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Abstract: Singapore is a tiny city-state located in maritime Southeast Asia. Weather systems such as
localized thunderstorms, squalls, and monsoon surges bring extreme rainfall to Singapore, influencing
the day-to-day conduct of stakeholders in many sectors. Numerical weather prediction models can
provide forecast guidance, but existing global models struggle to capture the development and
evolution of the small-scale and transient weather systems impacting the region. To address this,
Singapore has collaborated with international partners and developed regional numerical weather
prediction systems. Steady progress has been made, bringing added value to stakeholders. In recent
years, complex earth system and ultra high-resolution urban models have also been developed to
meet increasingly diverse stakeholder needs. However, further advancement of weather prediction
for Singapore is often hindered by existing challenges, such as the lack of data, limited understanding
of underlying processes, and geographical complexities. These may be viewed as opportunities, but
are not trivial to address. There are also other opportunities that have remained relatively unexplored
over Singapore and the region, such as the integration of earth system models, uncertainty estimation
and machine learning methods. These are perhaps key research directions that Singapore should
embark on to continue ensuring value for stakeholders.

Keywords: deep tropics; numerical weather prediction; convective-scale; urban-scale; ensembles;
data assimilation; coupled modeling

1. Introduction

Singapore lies at the heart of the Maritime Continent, situated in the deep tropics where
the multi-scale interactions of the earth system—atmosphere, ocean, and land—govern
the weather systems that evolve and impact the region. These weather systems can be
simulated by mathematical models of the earth system components based on physical
principles, such as the conservation of mass, momentum, and energy. This approach is
known as numerical weather prediction. Numerical weather prediction is largely an initial
value problem; the weather forecast accuracy is determined mainly by the construct of the
mathematical model, via weather modeling, and the initial state prescribed to it. For short
forecasts, boundary conditions have a smaller impact, unless they are poorly specified.

Successful weather prediction requires a concerted effort by both research institutes
and national meteorological services. The Meteorological Service Singapore (MSS), Singa-
pore’s national weather authority on weather and climate, joined the Global Unified Model
Partnership first as an associate partner to develop strategic partnership with the United
Kingdom Met Office (UKMO), and subsequently as a core partner in 2022. This consortium
brings together global scientific and technical expertise to forge new frontiers in weather
prediction through the development of innovative techniques in broad domains such as
coupled modeling, model physics parametrization, and ensemble prediction.

Central to supporting Singapore’s weather prediction strategy is the Weather Mod-
elling and Development Branch (WMD) in the Centre for Climate Research Singapore
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(CCRS), which is the research arm of MSS. By leveraging knowledge-sharing and ad-
vancements arising from the consortium, WMD undertakes numerical weather prediction
research and development focusing on the 2-h to 2-day forecast timescales; encompassing
(i) the lifespan of a short-lived localized thunderstorm; (ii) the passage of a mesoscale
Sumatra squall; and (iii) the onset period of a synoptic-scale monsoon surge. These systems
bring extreme rainfall to Singapore and have wide-ranging societal impacts (e.g., [1–5]),
influencing the day-to-day conduct of stakeholders in many sectors including aviation,
maritime, defense, and energy.

In this article, we describe the progress in weather prediction at CCRS. We also discuss
the challenges and opportunities in weather prediction for Singapore and the region;
a clarion call to spur interest in this niche area and encourage further collaboration as
a community to pave the way ahead.

2. Progress

The increase in the accuracy of weather forecasts is underpinned by progress in
weather modeling. In the global context, a modern 5-day model forecast is as accurate
as a 1-day model forecast was in 1980s [6]. The duration where a forecast is considered
useful is increased by approximately one day for every decade of research and devel-
opment [7], courtesy of continuous investment by global numerical weather prediction
centers. This has attendant benefits for smaller research institutions, including CCRS, that
implement regional numerical weather prediction models nested within such global (host)
models—known as dynamical downscaling.

Prior to 2013, weather prediction at MSS relied solely on dynamical downscaling
techniques, employing in tandem a selection of host and regional models throughout the
historical development path. The computational resources at that time permitted simu-
lations over a curated Southeast Asia domain, including Singapore, Peninsular Malaysia,
and Sumatra, with a horizontal grid-spacing of 6 km.

In 2013, a collaborative project between MSS and the UKMO was conceptualized to
develop a convective-scale numerical weather prediction system for Singapore (SINGV).
A summary of the progress during the SINGV project from 2013 and 2018 is documented
in [8]. The culmination of the efforts by UKMO and CCRS returned three configurations—
SINGV-DS (downscaler [9]), SINGV-DA (data assimilation [10]) and SINGV-EPS (ensemble
prediction [11]), all driven by European Centre for Medium-Range Weather Forecasts
(ECMWF) host model inputs. Notably, SINGV-DS and SINGV-DA included an upgrade
to use a convective-scale horizontal grid-spacing of 1.5 km (constant grid-spacing), which
immediately yielded considerable improvements in the representation of localized thun-
derstorms and small-scale forecast features [9,10]. Concomitantly, the data assimilation of
observations from the Global Telecommunications System (GTS) of the World Meteoro-
logical Organization (WMO) in SINGV-DA demonstrated improved short-range rainfall
forecasts, attributed to the superior initial state estimates compared to simple dynamical
downscaling [10].

Since 2018, the remit of WMD has grown considerably, involving further develop-
ment of other earth system model components (e.g., ocean and wave models) which are
inextricably linked to the atmosphere, and their coupled counterparts (e.g., atmosphere-
ocean-land model [12]). These efforts are justified by the increasingly diverse requirements
of stakeholders, requesting higher forecast accuracies and longer warning lead times from
a broad range of products. Additionally, ultra high-resolution (e.g., 300 meters grid-spacing
and finer) urban modeling—a branch of numerical weather prediction—was also under-
taken [13,14] to understand the impact of anthropogenic heat and urbanization (e.g., urban
heat island effect), for both weather and climate applications.
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3. Challenges

We shall focus on challenges faced in three priority research domains. Each domain
presents a unique set of practical and scientific challenges for weather prediction, specifi-
cally for Singapore and the region.

3.1. Atmosphere-Land Modeling

In numerical weather prediction, atmosphere models are often coupled to land surface
models (e.g., in SINGV configurations) to represent atmosphere-land interactions and
simulate hydrological processes. These are particularly important in the deep tropics,
where substantial mass and energy exchanges between the atmosphere and land occur [15].
Within the tropical atmosphere, moist processes also play an enhanced role in the develop-
ment and evolution of thunderstorms, squall lines and monsoon surges. Atmosphere-land
models over Singapore and the region may often struggle to forecast these weather systems,
due to the following:

• Singapore is surrounded by numerous islands and uneven terrain which give rise
to land-sea interactions and orographic effects that complicate the development and
evolution of weather systems. Forecast errors may stem from a poor representation
of terrain-induced processes (e.g., negligible orographic lift over Sumatra leading to
lesser-than-observed rainfall [16]) if the grid resolution of the atmosphere-land model
is too coarse. Even at a convective-scale resolution, position and timing errors are
still common because localized thunderstorms span only ≈15 km (10 grid-spaces in
SINGV-DA), and are short-lived (≈1 to 2 h). It is unlikely that a single deterministic
weather forecast will capture all the fine scale features of convection, and this could
mean the difference between heavy rainfall in Singapore or in Johor (southern tip of
Peninsular Malaysia).

• Many underlying physical processes in the deep tropics are poorly understood, so
these may not be well-represented in the atmosphere-land model. In particular, sim-
plification of cloud microphysics processes may cause undesirable storm splitting in
the simulated passage of a Sumatra squall, following results from idealized tests [17].
Incorrect partitioning of the soil water retention and surface runoff especially during
heavy rainfall may affect the surface energy and water fluxes, leading to excess or
insufficient near-surface moisture availability for the pre-convective environment. In-
appropriate ad hoc modifications to the boundary layer scheme (e.g., using stochastic
perturbations) may have repercussions on the diurnal cycle, such as the early trigger-
ing of convection [9]. These discrepancies ultimately introduce biases and errors into
the forecasts.

• There is a lack of useful wind observations over the Maritime Continent, even though
geostrophic adjustment theory suggests that wind information is vital for the re-
gion [18]. First, wind measurements are sparsely distributed in space. Existing
wind measurements are usually only available over land (radiosondes), in the upper
troposphere (aircraft), or just above the sea surface (satellite-based scatterometers).
Over adjacent oceans (covering about 50% of the SINGV-DA domain), the lower
troposphere is still insufficiently sampled. Second, wind measurements are sparsely
distributed in time. Existing in situ wind measurements are too infrequent (e.g., ra-
diosondes only launched twice a day) to capture the diurnal cycle, the dominant
mode of variability in the region. Third, the quality of wind measurements are easily
compromised. Sampling noise is prevalent when the tropical winds are light and
variable (e.g., during the inter-monsoon season), so low quality wind observations
such as surface wind measurements are eventually discarded during data assimilation.
Remotely sensed winds are also often subject to rain contamination in the tropics [19],
which may limit their usefulness. These three reasons cause large information gaps in
the prescribed atmospheric state for initialising atmosphere-land models, and thus
compromise the forecast quality.
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3.2. Ocean-Wave Modeling

For weather prediction timescales, ocean circulation models are rarely standalone due
to the slow-evolving nature of oceans; they are often paired with a wind-driven wave model.
These ocean-wave models are focused on marine weather—phenomena occurring at the
atmosphere-ocean interface—providing marine forecasts (e.g., significant wave height of
sea waves and swells, and mean wave direction) over the surrounding waters of Singapore
for stakeholders. Ocean-wave modeling in the region is notoriously challenging due to
the following:

• The Maritime Continent’s oceans are characterized by rugged coastlines and highly
varying bathymetry. The region hosts one of the largest currents of water on the
planet—the Indonesian Throughflow (ITF), which connects the tropical Pacific and
Indian Ocean. The ITF includes many narrow straits weaving through numerous
islands, resting largely on shallow continental shelves. Coarse resolution simulations
cannot effectively resolve the flow through these straits. A model with a poorly chosen
set of vertical coordinates will also struggle with steep gradients in the bathymetry
(e.g., from Andaman Sea to Malacca Straits). This can result in spurious numerical
mixing and ocean eddy artifacts [20].

• There is a severe lack of observations of the Maritime Continent’s oceans, which are
used to prescribe the ocean state via data assimilation, resulting in initial value errors.
Due to the shallow topography around Peninsular Malaysia, Argo floats—freely
drifting robotic devices that profile the ocean subsurface—are near-absent. Ship-based
observations, buoys and tide gauges are sparsely distributed, while other satellite-
based observations (e.g., altimetry, and infrared imagery) can only sample the ocean
surface. These are insufficient to account for thermodynamical properties in the ocean
subsurface that are important for marine forecasts.

• There is uncertainty in specifying the lateral boundary conditions along the conti-
nental break regions (e.g., Peninsular Malaysia) and in the atmospheric wind forcing,
resulting in boundary condition errors in a regional ocean-wave model (e.g., through
dynamical downscaling, used by WMD). An incorrect representation of inflow and
outflow of water along the domain boundaries will lead to errors in momentum
and mass exchanges. An incorrect forcing wind field over elongated coastal regions
(e.g., offshore Sumatra) will lead to errors in the coastal upwelling. These errors will
propagate into the ocean-wave model and contaminate the marine forecasts.

3.3. Urban Modeling

Urban modeling introduces urban canopy parametrization (urban canopy models)
to numerical weather prediction to represent the dynamic and thermodynamic effects
of the city on the atmosphere. These may alter weather patterns (e.g., diurnal cycle
intensity [21]) and phenomena (e.g., sea breeze convergence [14]) that affect Singapore
and the region. Accounting for these effects is thus an important step towards urban-scale
weather prediction for Singapore, but it also faces the following challenges:

• There is a lack of datasets with a detailed and accurate representation of the land
surface types, urban morphology, and anthropogenic heat required for ultra high-
resolution urban modeling over Singapore and Johor. Substantial effort is required
to develop high quality datasets because of existing limitations. First, the quality of
satellite-derived land use and land cover data are often compromised by ubiquitous
cloud cover in the deep tropics. Second, Singapore’s urban morphology is extremely
heterogeneous and it is tricky to derive parameters (e.g., building plan area, and mean
building height) for the urban morphology suitable at ultra high-resolution. Third,
anthropogenic heat emissions cannot be measured and must be indirectly estimated.
Prerequisite high-resolution data (e.g., building energy use, human metabolic heat)
used for estimation are difficult to acquire, so the emissions dataset is often coarsely
derived over Singapore.
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• Many assumptions are required when applying urban canopy parametrizations, which
may be violated in ultra high-resolution urban modeling over Singapore. The assump-
tion of homogeneity in the representation of buildings within a grid box does not hold
when approaching urban-scales in Singapore, known as the “building gray zone” prob-
lem [22]. Fundamental assumptions behind conventional turbulence parametrizations
are violated with increasing horizontal grid resolution, known as the “turbulence gray
zone” problem [23]. Other simplifications (e.g., negligible vegetation effects within the
street canyon, exponential wind profile near the surface, and conventional mesoscale
microphysics schemes) may also be invalid. These lead to undesirable effects on the
model forecast and limits its usefulness.

• The domain for ultra high-resolution urban modeling is usually too small to fully
capture large-scale weather systems. This arises because urban modeling is compu-
tationally expensive, and the domain size is often compromised to facilitate higher
resolution simulations. The drawback of shrinking the domain becomes apparent
when forecasting organized mesoscale (or larger) systems. For example, a Sumatra
squall line which span a few hundred kilometers is larger than the Singapore urban
modeling domain size typically used by WMD, so portions of the squall will be trun-
cated at the boundaries. This may introduce unintended lateral boundary effects
through discontinuities or numerical oscillations that may contaminate the forecasts
within the inner domain. There is therefore a strong need to understand the trade-off
between the benefits from using a smaller horizontal grid-spacing and a larger domain
size for different applications.

4. Opportunities

The aforementioned challenges are thematic, relating to a lack of data, limited un-
derstanding of underlying processes, or geographical complexities. Each challenge can
be viewed as an opportunity to improve weather prediction for Singapore and the region,
but may not be trivial to address. Intensive observation campaigns around the region
(not only in Singapore), process-based studies, and model sensitivity experiments will be
extremely helpful for answering fundamental research questions under respective themes.
There are also domain cross-cutting opportunities which have so far remained relatively
unexplored. We have classified them into three categories below.

4.1. Integrating Earth System Components

The integration of earth system components can address issues related to the represen-
tation of earth system processes, which is due to the geographical complexities of weather
modeling over Singapore and the region. Individual earth system components (land, ocean,
and wave) can be integrated with the atmosphere model to form a single environmental
prediction system. The concept of linking components is apparent from the region’s nick-
name: “Maritime Continent”, where coupling the atmosphere with ocean-waves (Maritime)
and land (Continent) are perhaps necessary to capture their natural interactions and thus
simulate the region’s weather systems more accurately.

Global numerical weather prediction centers have started adopting a similar approach
for consolidating their global modeling systems (e.g., at National Oceanic and Atmospheric
Administration; NOAA, and Korea Institute of Atmospheric Prediction Systems; KIAPS).
Progress in coupled regional modeling is slightly lagging, but ironically may have po-
tential to unlock greater benefits due to the higher sensitivity of small-scale phenomena
(e.g., localized thunderstorms, and wind-driven waves) to transient coupled processes
(e.g., downdrafts causing cold pool propagation over oceans).

Apart from improving forecast accuracy, an environmental prediction system also
allows forecast products from individual models to be consolidated. A single simulation
run from the environmental prediction system can then provide a one-stop shop for all
forecast products with better consistency and quality. This simplifies the overall data
pipeline and workflow required to meet diverse stakeholder requirements.
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In this light, WMD is developing a coupled atmosphere-land-ocean-wave environmen-
tal prediction system over the Maritime Continent, with the option to incorporate weakly
coupled data assimilation for weather prediction applications over the next few years. This
system will also support climate projection applications when the need arises.

4.2. Integrating Uncertainty Estimation

The integration of uncertainty estimation can address issues related to random (stochas-
tic) errors in weather prediction, which is due to the uncertainty in prescribing the initial
state and in the construct of the mathematical model of an inherently chaotic earth system.
One solution is to employ an ensemble of simulations with different initial states, boundary
conditions, and/or constructs of the model, accounting for possible sources of uncertainties
and quantifying them. The ensemble approach is widely adopted when forecasting for
longer timescales (i.e., sub-seasonal through to climate), since more direct information on
weather statistics rather than individual weather events are required. However, for weather
timescales, ensemble techniques can still provide uncertainty estimates on the position and
severity of weather systems.

In regional models over the Maritime Continent, this effort is relatively nascent.
Applications are typically focused on tropical cyclones to identify track or intensification
uncertainties (see [24] and references therein). In the context of Singapore, this can also be
applied to squall lines in estimating propagation and growth uncertainties, and monsoon
surges in estimating mainly the onset timing uncertainties (since surges tend to persist
longer than the model forecast range). Thus far, in-depth studies have yet to be conducted.
Extending this idea to local or site-specific (i.e., town or station level) forecasts, perhaps
probabilistic products (e.g., probabilities of heavy rainfall from thunderstorms, or extreme
events) rather than a deterministic “yes-no” product may be more useful for stakeholders.

In this light, WMD is developing SINGV-EPS to augment the high-resolution SINGV-
DA simulations. The long-term plan involves further consolidation of SINGV-EPS and
SINGV-DA into a single configuration – having the best estimates of the initial states (from
data assimilation) to initialize ensemble simulations, then representing the appropriate
ensemble-derived forecast uncertainty for performing data assimilation. At the same time,
effort is underway to develop forecast post-processing probabilistic and/or site-specific
products using SINGV-EPS.

4.3. Integrating Machine Learning

The integration of machine learning can address issues related to systematic errors in
weather modeling, which is due to, e.g., a limited understanding and poor representation
of physical processes. Machine learning methods diagnose model biases by generalising
patterns between the input layer and output layer (e.g., following [25]; model state as input
layer, analysis increment from data assimilation as output layer in a neural network). Diag-
nosed forecast biases can then be corrected online by introducing tendencies to the model
simulation, or offline as a single correction term after the simulation is completed. This con-
cept is applicable throughout the weather prediction workflow—during data assimilation
to retrieve the initial state, to forecast post-processing (see [26,27] for an overview).

Machine learning can also be used to train surrogate models to replace portions of
the weather model entirely (e.g., turbulence and radiation parametrization). In particular,
physics-informed machine learning methods has gained traction in recent years (see [28]
and references therein). Physical laws (e.g., conservation) are enforced in a machine learning
model architecture such that the solutions satisfy the given mathematical constraints. These
methods can bridge the gap between fully data-driven approaches (limited by data sample
size) and physics-based models (limited by understanding of governing physics) to generate
generalized, physically consistent solutions.

Finally, machine learning may also be more computationally efficient than traditional
modeling approaches (e.g., radiation emulation). As the grid resolution of the earth’s system
models approaches sub-kilometer scales, the availability of high-performance computing
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resources may become a major limitation. Machine learning methods—requiring only
a one-off cost for training—can assist in reducing the overall computational workload, thus
balancing the domain size versus grid resolution trade-off in ultra high-resolution modeling.
One should note, however, that re-training may be required whenever components of the
earth system prediction system are upgraded.

In this light, WMD is keen to explore opportunities with collaborators who are willing
to undertake machine learning research, prioritizing physics-informed machine learning for
improved efficiency and/or accuracy, or machine learning in nowcasting and forecast post-
processing applications to generate improved products for stakeholders. At the moment,
different machine learning methods (e.g., generative adversarial networks) are being tested
to support radar-based nowcasting system development, with potential to blend numerical
weather prediction outputs to improve the nowcasting products.

5. Concluding Remarks

Throughout the course of numerical weather prediction research at CCRS, the rationale
for embarking on any project has always been based on desired outcomes, which are often
stakeholder-driven. It is paramount that we constantly take stock of the progress to serve
as a reminder of the relevance of our research for serving stakeholder needs.

The litmus test for regional weather modeling is the value it brings to stakeholders
in terms of added accuracy, reliability (or timeliness), and to a smaller extent privacy
compared to global models. As weather prediction for Singapore evolves, one must also
be cognizant of the remaining challenges to overcome and opportunities that may arise.
With finite resources, effort must then be concentrated on research directions that tackles
these challenges or exploits these opportunities to ensure the most value for stakeholders.
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