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Abstract: Lyme disease is a zoonotic infectious disease. Increased public interest in Lyme disease
has caused increased efforts by researchers for its surveillance and control. The main concept
for this paper is to determine the mammalian species composition of areas at high risk for Lyme
disease utilizing GIS-based (Geographic Information Systems) techniques coupled with k-means
clustering, random forest, and multinomial logistic regression. Cluster analysis results were similar
to previous work involving maps that display areas where people are at high risk for developing
Lyme disease. There were differences in which mammal species presence had associations with Lyme
disease risk observed at the two different scales within this analysis, with some overlap observed
between the national scale and the smaller regions, as well as some overlap between the Rocky
Mountain and Southeast regions that was not found at the national scale. This is an investigative
analysis to determine which species are needed for habitat suitability analyses in efforts to prioritize
vaccine deployment locations. There has been limited research on vaccine deployment for Lyme
disease. Increasing our understanding of not only the vaccine but also the interactions between the
components of disease transmission is necessary to control this infectious disease successfully.
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1. Introduction

Lyme disease most commonly occurs in the upper Midwest and Northeastern United
States, but cases are starting to emerge in other areas, including California, contracted via
Ixodes pacificus [1]. Humans develop Lyme disease after being bitten by a tick, usually Ixodes
scapularis, that is infected with one of the many bacterial species that cause Lyme disease,
such as those from the genus Borreliella [2]. This tick must have been attached for 36–48 h
or more. Neither tick density nor infection rates of this bacterium influence the survival of
the rodent host [3]. However, this bacterium does influence human health. Currently, no
vaccine is available for humans for this disease [4], but there is one monoclonal antibody
and one vaccine in human clinical trials [5,6]. However, there are oral vaccine baits available
for wildlife [7], although not yet for Lyme borreliosis. Therefore, it is important to develop
methods to prioritize areas for vaccine deployment to improve overall public health.

Controlling Lyme disease by reducing black-legged ticks (I. scapularis) and their hosts
has proven difficult [8] as well as inadequate and inefficient in reducing disease risk [9].
However, the use of fipronil-based bait boxes has reduced the abundance of questing
nymphs and the potential of encountering Borreliella spp.-infected nymphs [10]. Recently, it
was shown in a very large trial that reducing I. scapularis in backyards did not affect the
human incidence of Lyme disease [11]. Even if alternative methods such as vaccination,
medication, and contraception of wildlife populations prove successful in Lyme disease
prevention, there will always be a need to evaluate the risk of these diseases through
general or targeted surveillance [9].

To determine the best way of conducting vaccine deployment, researchers need to
understand the dynamics of not only the vaccine but also the target species and their
natural habitat [9]. There are few efforts related to Lyme disease vaccine deployment.
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Ozdenerol [12] mentioned that spatial analysis is imperative to understand how to map
Lyme disease risk. These risk maps can be used to determine cost-effective areas for efficient
vaccine deployment. Researchers have argued the necessity of developing models to predict
areas that are suitable for Lyme disease risk by finding environments suitable for the tick
species as well as their hosts [13], such as the white-footed mouse (Peromyscus leucopus) and
white-tailed deer (Odocoileus virginianus), which can be done via a combination of remote
sensing and GIS tools. However, this method may not work for every area. While there is
some knowledge of P. leucopus, O. virginianus, and I. scapularis, less is known or reported
about the species that I. scapularis feeds on. Other species may also play an important role
in the transmission of Lyme disease to humans. It is imperative to determine what species
are associated with a high incidence of Lyme disease in humans. Therefore, the purpose of
this study is to determine the species composition in areas of high Lyme disease incidence.
This is a preliminary analysis in developing Lyme disease risk maps, which help determine
where to prioritize Lyme disease prevention efforts.

2. Materials and Methods
2.1. Data Collection
2.1.1. Lyme Disease Incidence Rates

The number of new cases of Lyme disease was downloaded for each county for each
year between 2000 and 2017 from the Centers for Disease Prevention website (https://www.
cdc.gov/lyme/stats/survfaq.html, accessed on 10 March 2019). Population estimates for
each county were downloaded from the Census Bureau website in two different datasets:
the “Intercensal Estimates of Resident Population for Counties and States: 1 April 2000 to
1 July 2010” and the “County Population Totals and Components of Change: 2010–2017”
(https://www.census.gov/programs-surveys/popest/data/data-sets.All.html, accessed
on 10 March 2019). The incidence rates per 100,000 people were then calculated for each
county in Microsoft Excel (Microsoft Office) using Equation (1) below:

new case counts per county
population per county

100, 000

. (1)

These data were uploaded into ArcMap 10.6 (Esri, INC) along with a United States
county boundary layer, where the data were joined to the county layer to provide a Lyme
disease incidence by county GIS shapefile (Figure 1). Because this project covers multiple
scales (national and regional), a new variable was created to include the region of the
United States in which each county is located.

2.1.2. Species Presence

The available species ranges for each mammal included in the National Gap Analysis
Project (GAP) website (https://gapanalysis.usgs.gov/species/data/download/, accessed
on 10 March 2019) was downloaded. This included 459 total mammal species distributions
for the analysis. While this does not contain all mammals present in the United States,
all wild mammal species currently known to be associated with the presence of Lyme
disease reported in previous literature were obtainable from this database. These files were
extracted from their folders using a Python script for improved efficiency. The range for
each species was uploaded into ArcMap 10.6 (Esri, INC), and then the spatial join tool was
used to join the original county boundary layer to each species range. This gave a summary
of the number of polygons in each species range that intersects each county. These data
were exported to a separate text file for each species. Another Python script was used to
open these text files in Microsoft Excel and recode intersection counts greater than 0 to
“presence” to represent that species was present in that county, and everything that was 0
was set to “absence” to represent that species was absent in that county. Species with either
no presence or no absence in a county throughout the area the analysis was interested in
were omitted from those analyses.

https://www.cdc.gov/lyme/stats/survfaq.html
https://www.cdc.gov/lyme/stats/survfaq.html
https://www.census.gov/programs-surveys/popest/data/data-sets.All.html
https://gapanalysis.usgs.gov/species/data/download/
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Figure 1. Lyme disease incidence rates on a national scale averaged over an 18-year period. Lighter
colors show no incidence and darker colors show high incidence.

2.1.3. Descriptive Statistics and Data Management

The Microsoft Excel file, along with GIS shapefiles containing Lyme disease incidence
rates, were uploaded to Google Drive, where they could be used for further manipulations,
analyses, and visual representations in Google Colab. Several packages were used, includ-
ing GeoPandas, mapclassify, pymssql, and Yellowbrick, along with other packages that did
not need to be separately installed onto the platform. Data were loaded onto the platform,
and descriptive statistics were used on Lyme disease incidence data to better understand
the structure of the data and the geographical spread of Lyme disease. GeoPandas was used
to import the shapefile. Descriptive information such as count, mean, standard deviation,
and quantiles were calculated and reviewed.

2.2. Analyses
2.2.1. K-Means Clustering

A k-means clustering analysis was used to cluster counties based on the consistency of
yearly incidence rates for the years 2000–2017. The data were subset into three categories:
no_incidence included counties with no occurrences of Lyme disease throughout the
timeframe of this dataset; data3 (counties with very low incidence); and high_outliers
(counties with high rates of Lyme disease 3 standard deviations or larger above the mean).
The k-means cluster analysis was conducted on the high_outliers dataset as it includes the
areas of most interest. Before clustering, pairwise regressions were conducted between
each year to assess the correlation among years. An elbow plot was created with the
KElbowVisualizer from the Yellowbrick.cluster Python package and used to determine
the number of clusters of consistent risk levels ranging from 2 (lowest risk with lowest
mean average incidence) to k (highest risk with highest mean average incidence). Once the
analysis was finished, no_risk was assigned a cluster rank of 0 (“no risk”), and data3 was
assigned the rank 1 (very low-risk cluster). The three subsets of data were merged back
together into a single dataset. Descriptive details such as count, mean, standard deviation,
and quantiles were calculated, and a frequency histogram was created to visualize the
spread of counties into each cluster.

2.2.2. Random Forest Model

To determine which species may be important classifiers for Lyme disease risk, all
species presence/absence data that had varying levels of presence throughout the area
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of analysis were included in the random forest model to determine variable importance.
The data were separated into training and test data. The training data included 80 percent
of the observations in each cluster. The test data were the remaining observations in the
dataset. The training and test datasets remained the same throughout the three different
predicting models. Clusters were used as the label to be predicted, and species presence
was used as the exploratory variable. A 5-fold cross-validation score was calculated for
both the training and test data and was used to determine if the model was successful in
predicting Lyme disease risk. A variable importance bar chart was used to visualize species’
presence/absence contribution to the model, and the elbow rule was used to choose which
species would be included in the multinomial logistic regression analysis.

2.2.3. Multinomial Logistic Regression Analysis

A multinomial logistic regression analysis was used because the response (risk clus-
ters) was non-binary. The risk clusters obtained from the k-means cluster analysis were
used as separate classes for the outcome variables to determine the impact of species
presence or species absence in areas of various Lyme disease risk levels. The model was
set to be a multi_class multinomial with the “lbfgs” (limited-memory Broyden–Fletcher
Goldfarb–Shanno) optimization technique so that the model could handle the multinomial
loss. The penalty was also set to “12” because the optimization technique chosen can only
be done with this type of penalty. After fitting the model with the training data, the test
data were used to assess the model’s balanced training and balanced test accuracy. All
estimates whose absolute value is greater than 0.100 were recorded to be used in future
analyses. Finally, counties that were misclassified and classified correctly from the test
data were extracted to visualize inaccuracies in the model to obtain a better idea of how to
proceed in the future.

3. Results
3.1. National Analysis
3.1.1. Descriptive Statistics

Appendix A includes all the figures and tables associated with the descriptive statistics
for this study. Incidence rates seemed consistent across the 18-year period of the project,
with areas that had higher rates of Lyme disease in one year also having higher rates
in other years. Furthermore, the data are less correlated the further apart the years are
from one another. For the k-means clustering analysis, clusters were determined based
on consistency, i.e., consistently high incidence rates or consistently low incidence rates.
Therefore, clustering was conducted based on the incidence rates of all years (2000–2017).

Most counties in the United States had no or low incidence rates, providing a very
skewed dataset (see Appendix A). Therefore, the data must be subset before the cluster
analysis to account for the abundance of areas with no incidence rates throughout the
timeframe. After removing counties with absolutely no incidence (no_incidence) or very
low incidence (data3) throughout the timeframe, the counties in areas more prone to Lyme
disease (high_outliers) were still highly skewed toward a lower incidence rate.

3.1.2. K-Means Clustering

The Distortion Score Elbow plot (Figure 2) shows that the number of clusters best
suited for the data gathered is 4. The k-means analysis was conducted with k = 4, re-
sulting in varying frequencies in each group (0: 293, mean average incidence = 31.76;
1: 86, mean average incidence = 103.67; 2: 18, mean average incidence = 230.69; 3: 1,
average incidence = 641.17). It took less than a second to finish. These cluster groups were
related back to average incidence to determine Lyme disease risk levels for each cluster
(0: low or recoded to risk cluster 2, 1: medium or recoded to risk cluster 3, 2: high or
recoded to risk cluster 4, 3: very high or recoded to risk cluster 5).
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Figure 2. Distortion Score Elbow plot for Lyme disease incidence rates (years 2000–2017). The blue
line refers to the distortion scores per k groups. The green dashed line refers to the time it took to
train the clustering model per k groups.

The previously removed counties of no incidence (mean average incidence = 0, no risk
coded to rank cluster 0) and very low risk (mean average incidence = 1.21, high risk coded
to rank cluster 2) were appended back into the dataset after their clusters were manually
assigned. The counts for the clustering analysis show that the counties are highly skewed
toward no and lower risk categories (Figure 3), with 907 (28.88%) counties in cluster 0 (no
risk), 1836 (58.45%) counties in cluster 1 (very low risk), 293 (9.33%) counties in cluster 2
(low risk), and 86 (2.74%) counties in cluster 3 (medium risk), 18 (0.57%) counties in cluster
4 (high risk), and 1 (<0.1%) county was in cluster 5 (very high risk).
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These clusters were grouped spatially throughout the nation in similar ways as ob-
served with known Lyme disease cases. Most areas of high risk were found in the Upper
Midwest and Northeast regions of the United States (Figure 4).
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3.1.3. Random Forest

A total of 453 species were used to train the random forest model. The mean cross-
validation score was 70.19% in the training dataset. For the test dataset, the mean cross-
validation score was 63.99%. Appendix B includes the variable importance graphs from all
random forest models produced in this paper. Based on the variable importance graph, four
species were kept. Most of these species were small terrestrial mammals, Myodes gapperi
(red-backed vole), Condylura cristata (star-nosed mole), and Sorex palustris (American water
shrew). One medium-sized mammal also showed importance to the prediction of Lyme
disease risk clusters from this analysis, Vulpes velox (swift fox). The other mammal species
did not seem to have as much importance in the overall predictive ability of the model.
However, it is known from previous research that Peromyscus leucopus (white-footed mouse)
and Odocoileus virginianus (white-tailed deer) are very important in the spread of Lyme
disease. Therefore, these two species were also retained for the final model.

3.1.4. Multinomial Regression Analysis

Appendix C contains the heatmaps to determine multicollinearities for all the pairwise
comparisons conducted prior to choosing variables for the multinomial regression models.
For the national analysis, no further species were excluded because there were no violations
in multicollinearity assumptions (r > 0.8).

Vulpes velox was positively associated with Lyme disease clusters within the multi-
nomial logistic regression model, while the four small mammal species were negatively
associated with Lyme disease risk clusters. Table 1 gives a detailed list of each mammal
species with their correlation estimates. Appendix D gives a visual representation of all
species correlation coefficients obtained from multinomial logistic regression models.

This model had a mean cross-validation score of 65.93% for the training dataset and
62.89% for the test dataset. There were a total of 223 counties that were misclassified
from the test data (Figure 5). Of the 405 counties that were correctly classified into the
correct Lyme disease risk category (Figure 6), none were counties originally categorized
into medium, high, or very high Lyme disease risk.
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Table 1. Descriptive statistics for Lyme disease incidence by county.

Mammal Species Estimate
Myodes gapperi (southern red-backed vole) −1.462

Condylura cristata (start-nosed mole) −2.116
Vulpes velox (swift fox) 1.766

Sorex palustris (American water shrew) −1.235
Peromyscus leucopus (white-footed mouse) −1.352
Odocoileus virginianus (white-tailed deer) −0.305

Red filled cell means there is a negative relationship. Blue filled cell means there is a positive relationship. No fill
means there is a neutral relationship.
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3.2. Regional Analysis

Because of the regional nature of the disease, the original dataset was subset into dif-
ferent regions of the United States (Figure 7): Alaska, Midcontinent, Northeast, Northwest
Pacific Islanders, Rocky Mountains, Southeast, and Southwest. The analyses were rerun at
the regional scale. The different statistical analyses were conducted for each region in the
same way to keep consistency throughout the study.
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3.2.1. Descriptive Statistics

Most counties within each region of the United States also had no or low incidence
rates (see Appendix A). Again, the data were subset before each cluster analysis to account
for the abundance of areas with no incidence rates throughout the timeframe and any
outliers of high incidence.

3.2.2. K-Means Clustering

The regional k-means clustering shows clusters of varying levels of Lyme disease risk
compared to other counties within each region. These comparisons were merged into a
single map of the nation (Figure 8). Areas shown in white have no Lyme disease risk, and
darker areas show increasing levels of Lyme disease risk.

Table 2 shows the frequencies of counties in each category per region. For each region,
most of the counties fell within the “no risk” cluster, “very low risk”, or “low risk” cluster,
which is consistent with results from the national scale analysis.
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Lighter colors show no risk, and darker colors show high risk.

Table 2. Cluster frequencies for Lyme disease risk by county per region.

Alaska Midcontinent Northeast Northwest and
Pacific Islands

Rocky
Mountains Southeast Southwest

N 27 897 554 124 149 1300 90

No Risk 14 (51.85%) 244
(27.20%)

50
(9.02%) 39 (31.45%) 100 (67.11%) 451

(34.69%) 9 (10.00%)

Very Low Risk 2
(7.41%)

542
(60.42%)

470
(84.83%)

69
(55.64%)

42
(28.19%)

760
(58.46%)

54
(60.00%)

Low Risk 7 (37.03%) 52
(5.80%)

14
(2.53%)

3
(2.42%)

2
(1.34%)

80
(6.15%)

12
(13.33%)

Medium Risk 1
(3.70%)

38
(4.24%)

15
(2.71%)

6
(4.84%)

1
(0.67%)

1
(<0.01%)

3
(3.33%)

High Risk 1
(3.70%)

16
(1.78%)

4
(0.72%)

2
(1.61%)

1
(0.67%)

6
(0.46%) 1 (1.11%)

Very High Risk 2
(7.41%)

5
(0.11%)

1
(0.18%)

5
(4.03%)

3
(2.01%)

2
(0.15%)

11
(12.22%)

3.2.3. Random Forest

Model summaries—A total of 459 species distributions were downloaded from the
USGS GAP website. Species whose presence varied across a specific region were included
within that analysis, otherwise, the species was excluded from that specific model. A
detailed summary of the random forest models for each region, including the number of
species used and the cross-validation scores for train and test data, are included in Table 3.
Of the 459 species distributions collected from the USGS GAP website, 0 mammal species
were present throughout the counties in the Alaska region. Therefore, no regional analysis
was conducted on this region. Model success ranged from 48.42% (Northwest and Pacific
Islands) to 84.885 (Northeast) for the training data and 56.00% (Northwest and Pacific
Islands) to 84.70% (Northeast) for the test data.
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Table 3. Random forest model summaries for Lyme disease risk by region.

Model Number of Species
Used in the Model

Cross-Validation
Score (Training Data)

Cross-Validation
Score (Test Data)

Alaska 0 N/A * N/A *
Midcontinent 163 72.56% 64.86%

Northeast 88 84.88% 84.70%
Northwest and
Pacific Islands 180 48.42% 56.00%

Rocky Mountains 213 66.67% 69.33%
Southeast 217 67.73% 60.59%
Southwest 279 59.90% 61.67%

* N/A stands for not applicable.

Variable importance summaries—The variable importance graphs (Appendix B) were
used to obtain the initial list of species retained for further analyses. Then, pairwise compar-
isons were conducted to exclude any species whose presence was highly correlated (r > 0.8).
Heatmaps were created to allow for a quick visualization check for the autocorrelation
(see Appendix C). As in the national analysis, Peromyscus leucopus (white-footed mouse)
and Odocoileus virginianus (white-tailed deer) were retained for the multinomial regression
analysis even if they were not found to be important within the random forest model
unless the species was either present throughout the entire region or absent throughout the
entire region.

Six species were kept for the Midcontinent region, four were kept for the Northeast
region, seventeen were kept for the Rocky Mountains region, eleven were kept for the
Southeast region, and twelve were kept for the Southwest region (see Table 4). Most of these
species within each region were small terrestrial mammals except for the following: one
medium-sized (Marmota monax) and one large-sized terrestrial (Lynx canadensis) mammal
were kept in the Midcontinent region; one small aerial (Myotis sodalis) mammal was kept
for the Northeast region; one large terrestrial mammal (Odocoileus virginianus) was kept
in the Northwest and Pacific Islands region; two small aerial (Euderma maculatum and
Lasiurus blossevillii), two large terrestrial (Equus caballus and Odocoileus virginianus), three
small aerial (Myotis lucifugus, Tadarida brasiliensis, and Myotis septentrionalis), and one large
aquatic (Trichechus manatus) mammals were retained for the Southeast region; and one
medium-sized (Aplodontia rufa) mammal was retained for the Southwest region.

Table 4. Important mammalian species for Lyme disease risk by region.

Model Species Mammal Size

Alaska N/A * N/A *

Midcontinent

Marmota monax medium terrestrial
Cynomys ludovicianus small terrestrial

Lynx canadensis large terrestrial
Microtus pinetorum small terrestrial

Sorex arcticus small terrestrial
Peromyscus leucopus small terrestrial

Northeast

Microtus ochrogaster small terrestrial
Condylura cristata small terrestrial

Myotis sodalis small aerial
Peromyscus leucopus small terrestrial

Northwest and Pacific Islands
Sorex benderii small terrestrial

Odocoileus virginanus large terrestrial
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Table 4. Cont.

Model Species Mammal Size

Rocky Mountains

Equus caballus large terrestrial
Sorex preblei small terrestrial

Microtus mogollonensis small terrestrial
Euderma maculatum small aerial

Zapus hudsonius small terrestrial
Neotoma mexicana small terrestrial
Urocitellus armatus small terrestrial

Peromyscus leucopus small terrestrial
Vulpes macrotis small terrestrial

Notiosorex crawfordi small terrestrial
Xerospermophilus spilosoma small terrestrial

Dipodomys merriami small terrestrial
Lasiurus blossevillii small aerial

Tamiasciurus hudsonicus small terrestrial
Tamias rufus small terrestrial

Onychomus torridus small terrestrial
Odocoileus virginanus large terrestrial

Southeast

Myotis lucifugus small aerial
Zapus hudsonius small terrestrial

Microtus pennsylvanicus small terrestrial
Blarina hylophaga small terrestrial

Trichechus manatus large aquatic
Tadarida brasiliensis small aerial
Neotoma floridana small terrestrial
Spilogale putorius small terrestrial

Perognathus flavescens small terrestrial
Myotis septentrionalis small aerial
Peromyscus leucopus small terrestrial

Southwest

Rattus rattus small terrestrial
Aplodontia rufa medium terrestrial

Dipodomys heermanni small terrestrial
Microtus californicus small terrestrial
Microtus longicaudus small terrestrial

Tamias amoenus celeris small terrestrial
Dipodomys deserti small terrestrial

Sorex vagrans small terrestrial
Sylvilagus audubonii small terrestrial

Ochotona princeps small terrestrial
Neotoma macrotis small terrestrial

Peromyscus leucopus small terrestrial
* N/A stands for not applicable.

3.2.4. Multinomial Logistic Regression

Model summaries—A detailed summary of the random forest models for each region,
including the number of species used and the cross-validation scores for train and test
data, is included in Table 5. Model successes ranged from 54.67% (Rocky Mountains)
to 84.70% (Northeast). However, no models were successful at predicting counties in
high or very high risk accurately (see Table 6). Furthermore, only eight counties were
accurately classified as medium Lyme disease risk, and these were all located within the
Midcontinent region.
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Table 5. Random forest model summaries for Lyme disease risk by region.

Model Cross-Validation Score
(Training Data)

Cross-Validation Score
(Test Data)

Alaska N/A * N/A *
Midcontinent 72.98% 69.87%

Northeast 84.88% 84.70%
Northwest and Pacific Islands 61.68% 72.00%

Rocky Mountains 65.83% 54.67%
Southeast 66.67% 62.17%
Southwest 58.67% 56.67%

* N/A stands for not applicable.

Table 6. Frequencies of regional clusters that were misclassified and correctly classified from the
multinomial logistic regression model by region.

Region Regional Cluster Errors Accuracies

Alaska N/A * N/A * N/A *

Midcontinent

No risk 17 32
Very low risk 17 91

Low risk 10 0
Medium risk 0 8

High risk 3 0
Very high risk 1 0

Northeast

No risk 10 0
Very low risk 0 94

Low risk 3 0
Medium risk 3 0

High risk 1 0
Very high risk 0 0

Northwest and Pacific
Islands

No risk 7 1
Very low risk 2 12

Low risk 1 0
Medium risk 1 0

High risk 0 0
Very high risk 1 0

Rocky Mountains

No risk 5 15
Very low risk 6 2

Low risk 0 0
Medium risk 0 0

High risk 0 0
Very high risk 1 0

Southeast

No risk 36 54
Very low risk 32 120

Low risk 15 1
Medium risk 0 0

High risk 1 0
Very high risk 0 0

Southwest

No risk 1 1
Very low risk 0 11

Low risk 2 0
Medium risk 1 0

High risk 0 0
Very high risk 2 0

* N/A stands for not applicable.
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Correlation estimates—Table 7 gives a detailed list of each mammal species with their
correlation estimates per region. Appendix D gives a visual representation of each of them.
A few species were present in multiple regional analyses, including Peromyscus leucopus,
Odocoileus virginianus, and Zapus hudsonius. Peromyscus leucopus had conflicting results
based on the region with a positive relationship with Lyme disease risk in the Midcontinent
region, negative relationships with Lyme disease risk in the Rocky Mountains and Southeast
regions, and neutral relationships with Lyme disease risk in the Northeast and Southwest
regions. Odocoileus virginianus had a negative relationship in the Northwest and Pacific
Islands region but a neutral relationship in the Rocky Mountains region. There was also
a negative relationship between Zapus hudsonius, a small rodent, and Lyme disease risk
within the Rocky Mountains and Southeast regions.

Table 7. Correlations between mammal presence and Lyme disease clusters by region. Blue indicates
positive associations greater than 0.100, and red represents negative associations less than 0.100.

Model Species Estimate
Alaska N/A * N/A *

Midcontinent

Marmota monax −1.439
Cynomys ludovicianus 1.209

Lynx canadensis −2.323
Microtus pinetorum −1.352

Sorex arcticus −2.381
Peromyscus leucopus 0.281

Northeast

Microtus ochrogaster 1.233
Condylura cristata −1.876

Myotis sodalis −0.131
Peromyscus leucopus 0.015

Northwest and Pacific Islands
Sorex benderii −1.229

Odocoileus virginanus −0.745

Rocky Mountains

Equus caballus −0.332
Sorex preblei −0.695

Microtus mogollonensis −0.035
Euderma maculatum 0.076

Zapus hudsonius −0.135
Neotoma mexicana 0.458
Urocitellus armatus −0.652

Peromyscus leucopus −0.408
Vulpes macrotis 0.072

Notiosorex crawfordi 0.591
Xerospermophilus spilosoma 0.630

Dipodomys merriami −0.100
Lasiurus blossevillii 0.149

Tamiasciurus hudsonicus −0.551
Tamias rufus −0.007

Onychomus torridus −0.234
Odocoileus virginanus −0.055
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Table 7. Cont.

Model Species Estimate

Southeast

Myotis lucifugus 0.748
Zapus hudsonius −0.577

Microtus pennsylvanicus −1.230
Blarina hylophaga 0.857

Trichechus manatus −1.208
Tadarida brasiliensis 1.146
Neotoma floridana 0.774
Spilogale putorius −0.060

Perognathus flavescens 0.311
Myotis septentrionalis −0.414
Peromyscus leucopus −0.480

Southwest

Rattus rattus −0.712
Aplodontia rufa −0.632

Dipodomys heermanni −0.403
Microtus californicus −0.440
Microtus longicaudus −0.057

Tamias amoenus celeris −0.212
Dipodomys deserti −0.872

Sorex vagrans 0.192
Sylvilagus audubonii 0.533

Ochotona princeps 0.677
Neotoma macrotis −0.386

Peromyscus leucopus 0.030
* N/A stands for not applicable. Red filled cell means there is a negative relationship. Blue filled cell means there
is a positive relationship. No fill means there is a neutral relationship.

4. Discussion

Cluster analyses showed that most areas at high risk were in the upper Midwest
and Northeastern United States with sporadic areas of varying levels of Lyme disease
risk spread throughout the rest of the United States, which is consistent with previous
research [1]. Most of the counties within the United States were clustered into the low
risk level followed by areas of no risk, which makes sense because Lyme disease has been
known to occur in limited areas throughout the nation. These limited areas should make it
easier to predict where Lyme disease would occur.

Five of the six mammal species excluded from the national multinomial logistic
regression model were found on small islands off the coast of the United States but did
not have counties associated with these islands. Therefore, there were no data about Lyme
disease cases in these areas, if any cases exist. There have been cases of Lyme disease
reported on some treeless islands off the coast of Scotland [14], as well as Fire Island [15]
and Monhegan [16], which are two islands off the northeastern coast of the United States.
Furthermore, in this study, there were no mammal species distributions found for the
Alaskan region. However, there are 115 mammal species found in this region [17]. Future
work could obtain incidence rates for these islands and the mammalian species distributions
for the Alaskan region to assess whether mammal species have an impact on Lyme disease
occurrence in these areas.

The overlap of species used among the different scales and regions includes six species.
Condylura cristata, the star-nosed mole, was found to be negatively associated with Lyme
disease risk both on the national scale and within the Northeast region. This is a semiaquatic
mammal that prefers moist areas within mesic forests with friable soils in which it can
burrow [18]. Zapus hudsonius, the meadow jumping mouse, also was found to have a
negative relationship with Lyme disease risk, but this was only found in two regions: the
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Rocky Mountains and the Southeast. This burrowing species also prefers moist areas as well
as oak–hickory upland forests that provide plenty of acorns and nuts for food [19]. Both
species are burrowing species, but they are in areas that have moist soil. The combination
of soil moisture and type in these areas may not be suitable areas for vectors of Lyme
disease to flourish. Future work could include soil moisture and type as valuable variables
in predicting Lyme disease risk.

Interestingly, O. virginianus (white-tailed deer) and P. leucopus (white-footed mouse)
had a negative relationship with Lyme disease risk at the national scale. O. virginianus
also had negative associations with Lyme disease risk when looking at the Northwest
Pacific regions, whereas P. leucopus (white-footed mouse) had negative relationships with
Lyme disease risk throughout the Rocky Mountains and Southeast regions, while having a
positive relationship throughout the Midcontinent region. Previous research focused on the
presence of a few mammals, such as P. leucopus and O. virginianus, in Lyme disease risk [20].
However, the results of this study show that the presence of these mammal species alone
may not be suitable for determining areas of Lyme disease risk. One reason why these
species did not have the effect that was hypothesized could be that they are both generalist
species that are found throughout much of the nation [21,22]. This would mean that they
would be found in areas of varying levels of Lyme disease risk and are not suitable for a
solid predictive model.

Most species whose presence or absence was associated with Lyme disease risk were
small terrestrial mammals throughout all analyses. When thinking of the feeding habits of
ticks, it makes sense. Small mammals, especially from the order Rodentia, are the main
hosts for the pathogen, and ticks feed on small mammals in their nymphal stage, ingesting
the bacterium to pass along to other species [23]. However, there were some medium- and
large-sized terrestrial mammals as well as small aerial and a large aquatic mammal whose
presence or absence was associated with Lyme disease risk clusters within this study. These
species could be more related to adult tick rather than nymphal tick survival. There were
three medium-sized terrestrial mammals, two large terrestrial mammals, and one large
aquatic mammal whose presence influenced Lyme disease risk. On a national scale, Vulpes
velox (swift fox) had a positive influence on Lyme disease risk. The swift fox is heavily
dependent upon burrowing to create dens, usually in areas with little vegetation, low
slopes, and clay-type soils found within shortgrass, midgrass, and sandhill prairies [24].
These areas are not consistent with known tick habitat preferences. Therefore, more
work is needed to understand why this association could have been observed within
the study. The other two medium-sized mammals as well as the larger mammal species
within regional analyses, had negative relationships with Lyme disease risk. Perhaps
adult ticks in these areas prefer to feed on other large- or medium-sized mammals for
survival. Future work involving these species could include live-trapping and serology
testing techniques to calculate pathogen infection rates, as well as comparing ectoparasite
density and composition of the specimens to determine if and how these species could be
inhibiting the spread of the pathogen.

As mentioned before, one or two species may not be suitable for predicting Lyme
disease risk. The presence of mammal, reptile, bird, and tick species, along with envi-
ronmental factors such as climate data and habitat type [9], human population estimates,
and human social behaviors [4,20], may also be needed to develop an accurate model for
predicting Lyme disease risk. Ticks may prefer some species in their feeding habits, which
could promote (i.e., P. leucopus) or inhibit the spread of the bacterium to the tick. It has
been reported that ticks feed from some reptiles in the south versus small mammals, which
may be the cause of fewer human cases of Lyme disease in the area [25]. Furthermore, tick
density and infection rates have been found to be key factors in Lyme disease risk [4,26].
Future work includes refining this model utilizing the species found to contribute to Lyme
disease risk along with O. virginianus and P. leucopus, which did not seem to have a signifi-
cant effect on the model but has been shown to be related to Lyme disease risk [27], as well
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as reptile species [25] and birds [14,28] which have been found to impact on the spread of
Borreliella spp.

One major limitation of this study is that it is very laborious and time-consuming. This
is because of the time it takes to update and maintain risk prediction maps, including keep-
ing up-to-date species presence data. Data collection and clean-up is very time-consuming,
and the knowledge of not only statistical languages but also computer languages such
as Python is necessary to reduce errors and time in gathering and working with data.
Furthermore, there were a large number of criterion variables used in the analysis, many
of which were probably unnecessary. Future work could include dividing the species
into the categories of competent vs. incompetent reservoirs. However, there is no current
comprehensive list of competent reservoir species for each region or throughout the nation.
Future work could include determining what makes a competent reservoir for the pathogen.
Ticks themselves can live with many infections because of their highly efficient immune
system containing akirins, antimicrobial peptides, caspases, defensins, etc., which deter
pathogens from taking over their system, allowing them to thrive when infected and infect
many other organisms during their lifespan [29]. Perhaps comparing immunity-related
genes between species to find mammals that have considerable overlap with ticks could
aid in finding competent mammalian species that have more influence on the spread of
Borreliella spp.

The sensitivity of the model for high risk clusters was low, and this is the main concern
with this project. Future research must be conducted to develop a better model for better
prediction. Human Lyme disease cases may not be a reliable source for determining areas
of high risk because where the person is diagnosed with the disease may not be where they
encountered the tick that gave them the disease. However, some of these errors could be
alleviated by including human social behavior in the model, as planned for future work.

Tickborne diseases constitute most of the vector-borne diseases in the United States,
and there is a need to understand these diseases better. Lyme disease has increased over
the years, and actions for prevention are necessary. Vaccine deployment, which could help
reduce Lyme incidence rates in humans, has been a neglected area of research. This project
was a first step in understanding how to determine areas of Lyme disease occurrence and
where to administer vaccines via oral baits to wildlife. It also provides a baseline for future
research. The multi-scale analysis focused on both national and regional levels, which
allowed us to focus on the limited areas of the Northeast. However, further area reduction
for the Midcontinent and Southwest regions could help improve our understanding of how
Lyme disease spreads in these areas.
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Figure A1. National Lyme disease incidence rates for years 2000 (upper left) to 2017 (bottom right). 
Lighter colors show no incidence and darker colors show high incidence. 

Figure A1. National Lyme disease incidence rates for years 2000 (upper left) to 2017 (bottom right).
Lighter colors show no incidence and darker colors show high incidence.

Table A1. Descriptive statistics for Lyme disease incidence by county for all areas, areas with very
low incidence, and areas prone to Lyme disease.

Statistic All Data Very Low Incidence Areas Prone to Lyme
Disease

N 3141 1836 398
Mean 8.03 1.21 57.83

Median 0.42 0.61 39.04
Standard Deviation 29.07 1.55 61.82

Minimum 0.00 0.01 8.54
Maximum 641.17 8.42 641.17

https://gapanalysis.usgs.gov/species/data/download/
https://gapanalysis.usgs.gov/species/data/download/
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Figure A3. Frequency histogram of the average incidence of Lyme disease per county throughout 
the US. Blue bars indicate frequency of Lyme disease incidence rates. Black line represents the dis-
tribution curve. 
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represents the distribution curve.  

Figure A3. Frequency histogram of the average incidence of Lyme disease per county throughout
the US. Blue bars indicate frequency of Lyme disease incidence rates. Black line represents the
distribution curve.
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Figure A4. Frequency histogram of the average incidence of Lyme disease per county for areas prone
to Lyme disease. Blue bars indicate frequency of Lyme disease incidence rates. Black line represents
the distribution curve.
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Table A2. Descriptive statistics for Lyme disease incidence by county per region.

Nation Alaska Midcontinent Northeast Northwest and
Pacific Islands

Rocky
Mountains Southeast Southwest

N 3141 27 897 554 124 149 1300 90
Mean 8.03 1.15 8.99 29.05 0.54 0.12 0.69 0.74

Median 0.42 0.00 0.60 6.86 0.30 0.00 0.24 0.29
Standard
Deviation 29.07 2.69 27.66 54.17 0.73 0.35 2.12 1.26

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 641.17 13.44 260.77 641.17 4.10 2.88 44.57 6.54

Appendix B

Figure A5. Histogram showing variable importance in classifying Lyme disease risk obtained from the random forest model conducted on a national scale.

Figure A6. Histogram showing variable importance in classifying Lyme disease risk for the Midcontinent region.

Figure A7. Histogram showing variable importance in classifying Lyme disease risk for the Northeast region.
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Figure A8. Histogram showing variable importance in classifying Lyme disease risk for the Northwest and Pacific Islands region.

Figure A9. Histogram showing variable importance in classifying Lyme disease risk for the Rocky Mountains region.

Figure A10. Histogram showing variable importance in classifying Lyme disease risk for the Southeast region.

Figure A11. Histogram showing variable importance in classifying Lyme disease risk for the Southwest region.
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Figure A12. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model in the national analysis. 

Figure A12. Heatmap showing pairwise correlations for selected mammal species from the random
forest model in the national analysis.
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Figure A13. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Midcontinent region. 

Figure A13. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Midcontinent region.
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Figure A14. Heatmap showing pairwise correlations for selected mammal species for multinomial 
regression analysis for the Midcontinent region after autocorrelated species were removed. 

Figure A14. Heatmap showing pairwise correlations for selected mammal species for multinomial
regression analysis for the Midcontinent region after autocorrelated species were removed.
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Figure A15. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Northeast region. 

Figure A15. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Northeast region.
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Figure A16. Heatmap showing pairwise correlations for selected mammal species for multinomial 
regression analysis for the Northeast region after autocorrelated species were removed. 

Figure A16. Heatmap showing pairwise correlations for selected mammal species for multinomial
regression analysis for the Northeast region after autocorrelated species were removed.
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Figure A17. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Northwest and Pacific Islands region. 

Figure A17. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Northwest and Pacific Islands region.
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Figure A18. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Northwest and Pacific Islands region after autocorrelated species were 
removed. 

Figure A18. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Northwest and Pacific Islands region after autocorrelated species were removed.
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Figure A19. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Rocky Mountains region. 

Figure A19. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Rocky Mountains region.
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Figure A20. Heatmap showing pairwise correlations for selected mammal species for multinomial 
regression analysis for the Rocky Mountains region after autocorrelated species were removed. 

Figure A20. Heatmap showing pairwise correlations for selected mammal species for multinomial
regression analysis for the Rocky Mountains region after autocorrelated species were removed.
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Figure A21. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Southeast region. 

Figure A21. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Southeast region.
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Figure A22. Heatmap showing pairwise correlations for selected mammal species from the ran-
dom forest model for the Southwest region. 

Figure A22. Heatmap showing pairwise correlations for selected mammal species from the random
forest model for the Southwest region.
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Figure A23. Heatmap showing pairwise correlations for selected mammal species for multinomial 
regression analysis for the Southwest region after autocorrelated species were removed. 

  

Figure A23. Heatmap showing pairwise correlations for selected mammal species for multinomial
regression analysis for the Southwest region after autocorrelated species were removed.
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Figure A24. Species correlation coefficients obtained from multinomial logistic regression for the 
national analysis. Figure A24. Species correlation coefficients obtained from multinomial logistic regression for the

national analysis.
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Figure A25. Species correlation coefficients obtained from multinomial logistic regression of the 
Midcontinent region. Figure A25. Species correlation coefficients obtained from multinomial logistic regression of the

Midcontinent region.
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Figure A26. Species correlation coefficients obtained from multinomial logistic regression of the 
Northeast region. Figure A26. Species correlation coefficients obtained from multinomial logistic regression of the

Northeast region.
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Figure A27. Species correlation coefficients obtained from multinomial logistic regression of the 
Rocky Mountains region. Figure A27. Species correlation coefficients obtained from multinomial logistic regression of the

Rocky Mountains region.
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Figure A28. Species correlation coefficients obtained from multinomial logistic regression of the 
Southeast region. 

Figure A28. Species correlation coefficients obtained from multinomial logistic regression of the
Southeast region.
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Figure A29. Species correlation coefficients obtained from multinomial logistic regression of the 
Southwest region. 
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