)052&lt;2302:PVCHAA&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1996)053&lt;3618:OTAAFA&gt;2.0.CO;2
http://doi.org/10.1256/qj.02.1951
http://doi.org/10.1256/qj.04.49
http://doi.org/10.1175/MWR3228.1
http://doi.org/10.1016/j.crme.2007.08.010
http://doi.org/10.1175/2008MWR2520.1
http://doi.org/10.1016/j.jcp.2018.09.032
http://doi.org/10.1007/s11434-008-0494-z


Meteorology 2022, 1 141

33. Simmons, A.J.; Chen, J.B. The calculation of geopotential and the pressure gradient in the ECMWF atmospheric model: Influence
on the simulation of the polar atmosphere and on temperature analysis. Q. J. R. Meteorol. Soc. 1991, 117, 29–58. [CrossRef]

34. Zhang, D.M.; Sheng, H.; Ji, L.R. Development and test of hydrostatic extraction scheme in spectral model. Adv. Atmos. Sci. 1990,
7, 142–153. [CrossRef]

35. Wood, N.; Staniforth, A.; White, A.; Allen, T.; Diamantakis, M.; Gross, M.; Melvin, T.; Smith, C.; Vosper, S.; Zerroukat, M.; et al.
An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic
equations. Q. J. R. Meteorol. Soc. 2014, 140, 1505–1520. [CrossRef]

36. Su, Y.; Shen, X.S.; Chen, Z.T.; Zhang, H.L. A study on the three-dimensional reference atmosphere in GRAPES_GFS: Theoretical
design and ideal test. Acta Meteorol. Sin. 2018, 76, 241–254. (In Chinese)

37. Su, Y.; Shen, X.S.; Zhang, H.L.; Liu, Y.Z. A study on the three-dimensional reference atmosphere in GRAPES_GFS: Constructive
reference state and real forecast experiment. Acta Meteorol. Sin. 2020, 78, 962–971. (In Chinese)

38. Qian, W.H.; Du, J.; Ai, Y. A review: Anomaly based versus full-field based weather analysis and forecasting. Bull. Am. Meteorol.
Soc. 2021, 102, E849–E870. [CrossRef]

39. Qian, W.H. Temporal Climatology and Anomalous Weather Analysis; Springer: Singapore, 2017.
40. Qian, W.H.; Shan, X.L.; Liang, H.Y.; Huang, J.; Leung, C.H. A generalized beta advection model to improve unusual typhoon

track prediction by decomposing total flow into climatic and anomalous flows. J. Geophys. Res. Atmos. 2014, 119, 1097–1117.
[CrossRef]

41. Huang, J.; Du, J.; Qian, W.H. A comparison between a Generalized Beta-Advection Model and a classical Beta-Advection Model
in predicting and understanding unusual typhoon tracks in Eastern China Seas. Weather Forecast. 2015, 30, 771–792. [CrossRef]

42. Robert, A.; Yee, T.L.; Ritchie, H. A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric
models. Mon. Weather Rev. 1985, 113, 388–394. [CrossRef]

43. Staniforth, A.; Cote, J. Semi-Lagrangian integration schemes for atmospheric models: A review. Mon. Wea Rev. 1991, 119,
2206–2223. [CrossRef]

44. Hortal, M. The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast
model. Q. J. R. Meteorol. Soc. 2002, 128, 1671–1687. [CrossRef]

45. Juang, H.M.H. The NCEP mesoscale spectral model: A revised version of the nonhydrostatic regional spectral model. Mon.
Weather Rev. 2000, 128, 2329–2362. [CrossRef]

http://doi.org/10.1002/qj.49711749703
http://doi.org/10.1007/BF02919152
http://doi.org/10.1002/qj.2235
http://doi.org/10.1175/BAMS-D-19-0297.1
http://doi.org/10.1002/2013JD020902
http://doi.org/10.1175/WAF-D-14-00073.1
http://doi.org/10.1175/1520-0493(1985)113&lt;0388:ASLASI&gt;2.0.CO;2
http://doi.org/10.1175/1520-0493(1991)119&lt;2206:SLISFA&gt;2.0.CO;2
http://doi.org/10.1002/qj.200212858314
http://doi.org/10.1175/1520-0493(2000)128&lt;2329:TNMSMA&gt;2.0.CO;2

	Introduction 
	Perturbation Equations under 1D, 2D, and 3D Reference Atmospheres 
	Atmospheric Governing Equations 
	One-Dimensional Static Temperature as a Reference Atmosphere 
	Two-Dimensional Static Temperature as a Reference Atmosphere 
	Three-Dimensional Static Temperature as a Reference Atmosphere 

	Four-Dimensional All-Variable Climate as a Reference Atmosphere 
	Climatic Equations 
	Anomaly Equations 
	Advantage and Challenge 

	Summary 
	References

