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Abstract: Climatological variables undergo changes over time, and it is important to understand
such dynamic changes at global, regional, and local levels. While global and regional studies are
common in the study of climate, such studies at a local level are not as common. The aim of this
article is to study temporal changes in precipitation, snowfall, and temperature variables at specific
stations located on the rims of Lake Erie and Lake Michigan. The identification of changes is carried
out by applying change-point analysis to precipitation, snowfall, and temperature data from Buffalo,
Erie, and Cleveland stations located on the rim of Lake Erie and at Chicago, Milwaukee, and Green
Bay stations located on the rim of Lake Michigan. We adopt mainly the Bayesian information
criterion (BIC) method to identify the number and locations of change points, and then we apply
the generalized likelihood ratio statistic to test for the statistical significance of the identified change
points. We follow this up by finding 95% confidence intervals for those change points that were found
to be statistically significant. The results from the analysis show that there are significant changes in
precipitation, snowfall, and temperature variables at all six rim stations. Changes in precipitation
show consistently significant increases, whereas there is no similar consistency in snowfall increases.
Temperature increases are generally quite sharp, and they occur consistently around 1985. Overall,
upon combining the amounts of changes from all six stations, the average amount of change in annual
average temperature is found to be 0.96 ◦C, the average percentage of change in precipitation is 16%,
and the average percentage of change in snowfall is 17%. The changing local climatic conditions
identified in the study are important for local city planners, as well as residents, so that they can be
well prepared for changing climatic scenarios.

Keywords: change-point estimation; climatological variables; Lake Erie and Lake Michigan; rim
stations; Poisson distribution; gamma and normal distributions

1. Introduction

The Laurentian Great Lakes, consisting of five lakes—Superior, Michigan, Huron, Erie,
and Ontario—are the largest group of freshwater lakes on Earth. They contain 21% of
the world’s volume of fresh surface water [1]. The Great Lakes represent a major natural
resource for the United States and Canada, and they have played a vital role in the devel-
opment of the industrial heartland of North America. Nearly 40 million people rely on
the Great Lakes for drinking water, food, work, and recreation. The Great Lakes have a
drainage area of 770,000 km2 and a water surface area of 244,000 km2 in the United States
and Canada [2]. Lake Erie, the shallowest (average depth: ~19 m) of the Great Lakes, is
home to one-third of the total human population of the Great Lakes basin [1]. These lakes
have been affected by climate change in several ways, including increased surface water
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temperatures, longer summer stratification-related hypoxia (dissolved oxygen concentra-
tions < 2 mg L−1), and the increased occurrence of weather extremes and harmful algal
blooms (HAB), which degrade the water quality [1].

A number of studies on the Great Lakes’ hydro-climatic variables have generally
shown a decrease in water supplies and water levels [3,4]. Lofgren [4] analyzed the
net basin supply (NBS) for Lake Superior using the coupled hydrosphere–atmosphere
research model (CHARM), a regional climate model, and they predicted increases, as well
as decreases, in the annual mean NBS. Yee et al. [5] reported a rapid drop in lake levels
during 1987–1988. They concluded that the decrease in water levels was due to factors
that included a decrease in precipitation and runoff, an increase in evaporation, and an
increase in lake outflows. Mortsch et al. [6] investigated climate change impacts on the
hydrology of the Great Lakes and predicted significant temperature increases in spring
and winter. Ehsanzadeh et al. [2] reported that the hydro-climatology of the Great Lakes is
characterized by nonstationary behavior. Based on change-point analysis, they found that
precipitation and runoff were on a decreasing course, following an increasing trend in the
early twentieth century. It is notable that this is the only article we found that implemented
change-point methodology to study changes in the Great Lakes’ characteristics. McBean
and Motiee [7] analyzed the precipitation, temperature, and streamflows of the Great Lakes
for trends and found statistically significant increases in precipitation and streamflows over
the period of 1930–2000. Recently, Briley et al. [8] reported that Lake Superior’s surface
waters have warmed more rapidly than nearby air temperatures. Similar lake surface
temperature warming has been observed worldwide [9]. Van Cleave et al. [10] reported
that ice cover on the Great Lakes undergoes non-linear regime shifts and that a decline
started in 1998, a year with a strong ENSO event.

Zhang et al. [11] reviewed literature that focused on climate projections derived from
a variety of climate change models [12–14]. For example, Hayhoe et al. [12] summarized
a number of climate change predictions over the Great Lakes region, focusing on specific
issues and/or locations such as spring freezing and cold snaps, and the city of Chicago.
Gula and Peltier [13] and d’Orgeville et al. [14] combined a land climate model with a
simple lake model to generate future climate scenarios in the region.

It is also relevant to note here the impacts of changes in the Great Lakes region on
the economic and climatic conditions of the land surrounding the lakes. In their recent
study, Briley et al. [8] noted that large lakes can have significant impacts on regional and
local climates, generating much different weather and climate conditions than when lakes
were not present. In lake–atmosphere–land systems, local energy and hydrologic cycles
get modified as conditions at the lake surface interact with the overlying atmosphere and
nearby land surfaces. Temperature differences between the lake surface and overlying air
drive lake effects such as lake breezes and enhanced lake-effect precipitation. Large lakes
supply water to nearby cities, and hence, the budgets, commerce, and ecosystems of such
cities are directly related to the behavior of the lake–atmosphere–land system.

The above review makes it clear that significant changes to the Great Lakes have
been happening and this makes it relevant that the impacts of such changes be carried
out on climatic variables in the cities surrounding these lakes. Often, such studies inform
local residents about the nature of climatic changes that might be happening in their own
neighborhoods, and these local changes may not be aligned with global changes. For
example, the effect of Lake Erie on the snowfall in Buffalo is well known, and hence,
any changes in Buffalo’s snowfall are likely to be influenced by changes that might be
happening in Lake Erie [15]. A recent study based on measurements from 10,000 stations
found high spatial variability in extreme precipitation [16]. The identification of high spatial
variability suggests the need for more regional and local studies in order to understand the
local factors that influence precipitation dynamics at a very local level.

The objective of this article is to carry out a study of changes in climatic variables at a
local level. Specifically, the article focuses on studying changes in the climatic variables
temperature, precipitation, and snowfall at six stations located on the rims of Lake Erie
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and Lake Michigan. The stations chosen in this study are part of the Automated Surface
Observing Systems (ASOS) network, and the specific stations selected are as follows:
Buffalo (BUF), Erie (ERI), and Cleveland (CLE), which are located on the southern rim of
Lake Erie, and Chicago (MDW), Milwaukee (MKE), and Green Bay (GRB), which are located
on the western rim of Lake Michigan. For each station, we considered nine specific climatic
factors representing temperature, precipitation, and snowfall. Detailed information about
the nine variables and the data collected at each of the stations is described in Section 2.
Currently, we wish to state that this study is the first of other studies we plan to pursue on
climatic changes that occur at stations on the rims of the five Great Lakes. Our final goal is
to fully understand the effect of changes to the Great Lakes on climatic variables at stations
on the lakes’ rims. Towards this end in this first study, we only analyzed the nature of
changes at just the six stations mentioned above. Here, we do not perform a similar study
on any of the lake factors, and hence, we do not attribute any direct lake effect on changes
identified in this study. A larger study is being pursued as a follow-up to this initial study.
In the larger study, we also plan to include changes at stations that are away from the lake
rims so that we can delineate the differences in changes occurring at stations on the lake
rims from those that are farther away. Of course, stations located on the rims of the other
three lakes are also of importance, and they will be included in our next set of studies.

Change-point analysis is the main statistical method we employed in this study. The
change-point methodology has long been recognized as an important tool for identifying
nonstationarities in various scientific phenomena, including climatic and environmental
factors. The detection of change points in time series of physical and scientific phenomena
is a prominent area of interest in data analysis. The statistical methodology, often addressed
as change-point methodology, aims to uncover both the number and positions of temporal
transitions in the statistical properties of data. The time series data analyzed in such
studies can come in a variety of forms, including univariate or multivariate, independent
or dependent, discrete or continuous, low-dimensional or high-dimensional, etc. For
a comprehensive understanding of the methodology, one may look at, among others,
the monograph by Csörgő and Horváth [17] and also the review article of Jandhyala
et al. [18]. Detecting multiple change points in time series is of great interest in most
applications. Numerous methodologies have been proposed in the recent change-point
literature, including binary segmentation (BS) [19], optimal partitioning (OP) [20], pruned
exact linear time (PELT) [21,22], the Bayesian information criterion (BIC) [23], Bayesian
approach [24], the minimum description length (MDL) [25,26], graph-based approach [27],
and those based on functional time series analysis [28,29]. Recent literature has contributed
to advancing the field further. Cheung et al. [30] and Aue and Van Delft [31] have explored
recent developments and applications in multiple change-point detection for time series
of networks. Additionally, Kaul et al. [32], Gösmann et al. [33], and others have provided
insights into detecting changes in high-dimensional time series. Most recently, Fotopoulos
et al. [34] and Paparas et al. [35] described methods of both the detection and estimation
of change points in gamma- and Poisson-distributed data, respectively. While the basis
for their likelihood ratio-based detection method may be found in the work of Csörgő and
Horváth [17], the basis for maximum likelihood-based change-point estimation may be
found in the works of Jandhyala and Fotopoulos [36] and Fotopoulos et al. [37].

In this article, we first implement the BIC [23] method to identify the number and
locations of change points in any given dataset. Since the method is heuristic, the change
points identified using this method lack a statistical significance associated with them.
For this reason, we implemented the likelihood ratio test to test the statistical significance
of each change point identified via the BIC. For the change points that were found to be
statistically significant, we constructed confidence intervals, implementing the method of
maximum likelihood estimation (mle) [34,35]. A subsequent implementation of the PELT
method [21,22] yielded mostly the same statistically significant change points identified
through the BIC, and thus, we are confident that the change points identified in this article
are quite robust.
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Lastly, one may wish to know whether it is appropriate to identify changes in climatic
variables through abrupt change-point modeling. For this, one merely needs to look at the
vast majority of change-point models that have been applied in the area of meteorology
and climatology for the past three to four decades through review articles such as those
of Beaulieu et al. [38], Jandhyala et al. [18], Reeves et al. [39], and, most recently, Lund
et al. [40]. Also, Pitman and Stouffer [41] focus fully on discussing the relevance of abrupt
change models for climate and climate modeling. The recent expository article of Lund
and Shi [42] is also an excellent source for understanding the importance of change-point
models for identifying changes in climatic variables.

The organization of this paper is as follows. We begin by presenting the following
in detail: the study area in Section 2.1, the data sources in Section 2.2, and the statistical
methods in Section 2.3. The results from statistical analysis and a detailed discussion of the
results, including the change points identified, are presented in Section 3. Section 4 ends
the paper with some conclusions.

2. Data and Methods
2.1. Study Area

The Great Lakes region constitutes a multifaceted and dynamic system exerting a
considerable influence over North America’s climate and environment. Its susceptibility to
diverse atmospheric and oceanic phenomena significantly shapes temperature, precipita-
tion, and snowfall patterns. Understanding the variability and changes in these climatic
variables is essential to assessing the repercussions and risks of climate change on the
hydrological cycles, ecosystems, and socio-economic sectors within the region. This study
delved into annual temperature, precipitation, and snowfall records obtained from six sta-
tions located on the rims of Lake Erie and Lake Michigan. These climatic variables have
relationships with large-scale climate patterns represented by the North Atlantic Oscillation
(NAO) and the Pacific Decadal Oscillation (PDO) indices, which are known to influence
the climate variability in the region. The primary objectives of this study were to identify
potential change points in climatic variables and briefly explore the possible reasons for
these changes.

As described in the introduction, six ASOS stations were selected for inclusion in this
study—Buffalo Niagara International Airport (BUF), Erie International Airport (ERI), and
Cleveland Hopkins International Airport (CLE), which are located on the southern rim of
Lake Erie, and Chicago Midway Airport (MDW), Milwaukee Mitchell Airport (MKE), and
Green Bay A S International Airport (GRB), which are located on the western rim of Lake
Michigan. Figure 1 displays these six stations on a geographical map. For the purposes
of this article, hereafter, we refer to these stations as Buffalo, Erie, Cleveland, Chicago,
Milwaukee, and Green Bay.

2.2. Data Sources

For each station, the Global Summary of the Year (GSOY) data files provided by
the National Center for Environmental Information (NCEI) of the National Oceanic and
Atmospheric Association (NOAA) contain quality-controlled annual summaries of several
climatic and meteorological variables computed from stations in the Global Historical
Climatology Network. From among all the available variables at each station, we chose
nine specific climatic variables representing temperature, precipitation, and snowfall for this
study: PRCP1—the number of days in a year with ≥1 inch of precipitation; SNOW1—the
number of days in a year with ≥1 inch of snowfall; TMAX32—the number of days in a year
with a maximum temperature ≤ 32 ◦F; and TMAX90—the number of days in a year with a
maximum temperature ≥ 90 ◦F. We also chose five continuous variables: PRCP—the total
annual precipitation (mm); SNOW—the total annual snowfall (mm); TAVG—the average
annual temperature (◦C); TMAX—the average annual maximum temperature (◦C); and
TMIN—the average annual minimum temperature (◦C). Data on annual averages for each
factor were computed from equally weighted monthly data, with no assigned weights
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based on the number of days in each month. Annual values were designated as missing
if one or more data months during a year were missing. The data spanned through the
years of 1939 to 2023, except for Chicago, for which the data began from the year 1942.
Generally, data that are released by the NOAA are quite clean, and we did not have to take
any data-preparatory steps in proceeding with the data analysis of any of the variables.
The only concern was about missing observations. Even in this regard, the missing data
were minimal, ranging from a minimum of 0% to a maximum of 1.5% of the number of
data points for any given variable. Table 1 depicts the six stations, the region they are
located in, the years for which data are included in this study, and the % of data missing at
each station. Whenever a data point was missing, we estimated it with the average of the
previous five data points.
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Table 1. List of the six stations, which are located on the rims of Lake Erie and Lake Michigan.

Location Geographic Region Years of Data % Missing

Buffalo Lake Erie 1939–2022 0.27
Erie Lake Erie 1939–2022 1

Cleveland Lake Erie 1939–2022 0
Chicago Lake Michigan 1942–2022 1.5

Milwaukee Lake Michigan 1939–2022 0.66
Green Bay Lake Michigan 1892–2022 0

2.3. Statistical Methods

In this study, we employed change-point analysis methods to identify change points in
each of the nine climatic variables. The methodology was developed to detect and identify
unknown locations of one or more time points, known as change points, at which given
data over time might have changed in their statistical properties. These alterations could
include sudden shifts in mean or variance, or changes in the underlying distribution or
model of the data. The goal of change-point analysis is to estimate the number of change
points and their locations, along with characterizing the data segments before and after
each change point. This methodology has found widespread applications in various fields,



Meteorology 2024, 3 338

such as quality control, signal processing, bioinformatics, and economics. In climatology,
change-point analysis aids in identifying and understanding the causes and effects of
climate variability and change, such as natural cycles, anthropogenic influences, extreme
events, and regime shifts [38,43,44].

We applied two methods to detect and identify multiple change points in the climatic
variables, namely the BIC [23] and PELT [21,22]. We considered these two methods mainly
to obtain greater confidence about the change points that were identified. It turned out that
most of the change points identified were common to both the BIC and PELT, and only a
few belonged to just one of the methods. Hence, we decided to present results on change
points that were identified by implementing the BIC method only.

Both methods are based on the idea of minimizing a penalty cost function that main-
tains a balance between the fit of the data and the number of change points. The methods
assume that data can be modeled using a parametric distribution with a set of unknown
parameters that may change at unknown time points. The goal is to estimate both the
number and the locations of the change points by minimizing a cost function. For both
methods, the cost function is the negative log-likelihood of the data segment, which is
proportional to the sum of squared residuals (SSR). The BIC method of Bai and Perron [29]
guarantees an exact solution with a linear computational cost. Here, the penalty term is
chosen based on the Bayesian information criterion (BIC). The PELT method uses a dynamic
programming algorithm to find the optimal solution to the minimization problem, in which
the penalty term is chosen according to the modified Bayesian information criterion (MBIC)
and is derived as β = log(n)

2 , where n is the number of data points. The PELT method also
guarantees a computational cost that is linear in the number of data points.

Based on goodness of fit testing, we found the continuous variables to follow either
the normal or the gamma distribution, whereas the discrete variables followed the Poisson
distribution. We applied both the BIC and PELT methods in all three of these cases. In
doing so, we imposed a minimum gap of 20 years between any two consecutive change
points, mainly to avoid identifying spurious and excessive changes.

The BIC and PELT methods do not provide statistical significance (p-value) associated
with any of the identified change points. In such a case, one wonders how many of the
change points identified using either method are truly statistically significant. For this
purpose, we performed the likelihood ratio change detection test [17] to assess the statistical
significance of each of the detected change points. For the purposes of completeness, we
briefly present below the likelihood ratio change detection statistic.

In order to introduce the likelihood ratio statistic, let Y1, Y2, . . . , Yn be a time series of
independently distributed random variables, each with a probability density function (pdf)
(or probability mass function, pmf, in the discrete case) f (y; θ), where θ =

(
θ1, θ2, . . . , θp

)
is a p-dimensional parameter, such that θ ∈ Θ. Suppose a single change-point is detected
within the data Yj1+1, Y2, . . . , Yj2 using either of the two methods, BIC or PELT. Then, to
test for the true presence of this change, we begin by formulating the null hypothesis that
there is no change point within Yj1+1, Y2, . . . , Yj2 and the alternative hypothesis that there is
a change point at an unknown time within Yj1+1, Y2, . . . , Yj2 . The test is based on the ratio
of the likelihoods of the data under the null and alternative hypotheses, and it is given
as follows:

Λ = maxj1+1≤t≤j2−1
supθ∈Θ∏t

i=j1+1 f (Yi, θ)supθ∈Θ∏
j2
i=t+1 f (Yi, θ)

supθ∈Θ∏
j2
i=j1+1 f (Yi, θ)

Under the null hypothesis, the test statistic has an asymptotic distribution that depends
on the distribution of the data. We used this result to compute the p-values for the change
points identified via the BIC or PELT, and we considered a point to be statistically significant
if the p-value was less than 0.05. For each of the change points found to be statistically
significant, it was important to find the confidence interval estimate associated with that
unknown point of time.
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Each change point found to be statistically significant via the likelihood ratio test may
also be viewed as the maximum likelihood estimate (mle) of the unknown change point.
Thus, we could apply the asymptotic distribution of the change-point mle as derived by
Jandhyala and Fotopoulos [36] in order to compute the confidence interval estimate of any
size. Here, we shall first present the asymptotic distribution of the change-point mle for
the general case. The computational methods for finding the asymptotic distribution of
the change-point mle for the special cases of normal, gamma, and Poisson distributions
are presented in Appendix A. As per the change-point set-up, there exists an unknown
change-point, τ ∈ {1, 2, . . . , n − 1}, such that

Y =

{
Yt ∼ f (y; θ0), t ∈ {1, . . . , τ}
Yt ∼ f (y; θ1), t ∈ {τ + 1, . . . , n},

θ0 =
(
θ10, θ20, . . . , θp0

)
is the parameter before a change, θ1 =

(
θ11, θ21, . . . , θp1

)
is the

parameter after the change, and θ0 ̸= θ1. Let τ̂n be the maximum likelihood estimator
(mle) of τ. Then, as shown by Fotopoulos et al. [37], the centralized change-point mle
ξn := τ̂n − τn can be expressed as follows:

ξn = argmaxt∈{−τn+1,...,n−τn+1}Cn(t)

Cn(t) =D


S1:|t| =

|t|
∑

k=1
Xk =

|t|
∑

k=1
ln

f (Y; θ1)

f (Y; θ0)
, t = −τn + 1, . . . ,−1

0, t = 0

S∗
1:t =

t
∑

k=1
X∗

k =
|t|
∑

k=1
ln

f (Y; θ0)

f (Y; θ1)
, t = 1, . . . , n − τn.

In the above, the random walks S and S* are independent of each other. Per Fotopoulos
et al. [37], the asymptotic form of ξn, denoted as ξ∞, has the following distributional form:

P(ξ∞ = j) ∼=


e−B

[
q−j −

∫ ∞
0+ {1 − G∗(x)}du−j(x)

]
, j < 0

e−B−B∗
, j = 0

e−B∗
[
q∗ j −

∫ ∞
0+ {1 − G(x)}du∗

j(x)
]
, j > 0

Let us define the distribution function of the overall maxima as G(X) = P(M ≤ x) and
G∗(X) = P(M∗ ≤ x) for x ≥ 0. We let Mj = max

0≤i≤j
Si and Mj

∗ = max
0≤i≤j

Si
∗ be the maxima

of the first n partial sums, and we let M = max
n≥0

Sn and M∗ = max
n≥0

Sn
∗ be the total maxima.

Also, we let qn = P
(
TX

≤ > n
)

and un(x) = P
(

T≤
X > n, Sn ∈ 0, x

)
for n ≥ 0, x ≥ 0 and

B = ∑ bn/n, where bn = P(Sn > 0), for n ≥ 1 and B∗ = ∑ bn
∗/n, where bn

∗ = P(Sn
∗ > 0),

for n ≥ 1. Based on the computational methods elaborated in the Appendix A, the
asymptotic distribution for each change-point mle was computed depending upon the
underlying distribution being normal, gamma, or Poisson.

3. Results from Statistical Analysis and Discussion

The computational methods elaborated in Section 2.3 above enabled us to first
implement both BIC and PELT methods to identify change points in each of the data
series considered in the article. Subsequently, the likelihood ratio statistic was applied
to test for the statistical significance of each change point identified via the BIC and
PELT methods. However, since both methods yielded almost the same change points,
we present the results of applying only the BIC method. Finally, asymptotic distributions
were computed for each statistically significant change point from the BIC, and these
enabled us to compute the associated 95% confidence interval estimates. As a follow-up,
we also provide estimates of the amount of change in the mean whenever a significant
change was identified. However, when a change point identified via the BIC was not
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statistically significant, we left such point estimates alone without computing the 95%
confidence interval or the amount of change. The computed point estimates from the BIC,
together with the p-values from the likelihood ratio test, the 95% confidence intervals in
the form [point estimate ± number of years] only when p-value < 0.05, and the amount
of change are presented in the following: Table 2 for the variables PREC1, SNOW1,
TMAX32, and TMAX90; Table 3 for the variables PRCP and SNOW; and Table 4 for the
variables TAVG, TMAX, and TMIN, respectively.

Table 2. Change points in mean according to the BIC method for the variables PREC1, SNOW1,
TMAX32, and TMAX90: change-point estimate ± width of approximate 95% confidence interval
when the change detection test p-value < 0.05 (*), followed by the [amount of change in the mean] or
only the point estimate when p-value > 0.05.

City
Climatic Variable

PRCP1 p-Value SNOW1 p-Value TMAX32 p-Value TMAX90 p-Value

Buffalo 1975 ± 9 [2.36] 0.02 * 1979 0.56 1985 ± 7
[−7.96] 0.01 * 1964 ± 4 [−3.42] 0.00 *

Erie 1969 0.76 1966 ± 8
[5.46] 0.01 * 1985 ± 6

[−8.98] 0.00 * 1965 ± 4 [−2.90]
1990 ± 4 [2.70]

0.00 *
0.00 *

Cleveland 1982 ± 9 [2.30] 0.04 * 1971 0.26 1985 ± 8
[−6.96] 0.01 * 1964 ± 2 [−8.34] 0.00 *

Chicago 1981 0.16 1966
1991

0.27
0.78

1985 ± 7
[−7.49] 0.01 * 1966

1994
0.25
0.79

Milwaukee 1975 0.07 1969 0.40 1985 ± 4
[−11.93] 0.00 * 1964

1991
0.32
0.91

Green Bay 1977 0.18 1970
1996

0.11
0.37

1986 ± 6
[−11.21] 0.00 * 1966

1991
0.65
0.20

Table 3. Change points in the mean according to the BIC method for the variables PRCP and SNOW:
change-point estimate ± the width of the approximate 95% confidence interval when the change
detection test p-value < 0.05 (*), followed by the [amount of change in the mean] or only the estimate
when the change detection test p-value > 0.05.

City
Climatic Variable

PRCP p-Value SNOW p-Value

Buffalo 1974 ± 10 [128.61] 0.02 * 1969 0.36

Erie 1971 ± 11 [134.45] 0.00 * 1963 ± 7 [773.31] 0.02 *

Cleveland 1971 ± 9 [141.76] 0.00 * 1971 ± 15 [317.38] 0.00 *

Chicago 1971 ± 7 [142.98] 0.00 * 1966
1991

0.81
0.90

Milwaukee 1971 ± 8 [153.81] 0.00 * 1970 ± 12 [221.21]
1995 ± 8 [−103.04]

0.00 *
0.00 *

Green Bay 1991 ± 11 [96.59] 0.00 * 1970 ± 3 [310.59]
1995 ± 14 [76.51]

0.00 *
0.00 *

Also, for purposes of visually understanding the changes, statistically significant
change points, along with the corresponding data, are plotted for each data series and for
each city. For the purposes of completeness, we also include plots of the rest of the climatic
variables for which no statistically significant change point was found. In such cases, we fit
just the common mean and denote it as a dashed line. The respective plots are presented in
the following: Figure 2 for Buffalo, Figure 3 for Erie, Figure 4 for Cleveland, Figure 5 for
Chicago, Figure 6 for Milwaukee, and Figure 7 for Green Bay.
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Table 4. Change points in the mean according to the BIC method for the variables TAVG, TMAX,
and TMIN: change-point estimate ± the width of the approximate 95% confidence interval when the
change detection test p-value < 0.05 (*), followed by the [amount of change in the mean] or only the
estimate when the change detection test p-value > 0.05.

City
Climatic Variable

TAVG p-Value TMAX p-Value TMIN p-Value

Buffalo 1989 ± 8 [0.74] 0.02 * 1986 0.20 1989 ± 6 [0.96] 0.00 *

Erie 1985 ± 6 [1.06] 0.00 * 1985 ± 7 [0.94] 0.01 * 1985 ± 5 [1.18] 0.00 *

Cleveland 1989 ± 8 [0.77] 0.04 * 1989 0.40 1989 ± 5 [1.11] 0.00 *

Chicago 1985 ± 7 [0.96] 0.01 * 1985 0.20 1985 ± 4 [1.33] 0.00 *

Milwaukee 1986 ± 3 [1.32] 0.00 * 1986 ± 7 [0.98] 0.01 * 1985 ± 2 [1.66] 0.00 *

Green Bay 1986 ± 9 [0.88] 0.02 * 1986 ± 9 [0.84] 0.01 * 1989 ± 10 [0.93] 0.04 *
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total annual precipitation (mm); SNOW—the total annual snowfall (mm); TAVG—the average an-
nual temperature (°C); TMAX—the average annual maximum temperature (°C); and TMIN—the 
average annual minimum temperature (°C). Also included are their respective statistically signifi-
cant change-point models. 

Figure 2. Plots of data series for the city of Buffalo: PRCP1—the number of days in a year with ≥1 inch of
precipitation; SNOW1—the number of days in a year with ≥1 inch of snowfall; TMAX32—the number
of days in a year with a maximum temperature ≤ 32 ◦F; and TMAX90—the number of days in a year
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with a maximum temperature ≥ 90 ◦F. And five continuous variables: PRCP—the total annual precip-
itation (mm); SNOW—the total annual snowfall (mm); TAVG—the average annual temperature (◦C);
TMAX—the average annual maximum temperature (◦C); and TMIN—the average annual minimum
temperature (◦C). Also included are their respective statistically significant change-point models.
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Figure 3. Plots of data series for the city of Erie: PRCP1—the number of days in a year with ≥1 inch of
precipitation; SNOW1—the number of days in a year with ≥1 inch of snowfall; TMAX32—the number
of days in a year with a maximum temperature ≤ 32 ◦F; and TMAX90—the number of days in a year
with a maximum temperature ≥ 90 ◦F. And five continuous variables: PRCP—the total annual precipi-
tation (mm); SNOW—the total annual snowfall (mm); TAVG—the average annual temperature (◦C);
TMAX—the average annual maximum temperature (◦C); and TMIN—the average annual minimum
temperature (◦C). Also included are their respective statistically significant change-point models.

We shall now begin our discussion of the results. For this purpose, we find it conve-
nient to summarize the information in Tables 2–4 more concisely, and thus, we present in
Table 5 a summary of changes in precipitation, in Table 6 a summary of changes in snowfall,
and in Table 7 a summary of changes in temperature.
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Figure 4. Plots of data series for the city of Cleveland: PRCP1—the number of days in a year
with ≥1 inch of precipitation; SNOW1—the number of days in a year with ≥1 inch of snowfall;
TMAX32—the number of days in a year with a maximum temperature ≤ 32 ◦F; and TMAX90—the
number of days in a year with a maximum temperature ≥ 90 ◦F. And five continuous variables:
PRCP—the total annual precipitation (mm); SNOW—the total annual snowfall (mm); TAVG—the
average annual temperature (◦C); TMAX—the average annual maximum temperature (◦C); and
TMIN—the average annual minimum temperature (◦C). Also shown are their respective statistically
significant change-point models.

Table 5. Summary of changes in the precipitation variables, namely PRCP1—the number of days in a
year with ≥1 inch of precipitation, and PRCP—the total annual precipitation (mm). Here, * implies
that a change in the corresponding year is statistically significant, (#) implies the corresponding
variable is a counting variable, ↑ implies an increase in a change.

Precip

Lake City Lake Erie Lake Michigan

Buffalo Erie Cleveland Chicago Milwaukee Green Bay

PRCP1 (#) 1975 *↑ 1969 1982 *↑ 1981 1975 1977

PRCP (mm) 1974 *↑ 1971 *↑ 1971 *↑ 1971 *↑ 1971 *↑ 1991 *↑
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els. 

Figure 5. For the city of Chicago: PRCP1—the number of days in a year with ≥1 inch of precipitation;
SNOW1—the number of days in a year with ≥1 inch of snowfall; TMAX32—the number of days
in a year with a maximum temperature ≤ 32 ◦F; and TMAX90–the number of days in a year with
maximum temperature ≥ 90 ◦F. And five continuous variables: PRCP—the total annual precipita-
tion (mm); SNOW—the total annual snowfall (mm); TAVG—the average annual temperature (◦C);
TMAX—the average annual maximum temperature (◦C); and TMIN—the average annual minimum
temperature (◦C). Also shown are their respective statistically significant change-point models.

Table 6. Summary of changes in the two snowfall variables, namely SNOW1—the number of days in
a year with ≥1 inch of snowfall, and SNOW—the total annual snowfall (mm). Here, * implies that a
change in the corresponding year is statistically significant, (#) implies the corresponding variable is
a counting variable, ↑ implies an increase in a change, and ↓ implies a decrease in a change.

Snow

Lake City Lake Erie Lake Michigan

Buffalo Erie Cleveland Chicago Milwaukee Green Bay

SNOW1 (#) 1979 1966 *↑ 1971 1966
1991 1969 1970

1996

SNOW (mm) 1969 1963 *↑ 1971 *↑ 1966
1991

1970 *↑
1995 *↓

1970 *↑
1995 *↑
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Figure 6. For the city of Milwaukee: PRCP1—the number of days in a year with ≥1 inch of precip-
itation; SNOW1—the number of days in a year with ≥1 inch of snowfall; TMAX32—the number of 
days in a year with a maximum temperature ≤32 °F; and TMAX90—the number of days in a year 
with a maximum temperature ≥90 °F. And five continuous variables: PRCP—the total annual pre-
cipitation (mm); SNOW—the total annual snowfall (mm); TAVG—the average annual temperature 
(°C); TMAX—the average annual maximum temperature (°C); and TMIN—the average annual min-
imum temperature (°C). Also shown are their respective statistically significant change-point mod-
els. 

Figure 6. For the city of Milwaukee: PRCP1—the number of days in a year with ≥1 inch of precipita-
tion; SNOW1—the number of days in a year with ≥1 inch of snowfall; TMAX32—the number of days
in a year with a maximum temperature ≤ 32 ◦F; and TMAX90—the number of days in a year with a
maximum temperature ≥ 90 ◦F. And five continuous variables: PRCP—the total annual precipita-
tion (mm); SNOW—the total annual snowfall (mm); TAVG—the average annual temperature (◦C);
TMAX—the average annual maximum temperature (◦C); and TMIN—the average annual minimum
temperature (◦C). Also shown are their respective statistically significant change-point models.

Before we delve into details of the nature of changes, it is clear beyond doubt from
Tables 5–7 that significant changes occurred in precipitation, snowfall, and temperature
at all six of the rim stations, and it is important for meteorologists to make note of this
significant observation. Truly, it is meteorologists who can access the depths of scientific
phenomena and discover the reasons that have contributed to the significant changes
identified in this study.

From Table 5, it is clear that the total annual precipitation (PRCP) increased consistently
around the year 1971 at all the stations except for Green Bay, where the increase occurred
in 1991. However, significant increases in the number of days with precipitation (PRCP1)
occurred only in Buffalo in 1975 and in Cleveland in 1982. It is important to note that all
significant changes in both PRCP and PRCP1 were on the increasing side for precipitation.
Such consistently increasing changes did not occur for either snowfall or temperature. In
this sense, changes in precipitation stand out and require further attention.
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We shall now begin our discussion of the results. For this purpose, we find it conven-
ient to summarize the information in Tables 2–4 more concisely, and thus, we present in 
Table 5 a summary of changes in precipitation, in Table 6 a summary of changes in snow-
fall, and in Table 7 a summary of changes in temperature. 

  

Figure 7. For the city of Green Bay: PRCP1—the number of days in a year with ≥1 inch of precipita-
tion; SNOW1—the number of days in a year with ≥1 inch of snowfall; TMAX32—the number of days
in a year with a maximum temperature ≤ 32 ◦F; and TMAX90—the number of days in a year with a
maximum temperature ≥ 90 ◦F. And five continuous variables: PRCP—the total annual precipita-
tion (mm); SNOW—the total annual snowfall (mm); TAVG—the average annual temperature (◦C);
TMAX—the average annual maximum temperature (◦C); and TMIN—the average annual minimum
temperature (◦C). Also shown are their respective statistically significant change-point models.

With respect to changes in snowfall, Table 6 shows that snowfall at the rim stations
of Lake Erie increased consistently, whereas changes in snowfall at rim stations of Lake
Michigan did not show similarly consistent increases. The presence of two changes in
snowfall (SNOW) occurred at Green Bay with increases in both 1970 and in 1995, whereas in
Milwaukee, there was initially an increase in 1970, and then the annual snowfall decreased
significantly in 1995. With regard to changes in the number of days in a year with ≥1 inch
of snowfall (SNOW1), significant increases occurred only at Erie in 1966. Otherwise, no
significant changes occurred in SNOW1 at other stations of Buffalo, Cleveland, Chicago,
Milwaukee, or Green Bay.
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Table 7. Summary of changes in the five temperature variables, namely the following: TMAX32—the
number of days in a year with a maximum temperature ≤ 32 ◦F; TMAX90—the number of days
in a year with a maximum temperature ≥ 90 ◦F; TAVG—the average annual temperature (◦C);
TMAX—the average annual maximum temperature (◦C); and TMIN—the average annual minimum
temperature (◦C). Here, * implies that a change in the corresponding year is statistically significant,
(#) implies the corresponding variable is a counting variable, ↑ implies an increase in a change, and ↓
implies a decrease in a change.

Temp.

Lake City Lake Erie Lake Michigan

Buffalo Erie Cleveland Chicago Milwaukee Green Bay

TMAX32 (#) 1985 *↓ 1985 *↓ 1985 *↓ 1985 *↓ 1985 *↓ 1986 *↓

TMAX90 (#) 1964 *↓ 1965 *↓
1990 *↑ 1964 *↓ 1966

1994
1964
1991

1966
1991

TAVG (◦C) 1989 *↑ 1985 *↑ 1989 *↑ 1985 *↑ 1986 *↑ 1986 *↑
TMAX (◦C) 1986 1985 *↑ 1989 1985 1986 *↑ 1986 *↑
TMIN (◦C) 1989 *↑ 1985 *↑ 1989 *↑ 1985 *↑ 1985 *↑ 1989 *↑

Table 7 shows that significant increases in the continuous temperature variables—the
average annual temperature (TAVG), average annual maximum temperature (TMAX),
and average annual minimum temperature (TMIN)—occurred at all six stations. It is
noteworthy that most of these increases occurred in or around the year 1985. The only
exceptions were the stations of Buffalo and Cleveland, where significant increases in TAVG
and TMIN occurred around 1989, not too long after 1985. In contrast, changes in the number
of days with a maximum temperature ≤ 32 ◦F (TMAX32) decreased consistently at all six
stations, also around the same year of 1985. In terms of changes in the number of days with
a maximum temperature ≥ 90 ◦F (TMAX90), all significant changes occurred only at the
three rim stations of Lake Erie, and no significant changes were found at the rim stations of
Lake Michigan. There were two significant changes at Erie Station, with the first change
being a decrease in TMAX90 around 1965, while the second change led to an increase in
TMAX90 around 1990.

As for the extent of changes in precipitation, snowfall, and temperatures, we limit our
discussion to the continuous variables only. From Tables 3 and 4, we note that the highest
increase in precipitation (PRCP) can be seen to have occurred in Milwaukee (153.81 mm),
followed by Chicago (142.98) and Cleveland (141.76). Since Cleveland, Chicago, and Mil-
waukee are geographical neighbors to one another, anticipating a similar trend, one would
have thought Green Bay would have undergone an even higher increase in precipitation
than Milwaukee. However, it should be noted that the higher increases that occurred in
Cleveland, Chicago, and Milwaukee all happened in 1971, whereas the lowest increase
in precipitation that occurred at Green Bay happened much later, in 1991. The greatest
extent of change in snowfall was an increase to the tune of 773.31 mm, which happened in
1963 at Erie. Next, Cleveland exhibited a very large increase (317.38 mm) in snowfall in
1971, whereas Chicago underwent no significant increase in snowfall. Milwaukee exhibited
first an increase in 1970 (221.21 mm) and then a decrease in 1991 (−103.04 mm), while the
lowest increase (76.51 mm) in snowfall occurred in the year 1995 at Green Bay.

Let us move on to the temperature factors of TAVG, TMAX, and TMIN. The highest
increase in temperature (1.66 ◦C) in the TMIN factor occurred at Milwaukee in 1985, and
this was followed by the next highest increase of 1.33 ◦C in the same variable, TMIN, which
occurred in the neighboring Chicago in the same year of 1985. The third highest increase of
1.18 ◦C in TMIN occurred again in 1985 in the city of Erie. It should be mentioned that, with
an increase of 1.11 ◦C in TMIN, Cleveland was not far behind. A somewhat similar pattern
can be seen for the extent of changes in TAVG. The highest increase of 1.32 ◦C happened
at Milwaukee, followed by an increase of 1.06 ◦C in the city of Erie, and the increase at
Cleveland stood at 0.77 ◦C. As for TMAX, the increases were significant only at Milwaukee
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(0.98 ◦C), Erie (0.94 ◦C), and Green Bay (0.84 ◦C), and these changes happened essentially
in the year 1986.

It is also important to discuss the 95% confidence intervals that are presented in
Tables 2–4. Once again, we limit our discussion here to the continuous variables only, and
hence, we limit ourselves to Tables 3 and 4 only. Since all the confidence intervals were
computed at the same 95% level, the corresponding widths were all directly comparable.
From the viewpoint of the shortest 95% confidence intervals, we note that TMIN and
TAVG at Milwaukee, with intervals of ±2 and ±3, respectively, were the shortest of all the
confidence intervals. The next shortest confidence interval of ±4 occurred for TMIN at
Chicago. The next shortest interval of ±5 also occurred for TMIN at both Cleveland and Erie.
It is notable that almost all the confidence intervals for PRCP and SNOW were uniformly
high, with the largest intervals occurring at Cleveland (±15, SNOW) and Green Bay (±14,
SNOW). From these confidence intervals, it may be concluded that change-point estimates
for PRCP and SNOW are less reliable compared to those for the temperature variables.

One may notice that there were consistent decreases in 1985 at all six stations in the
number of days with a maximum temperature ≤ 32 ◦F (TMAX32) and also uniform in-
creases that occurred at almost all stations in TAVG, TMAX, and TMIN in and around the
same year of 1985. The observed decreases in the number of days not exceeding 32 ◦F are
consistent with increases in the continuous variables TMIN, TAVG, and TMAX since a gen-
eral shift in the distributions towards warmer temperatures would naturally decrease the
frequency of especially cold temperatures. However, the significant decrease in TMAX90
in the rim stations of Lake Erie in and around 1965, and then a significant increase at Erie
Station in and around 1990, requires a careful understanding and explanation. Another
observation of interest is that there were fewer changes in the four discrete variables than
there were in the five continuous variables. It could be argued that the information content
in the discrete variables was much less compared to the information contained in the
continuous variables, and this may have led to greater sensitivity in the change detection
statistic. In this sense, the fewer changes to the discrete variables could be viewed as being
conservative.

Instead of the change-point approach adopted in this article, climatologists also study
changes in climatic variables alternatively through simple linear trend models (e.g., see
Lai and Dzombak [45] and Isaac and Wijngaarden [46]). It then becomes relevant to know
which of the two models fits better for the climatic data considered in this study. The
Akaike Information Creterion (AIC) is a widely applied method for such model selection
problems. While there are other information criteria-based methods, such as the Bayesian
information criterion (BIC) and so on, the AIC method (see Akaike [47]) is one of the most
frequently adopted methods for model-selection problems. For any given model, the AIC
is given as follows:

AIC = −2lnL + 2k

where L is the likelihood function, and k is the number of parameters in the model under
consideration. Upon computing the AIC number for all models, one selects the model with
the smallest AIC number as the best model.

In our case, we have two competing models, the change-point model and the simple
linear trend model. We computed the AIC numbers for both models for each of the
54 combinations of stations and climatic variables, and the resulting AIC numbers are
presented in Table 8 below.

The minimum AIC number criterion clearly shows that except for 8 situations, the
change-point model is the preferred model for all the remaining 46 combinations of stations
and climatic variables. Hence, the AIC criterion prefers the change-point model in an
overwhelming number of cases thus showing the relevance of change-point approach for
modeling changes in the climatic variables at the 6 lake rim stations.

Finally, It is important to check for the validity of the assumption of independence
of the time series over time. At first glance, it may appear that there is the presence of
autocorrelations in the original data series. However, once we fit the change-point model
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and thus account for the change points, then the corresponding residuals do not show
the presence of autocorrelations any further. We have verified this through ACF (auto-
correlation function) and PACF (partial autocorrelation function) plots of both the original
data, and also of the residuals derived from the change-point model. To maintain brevity,
we do not include the ACF and PACF plots in the article.

Table 8. Akaike Information Criterion (AIC) number for both the change-point model and the simple
linear trend model for all nine climatic variables at all six stations.

AIC Numbers for Change-Point Model

Station PRCP1 SNOW1 TMAX32 TMAX90 PRCP SNOW TAVG TMAX TMIN

Buffalo 375.01 549.94 663.10 481.09 1060.49 1293.99 190.60 200.87 195.07
Cleveland 398.00 501.24 656.72 606.06 1098.47 1213.51 205.32 221.61 205.12
Erie 433.63 584.48 669.48 454.37 1104.22 1351.99 212.88 217.56 223.54

Milwaukee 400.17 510.57 671.08 561.16 1077.86 1261.25 209.04 218.47 213.87
Chicago 406.38 460.89 634.63 621.49 1063.15 1191.81 195.04 206.16 199.98
Green Bay 384.13 508.59 660.08 537.67 1046.48 1240.95 218.38 213.31 245.36

AIC Numbers for Simple Linear Model

Buffalo 386.16 551.85 669.53 488.71 1065.51 1298.75 194.19 204.92 193.64
Cleveland 399.03 503.08 659.92 616.55 1096.41 1223.94 212.85 224.77 213.38
Erie 436.15 584.38 675.10 460.18 1107.72 1352.96 225.44 224.75 240.65

Milwaukee 402.48 509.29 678.79 560.06 1080.82 1271.57 223.06 228.38 228.30
Chicago 406.37 462.50 638.32 620.86 1058.65 1197.62 201.84 208.94 207.53
Green Bay 386.64 509.58 669.73 538.58 1038.73 1253.98 226.73 223.00 251.94

4. Conclusions

This study found significant changes in precipitation, snowfall, and temperatures at
all six stations located on the rims of Lake Erie and Lake Michigan. Before concluding this
article, it is important to compare the results of this study to the results of similar studies in
the literature. However, while searching, it became difficult to find studies that were quite
similar in scope. Nevertheless, there have been some studies that have assessed changes in
the overall Great Lakes area and also in the midwestern US, and we compared our results
with those of such studies. For the purposes of comparison, we utilized the amounts of
changes at all six stations in Tables 2–4 and computed the following: the average amount
of change for TAVG = 0.96 ◦C, the average percentage of change for PRCP = 16%, and
the average percentage of change for SNOW = 17%. Wuebbles et al. [48] prepared an
assessment of the impact of climate change on the Great Lakes, and in that assessment,
they reported that, from 1901–1960 to 1985–2016, the annual mean temperature in the Great
Lakes basin increased by about 1.6 ◦F or 0.89 ◦C. While their reported change refers to the
entire Great Lakes basin, in our study of six stations on the rims of Lake Erie and Lake
Michigan, we found that the annual mean temperature (TAVG) increased by about 0.96 ◦C.
As for precipitation, Wuebbles et al. [48] reported an increase of 10% for the Great Lakes
basin, whereas we found that precipitation increased, on average, by about 16% for the
two lakes. In the same report, Weubbles et al. [48] reported that the annual snowfall in
the Great Lakes basin decreased by 2.25%. In contrast, in this article, we found that the
annual snowfall (SNOW) for the two-lake region increased by as much as 17%. It remains
to be investigated whether this discrepancy stems from the fact that the change in snowfall
in our article pertains to only the two lakes, whereas Weubbles et al. [48] computed the
change in annual snowfall for the entire Great Lakes basin. In a subsequent report on the
assessment of climate change in Illinois, Weubbles et al. [49] reported that the average
daily temperature in Illinois increased by 1–2 ◦F or 0.56–1.11 ◦C and that precipitation
increased by 5 to 20%. These changes compare well with our estimated changes of 0.96 ◦C
for temperature and 16% for precipitation. In a recent study, Xue et al. [50] reported that
the Great Lakes basin is projected to warm by 1.3–2.1 ◦C, and precipitation by 0–13%,
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by the mid-21st century. The changes we found in this article do not extend all the way
to the mid-21st century, and hence, our changes of 0.96 ◦C for temperature and 16% for
precipitation are not directly comparable.

It is unclear at this point whether the changes identified in this article can be attributed
to changes that might have occurred in Lake Erie and Lake Michigan or more generally in
the Great Lakes system. Such an association, if not causation, requires an in-depth study
of changes in the Great Lakes. A confounding factor that can complicate establishing an
association is the fact that the rim stations of Lake Erie are all climatologically downwind,
whereas the rim stations of Lake Michigan are upwind. It is important to understand the
effect of this climatological difference while establishing an association between climatic
changes at rim stations and changes in lakes’ climatic conditions. As pointed out in the
introduction, McBean and Motiee [15] analyzed precipitation, temperature, and stream
flows of the Great Lakes over the period of 1930–2000, and Briley et al. [16] reported that
the Lake Superior surface waters have warmed more rapidly than nearby air temperatures.
While these studies are relevant, they are insufficient to make much headway in explaining
climatic changes in rim stations based on changes that might be happening in the Great
Lakes system. It is also relevant to ascertain whether changes found in the rim stations can
also be found in stations that are relatively farther away from the rim of the Great Lakes. In
such a scenario, the changes in the rim stations may not necessarily be due to changes in
the Great Lakes. Overall, this study raises the need for other, larger follow-up studies, and
it is our endeavor to pursue these studies in the future in a timely manner.
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Appendix A

Distributionof Change-Point mle
The asymptotic distribution of ξ∞ is as follows:

P(ξ∞ = j) ∼=



e−B

[
q−j −

∞∫
0+

{1 − G∗(x)}du−j(x)

]
, j < 0

e−B−B∗
, j = 0

e−B∗

[
q∗ j −

∞∫
0+

{1 − G(x)}du∗
j(x)

]
, j > 0

The sequences of probabilities qn and q∗n can be easily computed using the iterative
procedures:

q0 = 1, kqk = ∑k−1
j=0 bk−jqj and q∗0 = 1, kq*

k = ∑k−1
j=0 b*

k−jq*
j
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Now, if we let
∼
bn = E

{
e−Sn I(Sn > 0)

}
and

∼
b
∗

n = E
{

e−S∗
n I(S∗

n > 0)
}

, we can calcu-

late ũj and ũ∗
j from the iterative procedures

∼
u0 = 1, n

∼
un = ∑n−1

j=0

∼
bn−j

∼
u j

and
∼
u
∗

0 = 1, n
∼
u
∗

n = ∑n−1
j=0

∼
b
∗

n−j
∼
u
∗

j for n ≥ 1.
Computing the asymptotic distribution for Poisson distribution:
To estimate the asymptotic distribution for Poisson-distributed random variables, we

calculated the following quantities:

bn = 1 − Pr

Poisson(nλ0) ≤
n
(

λ1 − λ0)

log
(

λ1
λ0

)
, b∗n = Pr

Poisson(nλ1) <
n
(

λ1 − λ0)

log
(

λ1
λ0

)


∼
bn =

e−kλ0 Σ

[
k(λ1−λ0)

log (
λ1
λ0

)
]

k=0 (kλ0)
ke− log

(
λ1
λ0

)
k

k!
,
∼
bk

∗
=

e−kλ1 Σ

[
k(λ1−λ0)

log (
λ1
λ0

)
]

k=0 (kλ1)
ke− log

(
λ1
λ0

)
k

k!
.

By substituting the above into an asymptotic distribution, one can calculate the distri-
bution of the change-point mle for Poisson-distributed data.

Computing the asymptotic distribution for Gamma distribution:
Next, we considered the problem of computing the asymptotic distribution of the

change-point mle for time series-independent and gamma-distributed random variables
with a change in the shape and the rate parameters. Let α change from α0 to α1 and β
change from β0 to β1 at an unknown point. The proposed algorithm necessitates the
implementation of the following steps.

Step 1. Generate N independent n-tuples of X and X∗ using

X = α1logβ1 − α0logβ0 + log
Γ(α0)

Γ(α1)
+ (α1 − α0)logY + (β0 − β1)Y

and

X* = −α1logβ1 + α0logβ0 − log
Γ(α0)

Γ(α1)
− (α1 − α0)logY* − (β0 − β1)Y*,

where Y ∼ Γ(α0, β0) and Y* ∼ Γ(α1, β1).
Step 2. Generate the partial sums Sn = ∑n

i=1 Xi and S*
n = ∑n

i=1 X*
i .

Step 3. Count all Sn and S∗
n that are greater than zero.

Step 4. Estimate bn = kn
N and b*

n = k*
n

N , where kn and k*
n are the counts in Step 3.

Step 5. Calculate
∼
bn = 1

N ∑kn
i=1 e−Sni and

∼
b

*

n = 1
N ∑k*

n
i=1 e−S*

ni .

Step 6. Finally, compute
{

qj
}

,
{∼

u j

}
and

{
q*

j

}
,
{
∼
u

*
j

}
by implementing the iterative

procedures q0 = 1, nqn = ∑n−1
j=0 bn−jqj;

∼
u0 = 1, n

∼
un = ∑n−1

j=0

∼
bn−j

∼
u j.

We use N = 500,000. Implementing the calculated quantities from Step 3–Step 6 in
the formula provides for the asymptotic distribution of ξ∞. This enables us to estimate
the probability density function of the change-point mle for gamma-distributed random
variables.

Computing the asymptotic distribution for Gamma distribution:
To estimate the asymptotic distribution for normally distributed random variables

with changes in both the mean and the variance, we follow the above six steps, with the
only difference being the formulas for X and X∗ when we generate the n-tuples.

X = − (µ1 − µ2)
2

2σ2 − µ1 − µ2

σ
Z, X∗ = − (µ1 − µ2)

2

2σ2 +
µ1 − µ2

σ
Z∗,

where Z and Z∗ are standardized normal random variables.
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