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Abstract: Systemic lupus erythematosus (SLE) is a chronic, autoimmune, immune complex-mediated
disease affecting mainly females at a young age. The disease etiology is still unknown, and different
genetic and epigenetic factors related to disease onset and manifestations are being explored. The
standard treatment regimen for SLE includes the long-term use of corticosteroids and non-specific
immunosuppressive agents, often limited by co-morbidities or related side effects. However, recent
advances in disease pathogenesis clarifying the role of inflammatory cytokines, chemokines, immune
cells, and co-stimulation molecules have made a more practical, targeted approach possible, leading
to personalized treatment strategies. This review summarizes current knowledge about SLE-targeted
therapies in clinical practice.

Keywords: systemic lupus erythematosus; autoimmune; pathogenesis; cytokines; chemokines; cells;
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1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune condition involving multiple
organ systems and affecting predominantly women of childbearing age [1,2], with African
Americans commonly affected [3]. As per the latest European Alliance of Associations for
Rheumatology (EULAR) 2023 update [4], the current standard treatment of SLE includes
nonsteroidal anti-inflammatory drugs (NSAIDs) for symptomatic relief and the antimalarial
drug hydroxychloroquine (Plaquenil), which is recommended for all patients and corti-
costeroids (CS). Additional options are immunosuppressants and biologics that provide
precise, targeted therapy, which opens doors for new treatment options [5,6]. However,
the trend in terms of SLE management has turned progressively towards the research and
development of novel targeted therapies, explicitly expanding their availability in the pro-
cess [7–9]. Additionally, there is a current need for a holistic approach to SLE treatment that
combines lifestyle modifications (e.g., smoking cessation, exercise) [10–12] with expanded
therapeutic options, where new targeted therapies come in handy, providing wide-ranging
opportunities to accomplish optimal disease outcomes. Since SLE is characterized by its
heterogeneity [13], no single treatment plan can always apply to all patients. This issue
renders the need for more individualized and novel targeted therapies that can address
this concern precisely. For example, the tendency in recent years has been to aim for a
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weaning off CS [14] and other immunosuppressive drugs for long-term usage in SLE [15,16].
Therefore, biologic agents are an excellent alternative to control the disease progression
and reduce flares effectively [17], while having fewer adverse effects than immunosuppres-
sants [18]. This brings hope to the currently difficult management of SLE when it comes
to accomplishing the treat-to-target strategy [19,20], which ultimately assures adequate
disease remission. Moreover, targeted therapies have shown promising results in handling
one of SLE’s most serious manifestations: lupus nephritis (LN) [21,22].

Furthermore, the efficacy of various SLE medicines has been observed to vary between
ancestries, ethnicity, and genetic background, which may influence disease development
and course and shape therapeutic responses. However, it is unclear if these differences are
pharmacogenetic [23,24]. Moreover, a phenotypic and genomics approach is preferable in a
multi-ethnic cohort to subtype SLE [25].

Still, there is a need for more precise and personalized therapy for SLE patients. This
comprehensive review provides a concise overview of the latest advancements in SLE
management, focusing on targeted therapies in clinical settings, including B-cell therapies,
anti-cytokines, small molecules, co-stimulatory therapies, and CAR T cell therapies.

2. SLE Overview: Etiology and Pathogenesis as a Basis for Novel Tailored Therapy

SLE is a chronic, autoimmune, immune complex-mediated disease affecting mainly
females at a young age. The etiology is still unknown, with genetic and epigenetic fac-
tors contributing to disease pathogenesis and clinical presentations [26]. The disease is
characterized by the production of autoantibodies against nuclear antigens, immune com-
plex depositions in various tissues, and subsequent complement activation leading to cell
migration, tissue damage, and organ failure.

The exact cause of SLE remains unknown; however, various genetic, epigenetic, en-
vironmental, and hormonal factors are believed to contribute to its development [27].
Although genetic factors play a significant role, they are not solely responsible for SLE
onset and need additional environmental triggers for the disease to manifest [28]. Gen-
erally speaking, many autoimmune diseases arise from the intricate interaction between
genetic susceptibility and environmental risk factors. Genetic factors that contribute to the
pathogenesis of SLE are being studied thoroughly, and new ones are being identified [29].
Additionally, hormonal factors may contribute to the development of SLE. Conditions
characterized by elevated estrogen levels, such as the use of oral contraceptives, hormone
replacement therapy in postmenopausal women, and endometriosis, are linked to an
increased risk of SLE [30]. It is important to note that drugs such as procainamide or
hydralazine can cause drug-induced lupus erythematosus [31].

The interplay between genetic susceptibility and environmental exposures can lead to
epigenetic changes that dysregulate immune responses and contribute to the development
and progression of SLE [32,33]. Many immunological factors concerning SLE pathogenesis,
such as TNFa, IFN, IL-17, and other cytokines, have been investigated. Furthermore, meta-
analyses show that gene polymorphism, such as that in the TNF-α gene, could be associated
with SLE predisposition [34,35]. However, TNF-α is a proinflammatory cytokine that plays
a role in the pathogenesis of various autoimmune disorders and is not limited to SLE.
Similarly, interferon (INF) type I is central to SLE development and progression [36–39]. By
activating dendritic and B-cells, type I INF facilitates immune dysregulation, which is a
significant propelling element in the pathogenesis of SLE [40].

Furthermore, INF is also responsible for heightened inflammation and tissue damage
in SLE as well as the amplification of the immune response by enhancing the expression
of major histocompatibility complex (MHC) molecules on antigen-presenting cells and
promoting the activation and differentiation of T cells, which further exacerbate the ongoing
inflammation and tissue damage [40]. The deficiency in classical complement proteins
(C1q, C4, C2) also leads to macrophages’ inability to phagocytose immune complexes
and apoptotic cell material, such as plasma and nuclear antigens. This failure results in
dysregulated and intolerant lymphocytes targeting intracellular antigens, usually hidden.
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This ultimately leads to the production of autoantibodies, such as antinuclear antibodies
(ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies as well as anti-Smith,
anti-Ro/SSA, and anti-La/SSB antibodies [41].

Lastly, type III hypersensitivity reactions are common in SLE, involving the formation
of antibody–antigen complexes in the microvasculature. This leads to complement activa-
tion and inflammation, damaging various organs [42]. In contrast, type II hypersensitivity
reactions involve IgG and IgM antibodies targeting antigens on cells, leading to different
cytopenias, like anemia [43].

All advancements in understanding the pathogenesis of SLE have paved the way for
developing novel targeted therapies designed to manage autoimmune responses effectively.
In Figure 1, we present an overview of the factors related to SLE pathogenesis.
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3. Treatment Options for SLE

Compared to other rheumatic disease treatments, SLE is still lagging in replacing
traditional therapeutic approaches with novel venues. Traditional treatment agents include
CS, antimalarials (hydroxychloroquine), and conventional immunomodulating/ immuno-
suppressive agents (azathioprine, methotrexate, cyclophosphamide, cyclosporine A, my-
cophenolate) [44]. Recently, the “treat-to-target” treatment strategy initially developed for
rheumatoid arthritis (RA) management was conceptually extended and applied to SLE
patient management [45]. Adhering to the latest EULAR and ACR recommendations [4]
for the application of conventional disease-modifying drugs (csDMARDs), hydroxychloro-
quine could be used for all SLE patients at a target dosage regimen of 5 mg/kg body weight
unless clear contraindication is present. However, this target regimen could be individual-
ized upon considering the risk of flare or higher risk factors (i.e., kidney disease, preexisting
macular or retinal disease, tamoxifen) predisposing patients to retinal toxicity. Due to
its proven efficacy in reducing disease flares, safety, and low cost, hydroxychloroquine
resembles the cornerstone of SLE therapy. It is eligible for long-term usage in combination
with other therapeutic regimens [46,47].

Regarding CS usage, the latest recommendations set the maximal acceptable threshold
to 5 mg/day prednisone equivalent for maintenance therapy in comparison to 7.5 mg/day
in the 2019 recommendations. Furthermore, complete CS withdrawal should be considered
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as the optimal target when possible, which conceptually reorientates CS usage for SLE as a
“bridging therapy” tool [4].

A lack of therapeutic response to hydroxychloroquine as a single-line therapy or in
combination with CS or the inability to reduce the dosage regimen below the maintenance
dosage often determines a need to add an immunosuppressive agent as a second-line
therapy for mild non-renal cases of SLE. In those cases, methotrexate, azathioprine, or
mycophenolate can be added. Moderate or severe cases of non-renal SLE and LN, on
the other hand, could require more complex treatment strategies involving the usage of
cyclophosphamide (a low dose often combined with belimumab for LN or a high dose),
a calcineurin inhibitor (often combined with mycophenolate), and target therapies, such
as belimumab, anifrolumab (for non-renal SLE), and rituximab (for severe or refractory
patients) [4].

However, conventional immunosuppressive agents have adverse effects and limita-
tions, such as a broad spectrum of target organ injuries or disease relapses after the discon-
tinuation of therapy. Since long-term disease remission should be achieved in therapeutic
approaches that target the establishment of self-tolerance to SLE-associated autoantigens,
many SLE patients seem to be trapped in a vicious cycle of disease exacerbation followed
by immunosuppressive intervention. Thus, it was shown that long-standing disease remis-
sion could not be achieved using broad immunosuppressive agents alone [48]. Therefore,
the need for novel SLE-tailored therapeutic strategies centered around fundamental SLE
dysregulation mechanisms comes even more to the fore.

3.1. B Cell-Directed Therapy for SLE

B cell-directed therapy for SLE has been investigated in multiple studies, systematic
reviews, and meta-analyses that have contributed to the understanding of the efficacy and
safety of this form of treatment [49]. Representatives of B cell-directed therapy include
rituximab, ocrelizumab, and ublituximab, monoclonal antibodies that target CD20 antigens
on the surface of B cells [50], and belimumab, which targets B lymphocyte stimulator-BlyS.

Unfavorably, the LUNAR study (2012) found that rituximab therapy did not enhance
clinical outcomes after one year in individuals with active proliferative LN who were
also treated with mycophenolate mofetil and CS [51]. The study demonstrated that al-
though rituximab reduced CD19 + B cells and anti-dsDNA antibody levels while increasing
serum levels of complement factors (C3 and C4), renal response rates were comparable
across the treatment and placebo groups (45.8% and 56.9%, respectively). Furthermore,
patients receiving rituximab had a higher incidence of side events such as hypotension and
neutropenia [51].

However, a metanalysis of Wu et al. (2020) that included two randomized controlled
trials (RCTs) and 13 observational studies, with a total of 742 patients, demonstrated notably
decreased peripheral CD19 + B cells and increased C3 and C4, resulting in a net change in
disease activity score and confirming rituximab effectiveness and safety for SLE [52].

The results of the latter meta-analysis overlap with the outcomes from another system-
atic review conducted by Cobo-Ibáñez et al. 10 years ago, which demonstrated rituximab
safety and effectiveness in treating non-renal SLE, particularly when it comes to disease
activity, immunologic markers, and the sparing of CS. However, the authors concluded
that rituximab could only be advised for organ-specific symptoms like thrombocytopenia
and arthritis [53].

On the contrary, a systematic review by Weidenbusch et al. (2013) indicated that in
SLE with LN patients who have not obtained remission from traditional therapy, rituximab
is an effective way to induce remission [54]. On the other hand, Borba et al. demonstrated
that despite its good safety profile, rituximab showed no superiority over a placebo in
terms of efficacy in SLE [55].

Belimumab is currently the only B-cell-directed therapy for SLE that the FDA and
EMA have approved. Belimumab is a monoclonal antibody that blocks B lymphocyte
stimulator-BLyS, essential for activating B cell function [49]. BLISS-52 and BLISS-76 are
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two phase III studies investigating belimumab’s effectiveness (a biologic agent that targets
B cells) in SLE. The results showed that the administration of belimumab, in addition to
standard therapy, led to improvements in inflammatory indices and clinical symptoms of
SLE in some subgroups of patients [49,56].

Another phase III trial focused on the long-term safety and efficacy of belimumab in
SLE. The results showed improved inflammatory parameters and reduced SLE activity in
patients receiving belimumab [57]. In their meta-analysis, Wei et al. (2016) estimated the
efficacy and safety of therapy with belimumab compared with a placebo plus standard
therapy in patients with SLE. The results suggested that treatment with belimumab plus
standard therapy is more effective than a placebo plus standard therapy in SLE patients,
representing major progress in the treatment of SLE. Regardless of the statistical analyses,
further research is necessary to optimize treatment effects [58].

Similarly, in their systematic review and meta-analysis, Borba et al. (2014) evaluated
the efficacy, safety, and tolerability of biologic drugs compared with a placebo for SLE. Beli-
mumab exhibited a satisfactory profile regarding efficacy, safety, and tolerability. Biologic
agents exhibited a good safety profile for SLE treatment, indicating that these agents are
promising therapies and should be further investigated [55]. Regarding adverse reactions
and loss of efficacy, despite the positive results of these studies and meta-analyses, B cell-
directed therapy may be associated with various adverse reactions and loss of effectiveness.
Adverse reactions related to the use of belimumab include nausea, diarrhea, pyrexia, na-
sopharyngitis, bronchitis, insomnia, limb pain, depression, migraine, pharyngitis, cystitis,
leukopenia, viral gastroenteritis, serious infections, depression-related events, suicidal
ideation, fatal infections, and serious psychiatric events [59].

In conclusion, B cell-directed therapy aims to regulate or reduce B cell activity through
various therapeutic strategies, such as monoclonal antibodies, selective inhibitors, and
other drugs that target specific molecules or signaling pathways on B cells. Furthermore,
this therapy controls unwanted immune responses associated with SLE and RA.

3.2. Co-Stimulatory Molecules for SLE

Co-stimulatory molecules are essential signaling molecules that activate the immune
system and control the immune response. They play a crucial role in regulating the activity
of T cells and other cellular elements of the immune system [60]. No medications are
approved explicitly as co-stimulatory molecules for treating SLE yet. However, considering
the pathogenesis of SLE, some of the most essential co-stimulatory molecules include the
following. CD28 is a crucial molecule for T-cell activation. It binds to B7 molecules (CD80
and CD86) that are found on the surface of other cells, such as antigen-presenting cells
(APCs) like macrophages or dendritic cells [61].

Similarly, CTLA-4 (cytologic T lymphocyte antigen 4) is an inhibitory receptor ex-
pressed on the surface of activated T cells. It competes with CD28 to bind to B7 molecules
(CD80 and CD86), but with higher affinity, inhibiting T-cell activation [62]. Another
molecule is ICOS, a co-stimulatory receptor that is expressed on activated T cells. It reg-
ulates the immune response by binding to ICOS-L (ICOS-Ligand), found on the surface
of other cells, such as B cells and dendritic cells [63]. CD40 and CD40L are molecules
expressed on the surface of B cells (CD40) and activated T cells (CD40L). They are involved
in the stimulation and differentiation of B cells and the immune response [64].

For the therapy of SLE, various co-stimulatory molecules are being investigated as
potential targets for new drugs. Since CD40 is a co-stimulatory molecule that plays a vital
role in activating the immune system, studies suggest that the inhibition of the interaction
between CD40 and its ligand (CD40L) may benefit the inflammatory characteristic of
SLE [65].

Dapirolizumab pegol is composed of an anti-CD40 ligand Fab’antibody fragment
connected to polyethylene glycol, included in phase IIb clinical trials that demonstrated
clinical improvement, declined anti-DNA antibodies, and normalization of C3 and C4 [66].
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Additionally, dapirolizumab pegol showed a good safety profile with a low risk of
thromboembolic events [67]. Ramanujam et al. also rediscovered the role of the CD40-
CD40L pathway in SLE and LN, emphasizing the blocking of this pathway to ameliorate
systemic inflammation and nephritis [68,69]. Furthermore, the role of CD40-CD40L was
confirmed in murine SLE models and cultures of cells in SLE patients [70,71].

Given the fact that B7 (B7-1 and B7-2) molecules interact with T cell receptors and
play a vital role in regulating the immune response, modulating this interaction may
be a potential strategy for treating SLE [72]. Similarly, a ligand for 4-1BB (CD137) is a
co-stimulatory molecule expressed on activated T cells. Some studies have shown that
blocking or stimulating 4-1BB may have anti-inflammatory or immunomodulatory effects
that may be useful in controlling SLE [73].

3.3. Targeting Intracellular Signaling via JAK Inhibitors in SLE

The discovery of targeted small-molecule therapies, including Janus kinase (JAK)
inhibitors, changed the therapy paradigm for some disorders. Through suppressing intra-
cellular signaling (i.e., JAK protein–signal transducer and activator of transcription (STAT)
transcription factors pathways), JAK inhibitors exert the potential for effectiveness in
many autoimmune diseases, including RA, inflammatory bowel disease, spondylarthritis,
alopecia areata, and some allergic diseases [74].

Through JAK-STAT, cytokines from the innate immune system communicate with
adaptive immunological systems, such as autoreactive T cells, B cell activation, and autoan-
tibody formation. These processes may be used as therapeutic targets for SLE [74,75]. Fur-
thermore, convenient administration, reduced production costs, and non-immunogenicity
benefit these targeted molecules [76,77].

In line with this, Nikolopoulos et Parodis focused on the clinical application of JAK
inhibitors in SLE [78]. Data showed that in individuals with SLE, tofacitinib, a JAK1/3
inhibitor, decreased the type I interferon signature, improved vascular function, and
lowered cholesterol levels [79]. Baricitinib, a JAK1/2 inhibitor, has been tested in one
phase 2 trial, which showed notable improvements in lupus rashes and arthritis, and two
phase 3 trials, which did not confirm these findings [80–82].

More extensive phase 3 trials will examine deucravacitinib, a selective tyrosine kinase
2 (TYK2) inhibitor, which produced higher response rates than a placebo in a phase 2
trial in SLE [83]. However, using JAK inhibitors necessitates carefully considering their
multi-target effects, including sufficient screening and regular monitoring for infection,
cardiovascular problems, thrombosis, and cancer [84–86].

A systematic review and meta-analysis on the efficacy and safety of JAK inhibitors
in SLE and cutaneous lupus by Ma et al. highlighted that although JAK inhibitors were
superior to a placebo in managing SLE and treating musculoskeletal and mucocutaneous
involvement, they are not approved for SLE yet [87].

Therefore, why do we need JAK inhibitors in SLE? Richter et al. [88] answered this
question by pointing out that none of these treatments has been approved for clinical
practice despite encouraging outcomes from clinical trials. So far, using tofacitinib and
baricitinib has shown the best outcomes. Owing to its intricate etiology, the treatment of
SLE is evolving. Although JAK inhibitors are therapeutically helpful, how they relate to
SLE is unclear. Although the safety and efficacy profiles indicate promising outcomes,
more clinical trials are required. However, all the data released thus far are a founda-
tion for upcoming research that should yield new and helpful insights into treating SLE
patients [88].

3.4. Targeting Cytokines and Interferon and Kinoid Vaccines in SLE

Because cytokine production is different in SLE patients and may change during the
disease [89], interferons and some inflammatory cytokines have been investigated for ther-
apeutic purposes. A recent systematic review showed that more than 15 cytokine-targeting
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molecules had been discovered for the targeted therapy of SLE in clinical practice [20]. Here,
we will focus on the most promising targeted therapies currently in clinical development.

3.4.1. IL-2

Interleukin-2 (IL-2) and regulatory T cells (Tregs) are essential in promoting and
maintaining immune tolerance. In patients with SLE, there are low levels of this interleukin,
which leads to defects in Treg cells [90]. With low-dose IL-2 therapy, this deficiency can
be reversed and restore immune tolerance [91–93]. In an open-label phase I/II trial with
SLE patients, more than 80% showed a significant immune response and increased Treg
cells [94]. Although this trial is in its initial phases, it has demonstrated that low dosages of
IL-2 can improve Treg abnormalities linked to IL-2 deficiency in SLE patients. Furthermore,
low-dose IL-2 therapy restores endogenous immunological tolerance mechanisms, thereby
proposing a targeted biological treatment method that directly targets the pathophysiology
of SLE [94].

The role of IL-2 has been evaluated in two RCTs with a good safety profile and clinical
response [95,96]. He et al. demonstrated declined SLE Responder Index-4 in an IL-2-
treated group vs. a placebo at week 12 (p = 0.052) and week 24 (p = 0.027). Furthermore,
low-dose IL-2 treatment resulted in remission in 53.8% of patients with LN. No severe
infections were recorded in the IL-2 group and two were recorded in the placebo group [95].
Similarly, Humrich et al. conducted a post-hoc hierarchical analysis of the primary and
critical secondary endpoints in a per-protocol population, together with an exploratory
analysis of many other secondary endpoints. The outcomes supported that low-dose IL-2
is advantageous in active SLE [96,97].

Placebo-controlled trials of low-dose IL-2 are Aldesleukin (NCT03312335), Efavaleukin
Alfa (NCT03451422), LUPIL-2 trial with ILT-101 (NCT02955615), IL-2 with Telitacicept
(NCT05339217), and CNTY-101 (NCT06255028) [98].

3.4.2. IL-6

Interleukin 6 (IL-6) is a cytokine with pleiotropic effects and has been found to be ele-
vated in SLE patients [99–103]. PF-04236921, a human monoclonal IL-6 antibody, was inves-
tigated in SLE clinical trials but failed to demonstrate efficacy [104,105]. Another promising
antibody, sirukumab, failed in the phase II trial [106]. Tocilizumab, a human monoclonal
against the IL-6 receptor (IL-6R), was evaluated in an open-label phase I study [107]. The
monoclonal antibodies MRA003US (NCT00046774) and CNTO 136 (NCT01702740) have no
published results.

3.4.3. IL-17

Interleukin 17 (IL-17) is involved in the pathogenesis of rheumatic and musculoskeletal
diseases. In SLE patients, increased Th17 cells and high levels of IL-17 in serum have been
observed [108]. A human monoclonal antibody, secukinumab, was in a phase III clinical
trial [109]. However, the study was terminated due to a futility analysis. There is one
more trial in the database for IL-17, which is from 2021, but it has an unknown status
(NCT05045417). The outcomes for SLE have been unfavorable so far; however, case reports
have demonstrated the efficacy of secukinumab for LN refractory treatment, as reported
by Costa et al. [110]. Nevertheless, other authors reported secukinumab-induced SLE in
psoriatic arthritis [111] and ankylosing spondylitis [112].

3.4.4. IL-12/23 Axis

In patients with active SLE, there are increased serum levels of IL-23 compared to
healthy individuals, which limits the in vitro production of IL-2 [93]. IL-12 is also in-
volved in the pathophysiology of SLE [113]. Activation of the IL-23/IL-17A axis leads to
an increased amount of Th17 cells, which ultimately contributes to the pathogenesis of
LN [114,115]. In connection with these data, a monoclonal anti-IL-12/23 antibody, ustek-
inumab, targeting the p40 subunit shared by the cytokines IL-12 and IL-23, has been
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reported [116]. This is an up-and-coming option for the terminated phase III trial, and
safety and adverse effects are similar to those reported by other studies.

3.4.5. IL-10

Interleukin 10 (IL-10) has anti-inflammatory and proinflammatory effects, which are
pathogenic in SLE [117]. A study shows that IL-10 serum levels are increased in SLE
patients. The correlation with disease status is robust [118]. The anti-IL-10 antibody has
completed a phase II trial (NCT02554019) and has results [119].

Hannon et al. included sixty-one RCTs involving 11,232 participants and reported
43 different interventions for cutaneous disease in SLE, including the trial mentioned above
in their analysis. They concluded that evidence supports the commonly used treatment
hydroxychloroquine and the combination of chloroquine and methotrexate. However,
further data analyses and more trials designed to detect differences in the efficacy of
anti-cytokines are needed [120].

3.4.6. Interferons

Interferon is a key cytokine in the pathogenesis of SLE, which is supported by numer-
ous animal and human findings [121–124]. SLE patients have increased levels of type I IFN,
and the genes are highly expressed in the peripheral blood [125–127]. Given the potential
of IFNs to initiate or enhance immune responses leading to organ damage in lupus, many
biologic therapies targeting IFNs are under investigation. Various strategies to develop
interferon-targeted treatment have been tried over the years but have been largely unsuc-
cessful. Subsequently, several molecules have been identified that target the IFN pathways
and the IFNAR receptor, which signals intracellularly through JAK1/Tyk2 [128–130].

Anifrolumab (MEDI-546) is a monoclonal antibody against IFNAR1. After a successful
phase, two open-label trials (MUSE) were approved for fast-track status by the FDA in
2021 [131–133]. Two other phase 3 studies were conducted in active SLE (TULIP-1 and
TULIP-2) [134,135]. The first trial reported a negative primary endpoint (SRI-4) [134] and
TULIP-2 reported positive results [135]. The discrepancies between the two trials are related
to the selection of SRI-4 and a subgroup of lower disease activity SLE [136]. The use of
anifrolumab in LN was investigated in the phase 2 TULIP-LN study [137]. A phase 3 trial
(IRIS, NCT05138133) has started and is expected to end in 2027. It was shown that only
phase 4 studies can accurately assess the safety of new SLE drugs.

Since anifrolumab was approved for moderate and severe SLE treatment, the post-hoc
analysis confirmed its better efficacy in patients with a high type I IFN signature than in
patients with a low type I IFN signature [138]. At the moment, anifrolumab is indicated for
SLE without renal or CNS involvement.

Another anti-IFNα monoclonal antibody, sifalimumab, has been studied in a phase
II trial in patients with moderate to severe SLE [133]. The most common complication
reported was herpes zoster in patients receiving the high dose. The study reported positive
results, although the effect was relatively modest. Rontalizumab is another human anti-
IFNα antibody and was evaluated in a placebo-controlled phase II trial [139]. The severe
side effects were relatively acceptable and classified as unrelated to the drug. The higher
doses would be more effective, but the trials were stopped.

It was shown that IFNα kinoid, i.e., IFNα immunogen appropriately adjuvanted, pro-
duced short-lived neutralizing antibodies (Abs) but had no discernible adverse effects and
no cellular immunological response to the cytokine in a murine model. Clinically, kinoid-
vaccinated NZB/W mice showed reduced lupus manifestations, including proteinuria,
histological renal lesions, and death triggered by IFNα adjuvant challenge [140].

A phase IIb, randomized, double-blind, placebo-controlled study was conducted for
IFNα-kinoid (NCT02665364) in patients with active SLE [127,141]. IFN-K had a significant
corticoid-sparing effect, but the evidence was limited and of moderate quality. Despite
all the potential improvements in the understanding of the pathogenesis of SLE, the need
for accurate treatment is still high. The development of new therapeutic agents in SLE
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will allow for the discontinuation of CS and the achievement of remission or low-disease
activity and remission.

3.5. CAR T Cell Therapy in SLE

A revolutionary new approach for SLE treatment is using genetically modified treat-
ments with chimeric antigen receptor (CAR) T-cells designed to specifically target other
cells or molecules with a main pathogenic role for disease onset and progression [142].
CARs are recombinant receptors coupled to autologous T cells to target a specific antigen.
Targeting the CD19 antigen in SLE aims to induce a rapid and prolonged depletion of the
circulating B cells in patients who failed to achieve clinical and/or serological remission on
standard treatment protocols [143,144].

CAR Tcell therapy was first introduced by Schett et al. in a patient with refractory-to-
standard treatment SLE, which achieved clinical drug-free remission for the whole follow-
up period [145,146]. The authors recently reported a case series with 15 patients with
refractory autoimmune connective tissue diseases (eight with SLE, three with idiopathic
inflammatory Myopathies —IIM, and four with systemic sclerosis–SSc patients) who were
treated with CAR T cells to achieve clinical and laboratory drug-free remission [147].
Research on CAR T cell therapy in refractory or relapsing autoimmune diseases, such as
SLE, is progressing rapidly to improve treatment strategies and clinical outcomes in this
kind of patient. Currently, several clinical trials are exploring the safety and efficacy of
CAR T cell therapy in SLE or LN [148].

All of the novel targeted therapies in SLE discussed in this review are presented in
Table 1.

Table 1. Novel targeted therapies for SLE patients.

Molecular Pathway and Corresponding Agent Tested in Clinical Trials in SLE

Molecular Target Therapeutic Agent Type Results

B-cell inhibition

BAFF/APRIL

Belimumab, Benlysta Fully humanized IgG1
monoclonal antibody

Approved for active,
antibody-positive, non-renal SLE

Tabalumab Fully human IgG4
monoclonal antibody Failed to meet its primary endpoints

Blisibimod Fusion protein Failed to meet its primary endpoints

Atacicept Fully human recombinant
fusion protein

APRIL-SLE terminated; ADDRESSII
had a better safety profile

CD20
Rituximab Chimeric monoclonal antibody

LUNAR/EXPLORER-negative;
accoring to EULAR it could be used

aslast choice for severe
refractory lupus

Ocrelizumab Fully humanized
monoclonal antibody

Trials were terminated because of
severe infections

Obinutuzumab Fully humanized
monoclonal antibody Phase III ongoing

CD22 Epratuzumab Fully humanized
monoclonal antibody Phase III failed

CD19 XmAb5871 Monoclonal antibody Under investigation

Proteasome inhibitors Bortezomib A modified dipeptidyl
boronic acid

Terminated phase II trial because of
adverse reactions
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Table 1. Cont.

Molecular Pathway and Corresponding Agent Tested in Clinical Trials in SLE

Molecular Target Therapeutic Agent Type Results

Co-stimulation

CD28/B7 Abatacept A fusion protein (CTLA4-Ig) Ineffective in phase II in nephritis and
general SLE

CD40/CD154 Dapirolizumab PEG-conjugated antiCD40L
Fab fragment Ongoing

Intracellular signaling

Bruton’s tyrosine
kinase Fenebrutinib Small molecule, tyrosine kinase Good safety profile, failed to meet its

primary endpoint

Calcineurin inhibitor Voclosporin Calcineurin inhibitor Approved by FDA for lupus nephritis

JAK1 Upadacitinib Small molecule Phase III trial in SLE

JAK1/2 Baricitinib Small molecule Phase III discontinued

JAK1/3 Tofacitinib Small molecule Under investigation

Tyk2 (JAK4) Deucravacitinib Small molecule Under investigation

Cytokines

Interferon-α

Sifalimumab Fully human
monoclonal antibody No effect; discontinued

Rontalizumab Humanized monoclonal antibody Well tolerated, but no additional trials
planned

Anifrolumab Fully human
monoclonal antibody

Approved for moderate and severe
SLE and SLE nephritis

IFN-K Inactivated IFN-α coupled with
protein Failed to meet its primary endpoint

IL-2 Aldesleukin; AMG592 Cytokine Under investigation

IL-12/23 Ustekinumab Fully human
monoclonal antibody

Suspended phase III over efficacy
data

IL-6 Sirukumab Fully human
monoclonal antibody Failed

IL-17 Secukinumab Fully human
monoclonal antibody Phase III clinical trial

IL-10 Anti-IL-10 antibody Fully human
monoclonal antibody

Has completed a phase II trial
(NCT02554019)

CAR T cell therapy

Chimeric–antigen
receptors are recombinant
receptors that are coupled

to autologous T cells to
target a specific antigen

- In clinical trials for autoimmune
diseases, incl. SLE

4. Conclusions

The evolving landscape of SLE management underscores the need for precise and
targeted therapies. While CS and immunosuppressive agents have long been the mainstay,
their limitations prompt exploration into novel approaches. Recent elucidations of SLE
pathogenesis, particularly the genetics, epigenetics, and involvement of inflammatory
mediators and immune dysregulation, have paved the way for personalized treatment
modalities. By targeting specific molecular pathways, such as inflammatory cytokines and
co-stimulation molecules, tailored interventions offer promising avenues for improved
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outcomes. Based on their efficacy and safety in the clinical trials, we can speculate that the
subsequent approved treatments will be JAK inhibitors and members of CAR T cell therapy.
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