Evaluation of Future Simulations of the CMIP5 GCMs Concerning Boreal Wintertime Atmospheric Teleconnection Patterns
Abstract
:1. Introduction
2. Data and Methods
- True positive (TP) means that the grid cell in the GCM CP map and in the reference CP map belong to the same cluster,
- True negative (TN) means that the grid cell in the GCM CP map and in the reference CP map does not belong to any a cluster,
- False positive (FP) means that the grid cell belongs to a cluster in the GCM CP map, which is not true for the reference CP map, and
- False negative (FN) means that the grid cell does not belong to any cluster in the GCM CP map, while it belongs to a cluster in the reference CP map.
3. Results
3.1. General Overview of the SNC Fields
3.2. Examination of the GCM CP Maps
3.3. Evaluation of the GCMs Based on the MCCmax and the AUC Values
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name of the GCM | AUC | MCCmax | Percentile (%) |
---|---|---|---|
ACCESS1-3 | 0.91 | 0.55 | 25 |
CMCC-CM | 0.93 | 0.61 | 27.5 |
CMCC-CMS | 0.90 | 0.56 | 37.5 |
CNRM-CM5 | 0.88 | 0.49 | 25 |
HadGEM2-CC | 0.93 | 0.60 | 25 |
IPSL-CM5A-MR | 0.89 | 0.52 | 22.5 |
MPI-ESM-LR | 0.93 | 0.59 | 25 |
References
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Feldstein, S.; Franzke, C. Atmospheric Teleconnection Patterns. In Nonlinear and Stochastic Climate Dynamics; Franzke, C., O’Kane, T., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 54–104. [Google Scholar] [CrossRef]
- Horel, J.D. A Rotated Principal Component Analysis of the Interannual Variability of the Northern Hemisphere 500 mb Height Field. Mon. Weather Rev. 1981, 109, 2080–2092. [Google Scholar] [CrossRef]
- Sheperd, T. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 2014, 7, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. 2012, 117, D17103. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C.; Fogli, P.G.; Manzini, E.; Gualdi, S.; Navarra, A. European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Clim. Dyn. 2014, 43, 71–85. [Google Scholar] [CrossRef]
- Hoskins, B.; Woollings, T. Persistent Extratropical Regimes and Climate Extremes. Curr. Clim. Chang. Rep. 2015, 1, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Woollings, T.; Blackburn, M. The North Atlantic Jet Stream under Climate Change and Its Relation to the NAO and EA Patterns. J. Clim. 2012, 25, 886–902. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.D. The Structure, Energetics and Evolution of the Dominant Frequency-Dependent Three-Dimensional Atmospheric Modes. J. Atmos. Sci. 1986, 43, 1210–1237. [Google Scholar] [CrossRef]
- Kautz, L.-A.; Martius, O.; Pfahl, S.; Pinto, J.G.; Ramos, A.M.; Sousa, P.M.; Woollings, T. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—A review. Weather Clim. Dynam. 2022, 3, 305–336. [Google Scholar] [CrossRef]
- Rodrigues, M.; Mariani, M.; Russo, A.; Salis, M.; Galizia, L.F.; Cardil, A. Spatio-Temporal Domains of Wildfire-Prone Teleconnection Patterns in the Western Mediterranean Basin. Geophys. Res. Lett. 2021, 48, e2021GL094238. [Google Scholar] [CrossRef]
- Lü, J.; Li, Y.; Zhai, P.; Chen, J. Teleconnection patterns impacting on the summer consecutive extreme rainfall in Central-Eastern China. Int. J. Climatol. 2017, 37, 3367–3380. [Google Scholar] [CrossRef]
- Dong, L.; Leung, L.R.; Song, F.; Lu, J. Roles of SST versus Internal Atmospheric Variability in Winter Extreme Precipitation Variability along the U.S. West Coast. J. Clim. 2018, 31, 8039–8058. [Google Scholar] [CrossRef]
- Tramblay, Y.; Hertig, E. Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation. Atmos. Res. 2018, 202, 40–48. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- DeWeaver, E.; Nigam, S. Do Stationary Waves Drive the Zonal-Mean Jet Anomalies of the Northern Winter? J. Clim. 2000, 13, 2160–2176. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. (Eds.) An Overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; Wiley: Hoboken, NJ, USA, 2003; pp. 1–35. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, U.; Christoph, M. A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim. Dyn. 1999, 15, 551–559. [Google Scholar] [CrossRef]
- Kuzmina, S.I.; Bengtsson, L.; Johannessen, O.M.; Drange, H.; Bobylev, L.P.; Miles, M.W. The North Atlantic Oscillation and greenhouse-gas forcing. Geophys. Res. Lett. 2005, 32, L04703. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Gong, T. A possible mechanism for the eastward shift of interannual NAO action centres in last three decades. Geophys. Res. Lett. 2006, 33, L24815. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Gillet, N.P.; Fyfe, J.C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 2013, 40, 1189–1193. [Google Scholar] [CrossRef]
- Lu, J.; Vecchi, G.A.; Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 2007, 34, L06805. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Huang, H.; Zhou, C. Widening and weakening of the Hadley circulation under global warming. Sci. Bull. 2018, 63, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Chen, S.; Chen, W.; Yu, B.; Hu, P.; Ying, J.; Wu, Q. Northern poleward edge of regional Hadley cell over western Pacific during boreal winter: Year-to-year variability, influence factors and associated winter climate anomalies. Clim. Dyn. 2021, 56, 3643–3664. [Google Scholar] [CrossRef]
- Croci-Maspoli, M.; Schwierz, C.; Davies, H.C. Atmospheric blocking: Space-time links to the NAO and PNA. Clim. Dyn. 2007, 29, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Masato, G.; Hoskins, B.J.; Woollings, T. Winter and Summer Northern Hemisphere Blocking in CMIP5 Models. J. Clim. 2013, 26, 7044–7059. [Google Scholar] [CrossRef]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef]
- Dünkeloh, A.; Jacobeit, J. Circulation Dynamics of Mediterranean Precipitation Variability 1948–98. Int. J. Climatol. 2003, 23, 1843–1866. [Google Scholar] [CrossRef]
- Criado-Aldeanueva, F.; Soto-Navarro, J. Climatic Indices over the Mediterranean Sea: A Review. Appl. Sci. 2020, 10, 5790. [Google Scholar] [CrossRef]
- Incarbona, A.; Martrat, B.; Mortyn, P.G.; Sprovieri, M.; Ziveri, P.; Gogou, A.; Jordà, G.; Xoplaki, E.; Luterbacher, J.; Langone, L.; et al. Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events. Sci. Rep. 2016, 6, 29623. [Google Scholar] [CrossRef] [Green Version]
- Kristóf, E.; Hollós, R.; Barcza, Z.; Pongrácz, R.; Bartholy, J. Receiver Operating Characteristic Curve Analysis-Based Evaluation of GCMs Concerning Atmospheric Teleconnections. Atmosphere 2021, 12, 1236. [Google Scholar] [CrossRef]
- Kristóf, E.; Barcza, Z.; Hollós, R.; Bartholy, J.; Pongrácz, R. Evaluation of Historical CMIP5 GCM Simulation Results Based on Detected Atmospheric Teleconnections. Atmosphere 2020, 11, 723. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.J.; O’Farrell, S.; Rashid, H.A.; Uotila, P.; Hirst, A.C.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2013, 63, 41–64. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Fogli, P.G.; Manzini, E.; Vichi, M.; Oddo, P.; Navarra, A. Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J. Clim. 2011, 24, 4368–4384. [Google Scholar] [CrossRef] [Green Version]
- Manzini, E.; Cagnazzo, C.; Fogli, P.G.; Bellucci, A.; Müller, W.A. Stratosphere-troposphere coupling at inter-decadal time scales: Implications for the North Atlantic Ocean. Geophys. Res. Lett. 2012, 39, L05801. [Google Scholar] [CrossRef] [Green Version]
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef]
- Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef] [Green Version]
- Raddatz, T.J.; Reick, C.H.; Knorr, W.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim. Dyn. 2007, 29, 565–574. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Lorenz, S.J.; Timmreck, C.; Kattge, J.; Roeckner, E.; Schnur, R.; Schnitzler, K.-G.; Wetzel, P.; Jungclaus, J. Climate and carbon-cycle variability over the last millennium. Clim. Past 2010, 6, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Wallace, J.M.; Blackmon, M.L. Observations of low-frequency atmospheric variability. In Large-Scale Dynamical Processes in the Atmosphere; Hoskins, B.J., Pearce, R.P., Eds.; Academic Press: New York, NY, USA, 1983; pp. 55–94. [Google Scholar]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef] [Green Version]
- Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean Oscillation, Impact on Precipitation and Hydrology in Italy. In Proceedings of the Conference on Climate and Water, Helsinki, Finland, 11–15 September 1989; Academy of Finland: Helsinki, Finland, 1989; pp. 121–137. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Schulzweida, U. CDO User Guide (Version 1.9.8); Max Planck Institute for Meteorology: Hamburg, Germany, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.R-project.org/ (accessed on 3 September 2022).
- Pierce, D. ncdf4: Interface to Unidata NetCDF (Version 4 or Earlier) Format Data Files. R Package Version 1.19. 2021. Available online: https://CRAN.R-project.org/package=ncdf4 (accessed on 3 September 2022).
- Brownrigg, R.; Minka, T.P.; Deckmyn, A. Maps: Draw Geographical Maps. R Package Version 3.4.0. Original S. Code by R.A. Becker, A.R. Wilks. 2021. Available online: https://CRAN.R-project.org/package=maps (accessed on 3 September 2022).
- McIlroy, D. Transition to Plan 9 Codebase by Bivand. R. Mapproj: Map Projections. R Package Version 1.2.6. 2022. Available online: https://CRAN.R-project.org/package=mapproj (accessed on 3 September 2022).
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R Package Version 1.1-3. 2022. Available online: https://CRAN.R-project.org/package=RcolorBrewer (accessed on 3 September 2022).
- Ooms, J. Magick: Advanced Graphics and Image-Processing in R. R Package Version 2.7.3. 2021. Available online: https://CRAN.R-project.org/package=magick (accessed on 3 September 2022).
- Rahmstorf, S.; Foster, G.; Cazenave, A. Comparing climate projections to observations up to 2011. Environ. Res. Lett. 2012, 7, 044035. [Google Scholar] [CrossRef]
- Hausfather, Z.; Drake, H.F.; Abbott, T.; Schmidt, G.A. Evaluating the Performance of Past Climate Model Projections. Geophys. Res. Lett. 2020, 47, e2019GL085378. [Google Scholar] [CrossRef]
- Kushnir, Y.; Wallace, J.M. Low-Frequency Variability in the Northern Hemisphere Winter: Geographical Distribution, Structure and Time-Scale Dependence. J. Atmos. Sci. 1989, 46, 3122–3143. [Google Scholar] [CrossRef]
- van den Dool, H.M.; Saha, S.; Johansson, Å. Empirical Orthogonal Teleconnections. J. Clim. 2000, 13, 1421–1435. [Google Scholar] [CrossRef]
- Parmentier, B.; Neeti, N.; Nickl, E.; Millones, M. Multichannel Empirical Orthogonal Teleconnection Analysis: A Method for Space–Time Decomposition of Climate Variability. J. Appl. Meteorol. Climatol. 2017, 56, 1897–1919. [Google Scholar] [CrossRef]
- Rousi, E.; Rust, H.W.; Ulbrich, U.; Anagnostopoulou, C. Implications of Winter NAO Flavors on Present and Future European Climate. Climate 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Fredriksen, H.-B.; Berner, J.; Subramanian, A.C.; Capotondi, A. How Does El Niño–Southern Oscillation Change Under Global Warming—A First Look at CMIP6. Geophys. Res. Lett. 2020, 47, e2020GL090640. [Google Scholar] [CrossRef]
- Berner, J.; Christensen, H.M.; Sardeshmukh, P.D. Does ENSO regularity increase in a warming climate? J. Clim. 2020, 33, 1247–1259. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 2014, 43, 1497–1511. [Google Scholar] [CrossRef]
GCM | Type | Horizontal Resolution of the AGCM (Longitude × Latitude) | Institute and Country of Origin |
---|---|---|---|
ACCESS1-3 [37] | ESM | 1.9° × 1.3° | Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia |
CMCC-CM [38] | AOGCM | 0.8° × 0.8° | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy |
CMCC-CMS [39] | AOGCM | 1.9° × 1.9° | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy |
CNRM-CM5 [40] | ESM | 1.4° × 1.4° | Centre National de Recherches Météorologiques (CNRM), Météo-France, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), France |
HadGEM2-CC [41] | ESM | 1.9° × 1.3° | Met Office Hadley Centre (MOHC), UK |
IPSL-CM5A-MR [42] | ESM | 2.5° × 1.3° | Institute Pierre-Simon Laplace (IPSL), France |
MPI-ESM-LR [43,44] | ESM | 1.9° × 1.9° | Max Planck Institute for Meteorology (MPI), Germany |
GCM | Time Period | RCP4.5 | RCP8.5 | ||||
---|---|---|---|---|---|---|---|
AUC | MCCmax | Percentile (%) | AUC | MCCmax | Percentile (%) | ||
ACCESS1-3 | 2006–2035 | 0.86 | 0.59 | 25 | 0.89 | 0.62 | 32.5 |
2021–2050 | 0.88 | 0.60 | 20 | 0.86 | 0.51 | 27.5 | |
2071–2100 | 0.83 | 0.50 | 20 | 0.81 | 0.50 | 15 | |
CMCC-CM | 2006–2035 | 0.92 | 0.70 | 25 | 0.88 | 0.60 | 22.5 |
2021–2050 | 0.89 | 0.61 | 22.5 | 0.85 | 0.54 | 32.5 | |
2071–2100 | 0.88 | 0.60 | 30 | 0.89 | 0.62 | 25 | |
CMCC-CMS | 2006–2035 | 0.89 | 0.61 | 30 | 0.88 | 0.54 | 20 |
2021–2050 | 0.87 | 0.54 | 22.5 | 0.88 | 0.60 | 25 | |
2071–2100 | 0.86 | 0.51 | 25 | 0.91 | 0.64 | 22.5 | |
CNRM-CM5 | 2006–2035 | 0.88 | 0.61 | 20 | 0.90 | 0.67 | 25 |
2021–2050 | 0.85 | 0.56 | 27.5 | 0.89 | 0.61 | 30 | |
2071–2100 | 0.90 | 0.63 | 35 | 0.83 | 0.51 | 22.5 | |
HadGEM2-CC | 2006–2035 | 0.93 | 0.69 | 25 | 0.91 | 0.69 | 25 |
2021–2050 | 0.89 | 0.63 | 22.5 | 0.91 | 0.65 | 25 | |
2071–2100 | 0.89 | 0.57 | 22.5 | 0.87 | 0.58 | 35 | |
IPSL-CM5A-MR | 2006–2035 | 0.86 | 0.53 | 25 | 0.83 | 0.52 | 27.5 |
2021–2050 | 0.85 | 0.52 | 25 | 0.87 | 0.60 | 22.5 | |
2071–2100 | 0.85 | 0.50 | 20 | 0.80 | 0.64 | 30 | |
MPI-ESM-LR | 2006–2035 | 0.87 | 0.56 | 27.5 | 0.88 | 0.51 | 27.5 |
2021–2050 | 0.87 | 0.54 | 35 | 0.84 | 0.47 | 32.5 | |
2071–2100 | 0.87 | 0.53 | 45 | 0.86 | 0.51 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristóf, E. Evaluation of Future Simulations of the CMIP5 GCMs Concerning Boreal Wintertime Atmospheric Teleconnection Patterns. Meteorology 2022, 1, 450-467. https://doi.org/10.3390/meteorology1040028
Kristóf E. Evaluation of Future Simulations of the CMIP5 GCMs Concerning Boreal Wintertime Atmospheric Teleconnection Patterns. Meteorology. 2022; 1(4):450-467. https://doi.org/10.3390/meteorology1040028
Chicago/Turabian StyleKristóf, Erzsébet. 2022. "Evaluation of Future Simulations of the CMIP5 GCMs Concerning Boreal Wintertime Atmospheric Teleconnection Patterns" Meteorology 1, no. 4: 450-467. https://doi.org/10.3390/meteorology1040028
APA StyleKristóf, E. (2022). Evaluation of Future Simulations of the CMIP5 GCMs Concerning Boreal Wintertime Atmospheric Teleconnection Patterns. Meteorology, 1(4), 450-467. https://doi.org/10.3390/meteorology1040028