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Abstract: This study investigated the relevant processes responsible for differences of convective
precipitation caused by land-surface resolution. The simulations were performed with the ICOsahe-
dral Nonhydrostatic model (ICON) with grid spacing of 156 m and Large Eddy Simulation physics.
Regions of different orographic complexity, days with weak synoptic forcing and favourable con-
vective conditions were selected. The resolution of land-surface properties (soil type, vegetation)
and/or the orography was reduced from 156 to 5000 m. Analyses are based on backward trajecto-
ries (Lagrangian Analysis Tool (LAGRANTO)), heat budget and convective organisation potential
(COP) calculations. On average, the relative difference of areal mean daily precipitation at 1250 and
5000 m land-surface resolutions compared to 156 m were 6% and 15%, respectively. No consistent
dependency of precipitation on orography or land-surface properties was found. Both factors impact
convective initiation over areas with embedded mesoscale-sized land-surface heterogeneities. The
position of convective precipitation was often influenced by the resolution of orography. Coarsening
from 156 to 5000 m considerably changed the location of wind convergence and associated convec-
tion initiation. It also affects the onset times of clouds (<20 min) and precipitation (≈1 h). Cloud
aggregation and microphysical processes proved to be important for further development towards
convective precipitation.

Keywords: LES; heat budget; LAGRANTO; cold pool; COP

1. Introduction

The triggering of convective precipitation is often related to land-surface hetero-
geneities. The heterogeneity or anomaly, which is manifested by land-surface properties
(e.g., soil type, soil moisture, vegetation) and/or orography, can initiate convection through
both dynamical and thermodynamical processes [1–3]. Both spatial distribution and tem-
poral evolution of convective precipitation were found to be affected [4,5]. Especially under
weak synoptic forcing, land surface-based thermally induced mesoscale circulations gener-
ate low-level wind convergence [4,6–8], which are important prerequisites for convection
initiation [9,10]. Another effective mechanism causing low-level wind convergences and
subsequent moist convection is caused by cold pools [11–13]. Cold pools, which normally
are a result of primary-generated precipitation could initiate secondary-generation shallow
to deep clouds or result in the organisation of clouds.

Many efforts have been taken to understand the whole complex process chain incor-
porated in moist convection through observations and numerical modelling studies [14–19]
and progress has been achieved in the last years by reducing model grid spacings down
to the 100-m scale [20,21]. For the numerical simulations in the transition zone from
sub-kilometres down to a few hectometres model grid spacing, where deep convection is
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resolved [22], processes such as turbulence and cloud microphysics still need to be param-
eterised. As neither 1-D nor 3-D turbulence parameterisation schemes do fit perfectly [23]
in this range, it is denoted as “grey zone of turbulence”, O(1000 m) [23–25]. Despite this un-
certainty, model simulations therein are useful [26] as the convection favouring mesoscale
circulations are appropriately represented [27,28].

Singh [29] performed grey-zone simulations (156 m grid spacing) modifying the land-
surface resolution for regions with different degrees of orographic complexity (flat to
complex terrain). Although on average an increase of the accumulated daily convective pre-
cipitation was found when coarsening land-surface resolution, a decrease could also occur.
Therefore, the motivation for this study was to understand the relevant processes causing
changes of convective precipitation due to the modification of land-surface resolution.

The investigations are carried out with the ICOsahedral Nonhydrostatic (ICON)
model [30,31] for areas with different degrees of land-surface heterogeneity (isolated moun-
tain range, complex terrain). The paper is organised as follows: Section 2 introduces the
different areas and cases selected in this study, a short description of the model configura-
tion and the formulated strategy. It also introduces the applied analysis tools. Section 3
provides cases of how the resolutions of land-surface properties and orography influence
the spatio-temporal behaviour of convection initiation and precipitation and investigates
the atmospheric processes causing these differences. Section 4 summarises the findings of
this study.

2. Methodology
2.1. Investigation Areas and Selected Cases

In order to investigate the questions raised above, we performed simulations for two
areas in Germany characterised by different degrees of land-surface heterogeneity, i.e., the
relatively isolated and moderately high Harz mountains (HM) and the complex and higher
Black Forest mountains (CT) (Figures 1a and 2a). These regions are also characterised
by a considerable degree of heterogeneity concerning soil type (Figures 1d and 2d) and
vegetation (Figures 1g and 2g). Additionally, the selected cases are characterised with
weak large-scale synoptic forcing and considerable convective precipitation (Radar Online
Adjustment (RADOLAN)-RW [32] Figure 3g,h), i.e., horizontal wind speed at 850 hPa
being <10 m s−1 (according to the ECMWF Re-Analysis (ERA)-Interim data set [33,34])
and lightning strikes >500 per 25 km2 (according to lightning data from Siemens lightning
information service (BLIDS), which is part of the European Cooperation for Lightning
Detection (EUCLID) [35]).

2.2. Model Setup and Simulation Strategy

The ICON model (version 2.3.0-nwp2), which has been developed at Deutscher Wet-
terdienst (DWD) and Max Planck Institute for Meteorology (MPI-M) [20,30,31], was used
for this study. In ICON, the multi-layered soil-vegetation-atmosphere-transfer component
(TERRA_ML) [36,37] acts as lower-boundary condition for the atmospheric part of ICON.

The ICON simulations were performed in the Large Eddy Model (LEM) mode. We
used a one-way nesting setup, starting from the parent domain of grid spacing of 5000 m
going to 2500 m using Numerical Weather Prediction (NWP) model physics (denoted as
∆5000 and ∆2500) and from 1250 m going down to 156 m using Large Eddy Simulation (LES)
model physics (denoted as ∆1250, ∆625, ∆312 and ∆156). The sizes of the innermost do-
main are about 100 km × 150 km for HM and 150 km × 100 km for CT (Figures 1 and 2).
The NWP and LES model physics correspond to 1-D [38] and 3-D turbulence [39] param-
eterisation scheme, respectively. In the ‘grey zone’ or ‘terra incognita’ [24], only limited
studies exist, which address at which model grid spacing an appropriate transition from
a 1-D to 3-D turbulence parameterisation scheme should be applied [40,41]. As 156 to
1250 m grid spacings belong to the grey zone, we used the 3-D turbulence scheme based
on the extended Smagorinsky model [39]. The setup uses 90 vertical levels with the model
top level at 20 km and the lowermost minimum layer thickness at 10 m. The operational
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ICON analysis product ICON-Europe (ICON-EU) (grid spacing of 6.5 km and 60 vertical
layers, source: [42]) was used for initial and boundary conditions of the ICON simulations.
The boundary of the parent domain (∆5000) was relaxed towards three hourly ICON-EU
assimilation forecast products. The selected cases described in Section 2.1 were simulated
for 24 h with an initialisation at 00 UTC and output interval of 10 min. The analysis period
excludes the possible spin-up time. For more details of the model configuration and physics
set up, see [43].

Figure 1. (a–c) Orography, (d–f) soil type and (g–i) transpiration area index (TAI) at resolutions of
156 m, 1250 m and 5000 m over the Harz mountains (HM). BR marks the position of the Brocken and
OG the Ohmgebirge.
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Figure 2. (a–c) Orography, (d–f) soil type and (g–i) transpiration area index (TAI) at resolutions of
156 m, 1250 m and 5000 m over the complex terrain (CT) of the Black Forest mountains. FB marks the
position of the Feldberg. Solid lines indicate borders of Federal States of Germany.

To investigate the dependence of convective precipitation on land-surface resolution,
we compare sensitivity runs with control runs. ∆156 is the control run. For the control run,
the land-surface resolution is the same as the underlying model grid spacing. In the sensi-
tivity runs, the model grid spacings remain at 156 m, while the resolutions of land-surface
properties (L) and orography-related parameters (O) were coarsened to 1250 and 5000 m,
respectively. Land-surface properties (L) include soil type, Transpiration Area Index (TAI),
plant cover, Normalized Difference Vegetation Index (NDVI) and other land-surface pa-
rameters except orography. As a step of creating the external parameters, the software tool
EXTPAR (External Parameter for Numerical Weather Prediction and Climate Application)
is applied [44]. It takes the raw data and interpolates it on the target grid of ICON. The res-
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olutions of source-raw data sets of some relevant external parameters are: 1′′ (30 m) for
orography, 10′′ (300 m) for land cover parameters such as vegetation, plant cover, TAI etc.
and 30′′ (900 m) for soil type. There is no orographic smoothing filter from EXTPAR but the
orography undergoes a smoothing during the model simulation, where a maximum height
difference between adjacent grid points of 200 m is allowed for the different runs at 156 m
model grid spacing.

Figure 3. Daily precipitation (a,c,e) from simulations at ∆156, LO1250, LO5000 and (g) observation
(RADOLAN) for area HM on 9 June 2018 and (b,d,f) simulations and (h) observation for area CT on
29 May 2017. The rectangular frames indicate the region discussed in Section 3.3. Solid lines indicate
borders of Federal States of Germany.

In the sensitivity runs, the coarsening of orography related fields is performed by using
the Barycentric interpolation method of DWD-ICON-tools [45]. Other static parameters of
land surface properties (soil type, vegetation, plant cover etc.) are interpolated using area-
weighted average method. The initial soil moisture in the sensitivity runs is the same as in
the reference runs because the soil moisture is taken from the ICON-EU which is already
at a coarser resolution (6.8 km) than the sensitivity runs (1 and 5 km). The Soil Moisture
Index (SMI) in the sensitivity runs is calculated based on the soil moisture from ICON-EU
and the targeted soil types at 1 and 5 km. ICON uses this SMI at the initialisation step. This
results in a group of sensitivity runs that is based on (i) where orography and land-surface
properties were coarsened altogether (denoted as LO1250 and LO5000), (ii) coarsened land-
surface properties (denoted as L1250 and L5000) and (iii) coarsened orography (denoted as
O1250 and O5000). The corresponding distributions of orography and land-surface properties
(soil type, and TAI) are shown in Figure 1 for the Harz mountains and Figure 2 for the
Black Forest mountains.

The Harz mountains is a north-west to south-east oriented mountain range in Northern
Germany, about 120 km in length and 40 km in width (Figure 1a). Its highest elevation,
the Brocken (BR, 1141 m asl) is situated in the northwestern part of the mountain range.
At O5000, the smaller valleys, visible at ∆156 and O1250, are no longer resolved (Figure 1a–c)
and the highest peaks of the mountain range are lowered by about 300 m (Figure 1c).
The dominating soil type in the Harz mountains and Ohmgebirge is loam (Figure 1d).
However, in the area around the Brocken, it is loamy clay and peat and only a stripe of
sandy soil expands along a small valley to the southwest. Sandy soil also dominates the soil
type north of the Harz mountains while loam mainly exists in the south. Coarsening of the
land-surface resolution to 5000 m replaces the soil type of loam by soil type of sandy loam
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in the transition zone from the Harz mountain to the flat land (Figure 1f). At the Brocken,
in L5000 the soil type peat disappeared but a spot with clay and loamy clay remained in that
area (Figure 1f). High TAI values (4–5) can be found over the forested Harz mountains and
Ohmgebirge (highest along the slopes), while TAI is considerably lower in the agriculturally
used flat surroundings (mainly 2–3) (Figure 1g). Villages and small towns, indicated by
small TAI values at ∆156 and L1250, are not longer resolved at L5000 (Figure 1g–i).

The Black Forest mountains, located in the southwest of Germany, consist of two main
mountain ranges, the northern and southern Black Forest. The Hornisgrinde (1164 m asl)
in the northern and the Feldberg (FB, 1493 m above sea level (asl) in the southern Black
Forest being their highest peaks (Figure 2a). While several valleys are visible at ∆156 and
O1250, the smaller ones are not resolved at O5000 anymore (Figure 2a–c) and the top of the
southern Black Forest is only 1160 m asl at O5000. The Black Forest mountains are mainly
characterised by soil type loam while sand is dominating in the Rhine valley west of the
mountains (Figure 2d). Soil type clay is present in an elongated stripe east of the of the
mountain range (Neckar valley). Note that at L5000 this soil type along the valley is replaced
by loamy clay but the stripe is still distinguishable from its surroundings (Figure 2f). Finally,
the mountain range is characterised by higher TAI values (4–5), while the valley of the
Black Forest and the areas west and east of the mountainous are indicated by TAI values
ranging from 2–3 (Figure 2g,h). Villages and towns have TAI values < 1. In L5000, the small
valleys and villages are no longer resolved (Figure 2i) and only the Rhine valley, Black
Forest mountain range and Neckar valley are mainly distinguishable.

2.3. Analysis Tools

Different analysis tools were used to understand the different phases of moist con-
vection, i.e., from triggering of convection (applying multiple regression coefficients for
surface-sensible heat flux (H) and surface-latent heat flux (E), convection indices, and back-
ward trajectories) via evolution of clouds (calculating onset time of clouds and heat budget,
cloud size distribution) to precipitation (calculating onset time and spatial patterns of
precipitation). The tools are described in detail in the following.

Triggering of convection is normally related to the spatial distribution of turbulent
surface fluxes. To identify the possible factors determining these fluxes, the areal mean
Standardized Multiple Regression Coefficient (SMRC) [46] is calculated for surface-sensible
heat flux (H) and surface-latent heat flux (E). The SMRC estimates how much increase in
the explanatory variable affects its relative importance or position within the group for
determination of the outcome variable (H, E). For example, the formulation for H is:

SMRCH = bk ∗
σk
σH

, (1)

where k represents the explanatory variables (SMI, TAI, orography, net radiation, and hor-
izontal wind speed at 10 m). bk is the coefficient estimate of H, and σk and σH are the
standard deviations of the explanatory variables and the outcome variable (H), respectively.
These variables are selected because they are assumed to be the most relevant parameters
determining the partitioning of energy exchange at the Earth’s surface into the surface-
sensible and latent heat flux, respectively. A high value of SMRC for an explanatory variable
shows its more significant contribution to the determination of the outcome variable and
vice versa.

Furthermore, the trajectories were calculated in order to trace back the source of
convective systems. The trajectory tool LAGrangian ANalysis TOol (LAGRANTO) is
applied [47]. LAGRANTO was designed essentially to calculate forward and backward
trajectories of air parcels to identify the flow structures of air masses. To identify the source
regions of air parcels of convective clouds, the backward trajectories starting from the cloud
base or inside the cloud itself are calculated with LAGRANTO. The version LAGRANTO-
ICON works on horizontal regular latitude-longitude. Therefore, the required trajectory
fields are interpolated from ICON to a regular latitude-longitude grid. LAGRANTO uses
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3-D wind fields namely (zonal wind u (in m s−1), meridional wind v (in m s−1) and vertical
wind ω (in Pa s−1). Additionally, it needs surface pressure for the configuration of a level
type, which further calculates the full 3-D pressure on the model fields and identifies
the trajectory points intersecting the underlying orography. To study the local triggering,
the vertical coordinate in meters is intended. Therefore, LAGRANTO needs the information
of orography and the 3-D geopotential height for all grid points. The version adapted for
ICON works also with a very high temporal resolution (up to 1 min) of model fields (in this
study 10 min). For details of the different functionalities and their usage in LAGRANTO,
see [48].

Another tool used in this analysis is the heat budget equation, which specifies the
different contributions (divergence of the sensible heat flux, microphysics, vertical and hori-
zontal advection, divergence of net radiation) to the net tendency of heat (θv), e.g., [16,49,50].
It has been implemented in ICON in online mode [43]. Here, we only discuss the contribu-
tion of microphysical processes to the tendency of heat, i.e., on the net body source terms
associated with the phase changes (MICRθv ). For details of different budget terms, see [43].

Finally, to analyse the evolution of the clouds, the cloud-size distribution was cal-
culated using the Python wrapper for OpenCV [51]. The cloud-size distributions were
determined based on the equivalent diameter, which is the diameter of a circle with a
surface area equal to the respective contour area of the cloud. Using the same wrapper,
the Convective Organisation Potential (COP) [52] was calculated to quantify the degree of
aggregation of clouds. For more information, we refer to [43].

3. Results
3.1. Areal Means in Dependence of Land-Surface Resolution

Table 1 summarises the areal mean daily precipitation amount of the control and
sensitivity runs at 156 m model grid spacing for HM and CT. We focus on two cases,
in which the resolution of land-surface parameters leads to distinct differences in convective
precipitation i.e., 9 June 2018 over HM and 29 May 2017 over CT. Coarsening the land-
surface parameters led to relative differences between L1250, O1250 and LO1250 and the
control run of ≤10% and between L5000, O5000 and LO5000 and the control run of ≤25%.
There is no consistent impact of land-surface properties or orography on areal mean daily
precipitation amount. On average, the relative difference increases with coarser resolution,
i.e., is 6% for 1250 m and 15% for 5000 m. Nevertheless, temporal and spatial differences
within the model domain between the control and sensitivity runs exist (Figure 3).

Table 1. The areal mean daily precipitation amount in control and sensitivity runs for the Harz
mountain (HM) and Black Forest (CT).

Cases ∆156 LO1250 L1250 O1250 LO5000 L5000 O5000

HM (9 June 2018) 0.91 0.92 0.99 0.95 1.06 0.94 1.14
CT (29 May 2017) 2.03 1.93 1.83 1.89 1.68 1.72 1.81

Over the Harz mountains, two distinct precipitation events occurred on 9 June 2018
which are shown in Figure 3a,c,e. In all three simulations (∆156, LO1250, LO5000), the north-
western part of the Harz mountains, i.e., the Brocken and its surroundings (Figure 1a),
were affected by the first major precipitation event. The accumulated precipitation in
LO5000 is higher than ∆156 (Figure 3a,e). The possible reasons for these differences in
precipitation are given in Section 3.2.1. The temporal evolution of clouds and precipi-
tation provides additional information. In ∆156 m, the first convective clouds are simu-
lated around 0920 Coordinated Universal Time (UTC) over the Harz mountain ridge (not
shown). Concerning the sensitivity simulations based on coarsening of orography and land-
surface properties, the onset of clouds does not differ that much from that in ∆156 (in the
range of ±15 min, Figure 4a). Precipitation set in shortly after 1100 UTC (not shown), again
the differences in onset times are small for all simulations (differences <30 min, Figure 4b).
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A second precipitation event, less strong and less spatially homogeneous compared to
the first one, occurred along a southwest oriented stripe in southwest of the Brocken (Fig-
ure 3a,c,e). The Hovmöller plot shows that this precipitation event occurred much later
(e.g., in ∆156 after 1240 UTC, Figure 5a). Reasons for these two precipitation events are
given in Sections 3.2.1 and 3.2.3.

Figure 4. (a) Onset time difference of convective clouds and of (b) precipitation in minutes across
selected sensitivity runs with respect to ∆156. All values are based on means for the whole domain of
HM and CT shown in Figure 3.

Figure 5. Hovmöller diagram of instantaneous precipitation in (a) ∆156 and (b) O5000 for the case
over HM on 9 June 2018. Precipitation is latitudinally averaged from 51.280 to 52.177◦ N.

Concerning the Black Forest mountains, the differences of the areal mean daily precip-
itation between ∆156, LO1250 and LO5000 are mainly caused especially by differences in the



Meteorology 2022, 1 262

southern part of the mountains (Figure 3b,d,f). The centre with the most intense precipita-
tion in LO5000 lies about 20 km to the east of the one in ∆156. Furthermore, although cloud
formation in O5000 and LO5000 is only slightly earlier (≤20 min) compared to ∆156, precipita-
tion in both sensitivity runs on average set in earlier by about 1 h than in ∆156 (Figure 4a,b).
Thus, in this case, by coarsening the orography, the onsets of cloud and precipitation vary
more significantly than does coarsening of the land-surface properties. Therefore, we focus
on the reasons causing the differences between ∆156 and O5000 (Section 3.3).

3.2. Processes Causing Convective Precipitation in Dependence on Land-Surface Resolution over
an Isolated Mountain Range

In the following Section 3.2.1, we describe and analyse the main processes relevant
for the first convective precipitation event over the Harz mountains on 9 June 2018 in the
reference run (∆156) and in Section 3.2.2 we focus on the differences of the sensitivity run
O5000 to ∆156. Section 3.2.3 discusses the second precipitation event. O5000 was selected
because the results are similar to LO5000 and the differences between ∆156 and O5000 can be
attributed to one cause (orography) only.

3.2.1. Reference Run—First Precipitation Event

With respect to land-surface heterogeneity, in ∆156 the first convection formed not
only over the highest peaks of the Harz mountains but also over a region with the soil type
of loamy clay and peat. The conditions, which led to the simulated precipitation are as
follows: on 9 June 2018, an east-southeasterly large-scale wind prevailed in the Atmospheric
Boundary Layer (ABL) (Figure 6a). Already at 0830 UTC, the spatial distribution of the
surface-sensible heat flux shows higher values mainly over the higher elevations than over
flat land. The surface-sensible heat flux ranges from a maximum value of up to 250 W m−2

over the spot with peat to about 150 W m−2 in the west of the Brocken. Surface-sensible
heat flux values of about 100 to 120 W m−2 also prevailed in most of the remaining parts of
the model domain (Figure 6a).

The SMRCH index indicates that H is well correlated with orography ('+0.40) and
SMI ('−0.38), which is also reciprocated with a considerable correlation of E with orogra-
phy ('−0.42), SMI ('+0.40), and TAI ('+0.38). This means that the orography together
with the soil type results in the simulated surface-sensible heat flux pattern with its maxi-
mum over the mountain ridge. Hence, these conditions favoured the strongest wind con-
vergence over the northwestern part of this region. The near-surface wind field shows that
up-slope winds on the slopes of the Harz mountains had developed already at 0830 UTC as
well as up-valley winds in some of the valleys which extend from the foreland to the inner
centre of the Harz mountains, such as the one in the southwest (Figure 6a). Within the next
hours, these thermally-induced winds intensified resulting in the cloud formation over the
Brocken. The horizontal wind convergence at 1100 UTC (Figure 6b) already indicates the
onset of precipitation over that area.

The trajectories (not shown) starting at cloud base (≈1700 m asl) at 1100 UTC and
then integrated backwards until 0700 UTC confirmed that the air parcels originate from
near-surface positions of the surrounding flat forelands of the Harz mountains in the north
and south. As transported upwards along the slopes of the Harz mountains by upslope
winds, they reached the top of the Harz mountains at 0830 UTC (Figure 6a). At that time,
all trajectories are concentrated within an area with a diameter of about 15 km over the
Brocken. The convective precipitation that started at about 1110 UTC peaked between 1200
and 1300 UTC and stopped shortly afterwards over the Harz mountains (Figure 5a).
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Figure 6. (a) Surface-sensible heat flux (colour-coded), trajectory points with air temperature (shaded
green colour) and horizontal wind vectors at ≈300 m above ground level (agl) at 0830 UTC of ∆156;
horizontal wind convergence (colour-shaded) and wind vectors at≈500 m agl at 1100 UTC of (b) ∆156

and (c) O5000 over the Harz mountains on 9 June 2018.

3.2.2. Differences of the Sensitivity Run to the Reference Run

The comparison of the precipitation patterns of ∆156 and O5000 shows some more
intense precipitation in O5000 over the Brocken region (Figure 3a,e).

These differences can be mainly attributed to the modified boundary-layer wind field
caused by the smoothing of the Harz mountains in O5000 (Figures 1a,c and 7). In O5000,
the southeasterly wind in the Convective Boundary Layer (CBL) was mainly able to flow
over the Harz mountains instead of being forced to flow around them (Figures 6c and 7b).
This can be explained by the Froude number Fr = U/(Nh0) [53], where U is the horizontal

wind speed, h0 the height of the obstacle and the Brunt–Vaisala frequency N =
√

g
θv

∂θv
∂z .

In O5000, the Froude number for the boundary layer on the windward side of the Harz
mountains at 1000 UTC is Fr ≈ 0.82 while in ∆156 is Fr ≈ 0.43. That means in O5000, the flow
above about 90 m agl approaching the Harz mountains had enough kinetic energy to flow
over the mountain range, while in ∆156 only the flow higher than ≈ 450 m agl was able
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to do so. Additionally, in O5000 the slope winds were deeper and stronger than in ∆156
(e.g., compare the slope wind systems west of the Brocken, Figure 7a,b). So, obviously both
flows, i.e., the dynamically forced and thermally induced flow, were responsible for the
stronger and wider wind convergence lines in O5000 compared to ∆156 (Figures 6 and 7).
This finally caused the stronger convective precipitations over the Brocken region in O5000
and LO5000 compared to the one in ∆156 (Figures 3a,c,e and 5a,b).

Figure 7. Vertical cross section of wind convergence (colour-coded) and wind vector (u,w) along
the Harz mountains between 10.34◦E, 51.87◦ N and 11.1◦E, 51.58◦ N in (a) ∆156 m and (b) O5000 at
1100 UTC on 9 June 2018.

3.2.3. Reference Run—Second Precipitation Event

The second precipitation event was in continuation with the above-discussed Harz
mountains case (Section 3.2.1). The temporal evolution of precipitation along a southwest
oriented stripe, the Ohmgebirge (OG, indicated in Figure 1), southwest of the Brocken
after 1300 UTC is similar in the ∆156 and O5000 (Figure 5). As the underlying processes are
comparable, we restrict ourselves to the analysis of the ∆156 results.

The area around the Ohmgebirge hills comprises of moderately elevated areas with
some embedded valleys (Figure 1a). The first clouds established at about 1200 UTC (not
shown). Maximum precipitation over this area amounted to ≈ 20 mm (Figure 3a). At
1230 UTC, the near-surface wind field mainly consists of three distinct branches causing
wind converging in the southwest of the Harz mountains (Figure 8a). The first branch is the
flow coming from southeast, which is the large-scale east-southeasterly wind deflected by
the Harz mountains due to a low Fr of≈ 0.43 at 1000 UTC. The deep convective cell over the
Brocken, discussed in the previous subsection, also supports a deflection of the approaching
east-southeasterly wind. The second branch consists of the valley winds that blow from
the west towards the Ohmgebirge. These valley winds are further assisted by the wind
flowing around the Harz mountains in the north and turning into a northwesterly wind at
the western tip of the Harz mountains. Finally, the third branch contributing effectively to
wind convergence is the cold-pool outflow from the deep convective cell that previously
formed over the Brocken. The gust front associated with the cold pool enhanced the wind
convergence in the Ohmgebirge and ultimately triggered cloud formations. The role of the
three flows, contributing to the wind convergence, becomes evident from the backward
trajectories (Figure 8c). The trajectories were started from cloud bases at 1250 UTC and
integrated backwards until 0900 UTC. The projections of the positions of the air parcels to
the surface at 1230 UTC are shown in Figure 8b. We used air temperature of the air parcels
along the trajectories to mark the outflow from the cold pool. The trajectory lines clearly
visualise the contributions of the three aforementioned branches. This example quite well
demonstrates the superpositioning effect of orography and land-surface properties as to
where triggering occurs and the combined effect of dynamically- and thermally-induced
wind convergence regarding secondary triggering of convection.



Meteorology 2022, 1 265

Figure 8. (a) Horizontal wind vectors and wind convergence (colour-coded) at ≈500 m agl at
1230 UTC, (b) surface-sensible heat flux (colour-coded) and trajectory points with air temperature
(shaded green colour) at 1230 UTC and (c) backward Lagrangian trajectories in ∆156 m of case over
the Harz mountain, dated 9 June 2018. (c) The black crosses denote the starting points at the
cloud base at 1250 UTC and the red circles denote the end points of trajectory integration until
0900 UTC. The colours along the trajectories indicate the air temperature and the colour in the x-y
plane denotes orography.

3.3. Processes Causing Convective Precipitation in Dependence on Land-Surface Resolution over
Complex Terrain

A closer look at the spatio-temporal behaviour of precipitation in the southern Black
Forest mountains (rectangular frame in Figure 3b,d,f) allows the Hovmöller diagram,
laterally averaged from 47.650 to 48.417◦ N (Figure 9). In ∆156, the intensive precipita-
tion occurred around 8.1◦ E at approximately 1140 UTC and in total lasted for about
2 h (Figure 9a). In O5000, the precipitation started around 8.4◦ E, i.e., east of the crests
of the southern Black Forest mountains, already at about 1000 UTC (Figure 9b). Then,
the maximum intensity of precipitation occurred further to the west reaching 8.2◦ E at
about 1130 UTC and precipitation stopped at approximately 1200 UTC. The precipitation
intensity in ∆156 was considerably higher than that in O5000. The processes relevant for the
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spatio-temporal evolution of convective precipitation in ∆156 are analysed in Section 3.3.1
and the reasons for the differences of O5000 to ∆156 are presented in Section 3.3.2.

Figure 9. Hovmöller diagram of instantaneous precipitation in (a) ∆156 and (b) O5000 for case over
CT on 29 May 2017. Precipitation is latitudinally averaged from 47.650 to 48.417◦ N.

3.3.1. Reference Run

In ∆156 at 0900 UTC, southwesterly wind prevailed in the Rhine valley, slope winds
were simulated on the southern, western and eastern slopes of the southern Black Forest
mountains and, due to the highly resolved orography, valley winds developed in the small
valleys of the southern Black Forest mountains (Figure 10a). Most of these mesoscale wind
systems led to the formation of small clouds at 1000 UTC, identifiable by low or negative
surface-sensible heat fluxes (Figure 10b). Part of these clouds are triggered over the Feld-
berg. This is also evident from the trajectories, starting at the cloud base ('2800 m asl)
at 1000 UTC and integrated backward until 0600 UTC (Figure 11a). Additionally, a more
coherent north-south-oriented cloud band can be found along the lower part of the eastern
slopes of the Black Forest mountains and Neckar valley (stretching approximately from 8.2◦

E, 47.8◦ N to 8.4◦ E, 48.2◦ N). This cloud band is associated with an anomaly of the surface-
sensible heat flux, which already reached about 250 W m−2 over a north-south-oriented
stripe, while the fluxes are much lower in the remaining part of the investigation area
(Figure 10b). These higher surface-sensible heat fluxes occur over the clay soil (Figure 2d).
Note that considerable low-level wind convergence and clouds developed over the tran-
sition zone from higher to lower surface-sensible heat fluxes (Figure 10b,c). Obviously,
the surface-sensible heat flux anomaly is responsible for the offset of cloud formation from
the Black Forest mountain ridge further to the east. This finding is supported by the back-
ward trajectories which show that the cloud band is fed by parcels from the east but also
from the west of the band with higher surface-sensible heat fluxes (Figures 10b,c and 11a).
However, according to the Hovmöller diagram (Figure 9a), these patchy clouds did not
cause precipitation at that time and the reason will be explained in the following.
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Figure 10. (a,d) Orography (colour-shaded) and horizontal wind vectors at ≈ 200 m agl at 0900 UTC,
(b,e) surface-sensible heat flux at 1000 UTC and (c,f) horizontal wind convergence (colour-shaded)
and wind vectors at ≈200 m agl at 1000 UTC. Left from ∆156 and right from O5000 for case over CT,
dated 29 May 2017.

3.3.2. Differences of the Sensitivity Run to the Reference Run

In O5000, as the small valleys are not resolved properly, its flow field at 0900 UTC is
more homogeneous compared to ∆156 (Figure 10a,d). Slope winds are already present in
most parts of the O5000 model domain at this time. Additionally, the mean barrier height
in the northern part of the southern Black Forest in O5000 is smaller (650 m agl) compared
to ∆156 (950 m agl), so that the Froude number in O5000 is higher (Fr = 0.57) than that
in ∆156 (Fr = 0.37). This explains the prevailing southwesterly wind between 48.0 and
48.2◦ N in O5000 resulting in a pronounced wind convergence where this southwesterly
wind impinges on the southerly wind which exists east of the mountain ridge (Figure 10d,f).
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Figure 11. Backward Lagrangian trajectories using LAGRANTO in (a) ∆156 m and (b) O5000 over CT,
dated 29 May 2017. The black crosses denote the starting points at the cloud base at (a) 1000,
(b) 0900 UTC. The red circles denote the end points of trajectories integration until 0600 UTC.
(a,b) The colour along the trajectories indicates air temperature and the colour in the x-y plane
denotes orography.

The wind convergence in the boundary layer that is more intense in O5000 than in
∆156 in the northern part of the southern Black Forest mountains during the morning
hours (Figure 10c,f) caused more extended clouds (Figure 10b,e). The backward trajectories
confirm that near-surface air from the Rhine valley partly fed these clouds (Figure 11b).
Subsequently, the clouds evolved into deep convection and were responsible for the main
precipitation event that set in already around 1000 UTC (Figure 9b). As the north-south-
oriented stripe with clay soil is still mostly resolved in O5000 (Figure 2f), the corresponding
surface-sensible heat flux anomaly also creates a line of major low-level wind convergence
east of the Black Forest mountain ridge (Figure 10f). The associated clouds are again fed by
air parcels from both sides of the surface-sensible heat flux anomaly (Figures 10e and 11b).
The third area of main low-level wind convergence and related cloud formation can be
found over the Feldberg (Figure 10e). Later on, when the slope winds dominate the wind
field of the southern Black Forest, the clouds and precipitation concentrate along the
mountain crests, as visible from the Hovmöller diagram, i.e., the precipitation shifts to
around 8.2◦ E (Figure 9b).

The reason for the delayed and westward shifted but more intense precipitation
in ∆156 than in O5000 (Figure 9) was examined based on the microphysical processes in
combination with parameters such as the variance of the vertical wind speed, w′2, and the
COP (Figure 12). Note that this figure contains areal means for the region shown in
Figure 10. Until 0930 UTC, the evolution in ∆156 and O5000 is similar, i.e., turbulence
developed in the growing CBL and some isolated clouds (COP ≈ 0.38) were formed.

In O5000, deep convection already developed in the free troposphere between 0930 UTC
and 1000 UTC, indicated by considerable variance of the vertical wind speed up to
w′2 = 0.5 m2s−2 and latent heat release of up to MICRθv = 0.5 K h−1 (Figure 12c). Figure 13b
shows a cross section of MICRθv at 48.15◦ N at 0930 UTC. The deep convective cell in the
northern part of the southern Black Forest (Figure 10e) is dominated by latent heat release
up to 10 km asl, including the cloud top. Negative MICRθv values are restricted to a small
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lateral entrainment zone. After about 1000 UTC, areal means of latent heat release and
vertical wind variance increased considerably, COP decreased and precipitation set in
(Figures 9b and 12c,d). Convective precipitation occurred between 1000 to 1200 UTC in the
northern part of the southern Black Forest mountains.

Figure 12. Time-height cross section of areal mean MICRθv , (colour-coded) overlaid with vertical
wind variance , w′2 (black contours) in (a) ∆156 and (c) O5000, respectively, for CT on 29 May 2017.
The red curves indicate the areal mean CBL height (zi). Accumulated areal mean precipitation (black)
and COP (blue) are given in (b) ∆156 and (d) O5000, respectively. All data are derived for the area
shown in Figure 10.

Figure 13. Longitudinal vertical cross section of MICRθv (colour-coded) overlaid with the 0.01 g kg−1

isoline of cloud liquid water content Qc (black line) at the latitude of 48.15◦ N in (a) ∆156 and (b) O5000

at 0930 UTC on 29 May 2017.

In contrast, in ∆156 after 0930 UTC the vertical wind variance and positive latent heat
release in the free troposphere were still restricted to about approximately 3 to 5 km asl
(Figure 12a). The net areal negative MICRθv values around 4 km asl indicate considerable
cloud dissolution due to lateral de- and entrainment processes between the clouds and the
dry environment. As reported by [43], this especially holds for conditions when on average,
the clouds are small. An example of this microphysical effect is shown in Figure 13a.
The diagram shows a vertical cross section at 48.15◦ N at 0930 UTC, i.e., through the small
clouds existing in ∆156 (Figure 10b). Entrainment processes active laterally and at the top of
the clouds are simulated and prevent the clouds to grow through the dry layer around 4 km
asl. The net areal negative MICRθv values in this layer indicate that the process of cloud
dissolution, i.e., preventing clouds to grow deep, was active in ∆156 until about 1100 UTC
(Figure 12a). MICRθv and w′2 only increased considerably after approximately 1120 UTC.
This is when the slope and valley winds in the southern Black Forest mountains were fully
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established, causing considerable wind convergence along the mountain ridge so that the
clouds aggregated, indicated by a COP value of 0.4 (Figure 12b), and precipitation started
(Figures 9a and 12b). Hence, why, where and when moist convection was triggered and
developed over complex terrain depended on the land-surface properties and orography
while microphysical processes act further down the line to amplify differences between
different lower boundary conditions.

4. Summary

In this study, we applied the ICON model in LES physics mode for control runs at a
model grid spacing of 156 m (∆156). We also performed sensitivity runs at the same grid
spacings with different land-surface resolutions (1250 m, 5000 m) both of orography (O)
and/or land-surface properties (L). The focus is on understanding the relevant processes
responsible for differences in convective precipitation (onset time and amount of precipita-
tion), caused by the resolution of the different land-surface parameters. We focused on two
days, when the modification of land-surface resolution resulted in considerable differences
of convective precipitation.

In order to analyse the different model results, we used analysis tools such as the
multi-regression analysis for determining the dependence of the surface heat fluxes on the
environmental conditions (TAI, SMI, near-surface wind speed, radiation and orography),
backward trajectories in order to identify the source areas of convection, heat budget of the
atmosphere to understand the evolution of the clouds, and COP to estimate the degree of
cloud aggregation.

The selected areas were characterised by different complexities in terms of orography
and land-surface properties, that is an isolated mountain range (Harz mountains, HM)
and complex terrain (Black Forest mountains, CT). The chosen days were characterised by
weak synoptic forcing so that initiation of convection could be expected to be dominated
by thermally-induced circulations and dynamically-driven flows. The main findings can
be summarised as follows:

With regard to the impact of resolution of land-surface parameters on areal
(≈15 × 103 km2) mean daily precipitation, the relative difference between the control
run and the sensitivity runs L1250, O1250 and LO1250 it was ≤10% (6% on average) and
the sensitivity runs L5000,O5000 and LO5000 it was ≤25% (15% on average). The impact of
land-surface properties or orography on areal mean daily precipitation is not consistent for
the investigated cases. The onset time of areal mean clouds between sensitivity runs and
control run differed by <20 min. However, in the Black Forest mountains the onset time of
areal mean precipitation of O5000 and LO5000 differed by 1 h, while in L5000 it differed by
only 10 min to the control run. The onset time differences of areal mean precipitation could
be explained by different processes active in the model domains.

In the case of the Harz mountains, orography and land-surface properties superim-
posed in a way that the strongest wind convergence developed over the mountain peak
Brocken. Therefore, over this area, the clouds were triggered, followed by deep convection
and precipitation in the late morning hours. The convection initiation was independent
from the resolution of land-surface properties as the governing soil-type anomalies were
still resolved at L5000. In the case of a flattened orography (O5000) the prevailing east-
southeasterly wind in the ABL was able to flow over the Harz mountain ridge due to high
Fr = 0.82, while the flow splits into two branches and blew north and south around the
Harz mountain in ∆156 (Fr = 0.43). Additionally, in the morning the slope winds were
stronger and deeper in O5000 than in ∆156. Thus, dynamically and thermally-induced winds
superimposed in a favourable manner leading to a stronger wind convergence over the
Brocken and by this O5000 and LO5000 resulted in heavier precipitation compared to ∆156.
Another phenomenon, the secondary triggering of convection, was also active on that day.
The two branches of dynamically driven flows around the Harz mountains, the one in
the north and the one in the south, caused wind convergence in the southwestern part
of the Harz mountains (Ohmgebirge). The cold-pool outflow of the previous deep con-
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vection over the Brocken then contributed and enhanced the wind convergence over the
Ohmgebirge and triggered secondary convection in the early afternoon.

The more complex terrain case, i.e., the Black Forest mountains, revealed significant
differences between ∆156 and O5000 with respect to the onset time of clouds and precipitation
along with differences in their spatial occurrence. In O5000, clouds and precipitation
were simulated about 1 h earlier and about 20 km further east than in ∆156. The spatial
distribution of the land-surface properties and the smoothed orography could be used
for explanation. Especially the north-south elongated stripe with soil-type clay in the
Neckar valley east of the Black Forest mountains played a decisive role. The soil-type
anomaly, which was the same in ∆156 and O5000, led to higher surface-sensible heat fluxes
compared to the surroundings which caused wind convergence and the first formation
of clouds in the morning. In ∆156, as the large-scale flow was mainly forced around the
Black Forest mountains (Fr = 0.37), moist convection developed when the slope and
valley winds along the mountain ridge reached their mature state around noontime and
when cloud aggregation reduced lateral de- and entrainment between the clouds and
its dry mid-tropospheric environment. In O5000, as the whole Black Forest mountains
are flattened (Fr = 0.57), the large-scale southwesterly wind partly flew over instead
of around the main mountain ridge and, by this, enhanced the thermally-induced wind
convergence in the east of the Black Forest mountains. Therefore, clouds grew deep and
precipitation started already around an hour earlier compared to ∆156. Hence, concerning
convection initiation both land-surface parameters, soil-type and orography, were active in
competition and determined where and when the first clouds formed. Concerning more
intense precipitation in ∆156 than in O5000, cloud aggregation, which was favoured over the
Black Forest mountains crests, was the most important factor.

So, it turned out that mesoscale-sized land-surface properties could both act in compe-
tition or optimal addition to orography with respect to convection initiation. The resolution
of orography on thermally- and dynamically-induced flows had two consequences. In O5000,
the thermal wind systems were already more developed earlier in the morning than in ∆156.
Additionally, O5000 allowed a deeper layer of the impinging flow to cross the mountain
than ∆156. Both factors favoured an earlier and stronger boundary-layer wind convergence
and initiation of convective clouds in O5000 than ∆156. Microphysical and cloud aggrega-
tion processes have proven to be important for further development from boundary-layer
clouds into deep convection.
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