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Abstract: The fatigue behavior of a fully processed, non-oriented electrical steel sheet is investigated in
dependence on shear-cutting parameters and a subsequent heat treatment. For this, stress-controlled
fatigue tests are performed before and after annealing at 700 ◦C for a total of six different shear-cutting
settings. For all parameters, the fatigue strength of shear-cut sheets is improved by the heat treatment.
This is due to reduction in a large part of the strain hardening region as well as the reduction in
tensile residual stresses. Both were introduced during shear cutting and act detrimental to the fatigue
strength. However, the intensity of this improvement depends on the shear-cutting parameters. This
is related to the corresponding edge surfaces characteristically being formed during shear cutting.
Specimens cut with a worn cutting tool show a more pronounced increase in fatigue life. In contrast,
specimens produced with a sharp-edged cutting tool and high cutting clearance hardly benefit from
the heat treatment. This appears to be caused by differences in surface topography, in particular
coarse topographical damage in the form of grain breakouts. If these occur during shear cutting, the
crack formation is not significantly delayed by additional annealing.
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1. Introduction

Electrical steel sheets are thin metal strips made of iron alloys with silicon as the main
alloying element. They are often used as laminated stacks to form the magnetic core of
electric motors. The properties of electrical steel sheets are often optimized for soft magnetic
characteristics. However, the design of electrical steels for automotive applications with
high performance requirements is not entirely focused on magnetic properties. Instead, the
combination of proper electromagnetic and mechanical properties is necessary due to high
rotational speeds and frequent changes in velocity. Here, the mechanical stresses primarily
emerge from centrifugal forces as a consequence of the rotational speeds present during
operation. Especially for rotors of permanently excited synchronous motors, the laminate
design contains several regions with thin bridges, for example, between the permanent
magnets. This is aimed at to reduce magnetic flux leakages. Therefore, proper dimensioning
of these areas can significantly influence the attainable torque, power density, and efficiency
of the electric drivetrain [1–3].

The conventional processing of electrical sheets up to the finished coil takes place
in multiple hot and cold rolling steps followed by final annealing. As a result of the
latter, recrystallization and controlled grain growth typically lead to a stress-relieved
microstructure with a low dislocation density. The subsequent processing of the coils into
rotor stacks influences the mechanical and magnetic properties [4]. To comply with the
requirements for high production volumes in the automotive industry, shear cutting is the
most used manufacturing process. However, the plastic deformation and residual stresses
introduced by shear cutting negatively affect the mechanical and magnetic properties.
Hereby, the fatigue strength is degraded compared to a defect-free edge condition because
of the deteriorated edge roughness. Depending on the shear parameters used, the fatigue
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strength can decrease by up to 40% in relation to a defect-free edge condition [5,6]. Such
influence on fatigue life must be considered in the design of the rotor geometry and thus
leads to thicker bridges to avoid preliminary failure. Thus, improving the fatigue behavior
of electrical steel sheets can help to enhance the overall motor properties [2].

For steel sheets in general, it is known that a heat treatment after the manufacturing
sequence can reduce the damage introduced during production in the form of dislocations
and residual stresses. As a result, the initial magnetic properties are restored in large
proportions. Consequently, performing a heat treatment is already an important measure
to reduce magnetic losses in the stator [7–9].

Microstructural changes often tend to cause opposing effects on the mechanical prop-
erties in comparison to magnetic properties. Nevertheless, a subsequent heat treatment
may also positively affect the mechanical fatigue strength due to the reduction in the
strain-hardened edge zone, including regions with high tensile residual stresses [10,11].
Therefore, this study aims to investigate the influence of a subsequent heat treatment on the
fatigue properties of non-oriented electrical steel. In addition, it should be emphasized that
the tests are performed as a function of six different shear-cutting parameters to enhance
the overall understanding of influencing factors.

2. Materials and Methods

The studied material is a fully processed non-oriented electrical steel sheet with a
nominal thickness of 270 µm. The chemical composition and monotonic properties are
given in Tables 1 and 2, respectively.

Table 1. Chemical composition of studied electrical steel.

Elements C Mn Si P S Al Fe

wt.% 0.007 0.16 3.32 0.01 0.002 1.1 95.3

Table 2. Monotonic material properties in form of elastic modulus E, Poisson’s ratio ν, yield strength
Re, ultimate tensile strength Rm, and elongation at break A, each measured in rolling direction (RD).

E [GPa] ν [-] Re [MPa] Rm [MPa] A [%]

187 0.28 447 540 15.3

The stress–strain curve from the tensile test is given in Figure 1. The material shows a
single and slightly pronounced yield drop of approximately 5 MPa.
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Fatigue specimens are processed from the delivered electrical steel sheets by shear cut-
ting with the punching machine BSTA 1600-181 (Bruderer AG, Frasnacht, Switzerland) with
a cutting speed of 100 strokes per minute. Three cutting clearances (15 µm, 35 µm, 50 µm),
each with two different tool wear states (sharp and worn), are selected. In total, six different
shear-cutting parameter sets are compared in this study.

For pure iron, the recrystallization temperature is about 500 ◦C to 600 ◦C. However,
for shear-cut electrical steel, significant changes in the magnetic properties are not detected
until temperatures of at least 650 ◦C. Therefore, 700 ◦C to 750 ◦C is typically used [7,12].
In this study, all heat treatments are performed at 700 ◦C and under vacuum with the
furnace Nabertherm RO 50-250/13 (Lilienthal, Germany). Heating and cooling rates are
selected according to standard DIN 10341. As an additional protective measure, samples
are wrapped in thin foils made of X5CrNiTi17-10. Since other authors often refer to the
term stress relief annealing (SRA), despite the high temperatures, the abbreviation is used
for this study as well.

High cycle fatigue (HCF) tests are performed with the electric dynamic testing machine
ElectroPuls E10000 (INSTRON, High Wycombe, UK) with an extensometer, EXA 10-0.5
(SANDNER-Messtechnik GmbH, Biebesheim am Rhein, Germany). Compared to other
fatigue specimens, the axial alignment of these thin electrical sheets is essential. For
this purpose, the alignment fixture AlignPRO from INSTRON is utilized. HCF tests are
carried out under stress control with stress ratios of Rσ = 0.1, a frequency of 40 Hz, and
different upper stresses ranging between 300 MPa and 520 MPa. Fatigue specimens with
a gauge length of 4 mm and width of 10 mm are used; see Figure 2a. The gage-to-grip
transition area consists of three matching radii to achieve a homogeneous stress state
with a stress concentration factor Kt of approximately 1.0. An anti-buckling restraint with
Polytetrafluoroethylene (PTFE) coating is used to avoid buckling; see Figure 2b.
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Figure 2. (a) Specimen geometry of fatigue samples, (b) test setup with anti-buckling device.

The used specimen geometry and setup features similarities to the test standard
SEP 1240, which is intended for flat steels. The testing conditions used are consistent with
the description in another publication [13].



Alloys 2024, 3 284

Measurements of residual stresses are carried out in the rolling direction by using
X-ray Diffraction System Empyrean 2 (PANalytical B.V., Almelo, The Netherlands) with a
Cobalt cathode and by applying the sin2Ψ method.

Hardness data are acquired with a maximum load of 10 mN by Triboindenter TI
Premier, equipped with a diamond Berkovich Tip TI-0039 (Bruker, Eden Prairie, MN, USA).
The tip area function is calculated by indenting fused silica. All data are analyzed using the
Oliver–Pharr method [14]. The measurement pattern of the cross-section at the cut edges can
be observed in Figure 3b. In the region close to the edge, the distance between indentations
is 10 µm, whereas further inwards, 20 µm is selected. The Electron Backscatter Diffraction
(EBSD) data are acquired by using the scanning electron microscope LEO 1430 (Carl Zeiss
AG, Oberkochen, Germany) with a Bruker e- Flash HR+ detector, tungsten cathode, sample
tilt of 70◦, and accelerating voltage of 20 kV. Furthermore, EBSD data are analyzed utilizing
ATEX Software Version 4.14 [15]. The preparation for nanoindentation and EBSD imaging
is performed by polishing with conventional metallographic techniques, followed by 12 h
of vibration polishing with water-free suspension Etosil (QATM, Mammelzen, Germany).
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3. Results
3.1. Influence of SRA on Microstructure

As a result of the heat treatment, specific changes in the microstructure occur at the
shear-cut edges. This subsection will show these changes in the microstructure. More de-
tailed information on initially present characteristics in the shear-cut condition is provided
in a separate publication [5]. Figure 4 presents micrographs of the recrystallized edge region
as a cross-section taken within the sheet plane. A large portion of the induced damage in
the near-surface region is removed by the heat treatment at 700 ◦C. This is a consequence
of the recovery processes, in particular local recrystallization, that take place. The newly
generated microstructure contains a small grain size and, according to the EBSD image
quality map in Figure 4c, does not exhibit any lattice distortions (corresponding to regions
with a darker contrast within a grain) in comparison to the underlying base microstructure.

In contrast to the initial state (Figure 4d), the orientations of the newly formed grains
at the edges during recrystallization (Figure 4e) do not exhibit a pronounced rolling texture.
Instead, a regular distribution of the grains is apparent. In this specific instance, the edge
region extends over a depth of approximately 50 µm and the average grain diameter of
the newly formed microstructure is less than 20 µm within the area of the shear zone. The
smallest grains with sizes of less than 5 µm are observed near the cut surface. Figure 5
characterizes the microstructure based on microsections taken perpendicular to the sheet
plane before (left column) and after annealing (right column). Again, most of the strain-
hardened regions with high dislocation density disappear due to the heat treatment. The
pre-deformed areas at the cut edge are characterized by local recrystallization with newly
formed grains that contain very few dislocations. The process is driven by the stored
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deformation energy of the high dislocation density due to shearing. As a result of SRA, the
damaged microstructure that is introduced by shear cutting is largely removed.
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The heat treatment causes the hardness to decrease back to the reference level of
approximately 3.0 GPa. Furthermore, the shear bands formed during shear cutting mostly
disappear. For all variants investigated, the residual stresses at the edges in the rolling
direction range around 200 MPa; see Table 3.
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Figure 5. Microstructural comparison for 35-S based on transverse microsections of shear-cut edges
before (left column) and after (right column) heat treatment at 700 ◦C for 60 min. The cutting is
performed from top to bottom with a small cutting gap width and a sharp cutting tool. (a,b) EBSD
image quality maps, (c,d) EBSD local misorientation, (e,f) nano-hardness mapping, (g,h) the inverse
pole figure, (i,j) grain size map.

After stress relief annealing, the residual stresses are reduced to a negligible level.
As an example, for the shear-cutting parameter 35-S, the stresses are now 20 MPa. This
results in an overall dislocation-poor and strain-relieved microstructure in the region close
to the edge. Below the depleted surface, however, isolated areas with increased dislocation
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density and large-scale lattice distortions remain; see Figure 6. At such locations, the
intensity of the plastic deformation or the associated dislocation density has not been
sufficient to cause a complete degradation of the lattice distortions. This is also partly
expressed in individual areas with slightly increased hardness values compared to the
initial state.
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despite the heat treatment. Near the surface of the shear zone (vertical edge region), the formation of
very fine grains occurs.

Despite stress relief annealing, some lattice distortions remain in certain areas, particu-
larly around the roll-over zone. Here, the dislocation density is too low to act as a driving
force for new grain formation. Nevertheless, a decrease in hardness also occurred due to
the recovery processes. In contrast, a fringe with a fine-grained microstructure is observed
close to the surface of the shear-cut zone (vertical region). In relation to the shear-cutting
parameters, slight differences are observed within the deformed area. Figure 7 shows
an example of the highest cutting clearance tested (50 µm) in combination with a worn
punching tool (abbreviation: 50-W). Here, the large-area shear bands are clearly visible.
Consequently, hardening zones are more extensive, meaning that the recrystallization area
is wider when heat treatment is subsequently carried out. However, areas with strong
lattice distortions remain, as can be seen in the large grain in Figure 7.
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The intensity of local recrystallization and recovery depends, among other things, on
the degree of previous strain hardening. It is observed that depending on the shear-cutting
parameters and the local characteristics of the cut edge zone, recrystallization depths of up
to 150 µm occur. In the case of a worn tool, the recrystallization tends to be more extensive
because the cutting process with a worn tool increases the size of the initial hardening zone.
In contrast, a sharp cutting tool, in combination with a small cutting clearance, tends to
result in a narrower recrystallization zone.

3.2. Influence of SRA on Fatigue Life

This section addresses the implications on the fatigue behavior after heat treatment.
The fatigue behavior of the non-oriented electrical steel sheet in general and as a function
of the shear-cutting parameters is described in more detail in another publication [5]. In
general, cyclic loading is better tolerated by the newly formed, fine-grained microstructure
that results from heat treatment. However, the improvement in fatigue strength due to
annealing depends on the parameters of shear cutting. This behavior is described in more
detail in the following figures.

Figure 8 shows the Wöhler fatigue life curves for a cutting clearance width of 35 µm
in combination with a worn edge condition (35-W).
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Figure 8. Wöhler (S-N) fatigue life curves of stress-controlled fatigue tests for shear-cut specimens
with a cutting clearance of 35 µm and a worn tool wear state. The center lines correspond to the
Wöhler curves with 50% failure probability. In addition, the range for a failure probability of 10% and
90% is also indicated. The dotted lines and shaded area correspond to fatigue specimens that have
undergone heat treatment after shear cutting.

The fatigue strength line is being shifted to higher values due to SRA. The increase in
fatigue strength is particularly evident for high cycle numbers. In contrast, at low cycle
numbers, like in the range of approximately 500 MPa, the two lines tend to converge. The
macroscopic plasticity behavior is dominant for such high upper stresses, while for lower
upper stresses, the edge condition exerts a more significant influence. Figure 9 illustrates
the fatigue life curves for shear-cut variant 50-S. For this parameter set, no significant
improvement is observed, neither in the area of the high upper stresses nor in the area of
the low upper stresses, despite heat treatment.
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Figure 9. Wöhler (S-N) fatigue life curves of stress-controlled fatigue tests for shear-cut specimens
with a cutting clearance of 50 µm and a sharp tool wear state. The center lines correspond to the
Wöhler curves with 50% failure probability. In addition, the range for a failure probability of 10% and
90% is also indicated. The dotted lines and shaded area correspond to fatigue specimens that have
undergone heat treatment after shear cutting.

Figure 10 presents the impact of a heat treatment on the upper stress in dependence
on all six cutting parameters for a reference cycle number of 2 × 105. The dashed part
corresponds to the increase in fatigue strength compared to the edge condition without
heat treatment, as demonstrated in a previous publication [5]. Most of the variants show a
significant improvement of the tolerable upper stress of up to 40 MPa.
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Figure 10. Upper stress of the Wöhler lines with 50% failure probability at 200,000 cycles. The
hatched parts illustrate the increased fatigue strength due to SRA compared to shear cutting without
heat treatment.

In total, variant 15-S remains the best parameter set although SRA only leads to a
moderate improvement in percentage terms of approximately 5%. However, variant 15-S
is already at a relatively high level in the shear-cut initial condition compared with the
other five variants. For worn cutting edges (darker colors), the highest improvements of
about 10% are measured in each case. On the other hand, the lowest fatigue strengths are
observed for the shear-cut samples with medium (35 µm) and high (50 µm) cutting clearance
combined with sharp edges. An attempt to explain this negligible improvement for the
50-S parameter variant is described in Section 4 by the existence of critical grain breakouts.

4. Discussion
4.1. Differences in SRA Improvement

The potential for a beneficial effect of a heat treatment on the cyclic fatigue strength is
demonstrated by the tests conducted within the scope of this study. Despite a reduction in
hardness as a consequence of the heat treatment, the fatigue life is positively influenced
because a severe strain hardening condition simultaneously weakens the deformation
capacity under cyclic loading. This behavior, which is reported in the literature, can thus
be transferred to electrical steel sheets [16].

Another positive effect derives from the fine grain, which helps to inhibit the formation
of cracks. However, the intensity of the improvement differs depending on the shear-
cutting parameters used. Whereas an improvement can be observed for most shear-cutting
parameters, in particular the 50-S variant exhibits little impact. This marginal improvement
might be explained by the existence of crack critical grain breakouts. The topographic
damage in the form of notches and grain breakouts cannot be cured by heat treatment. The
presence of the grain breakouts is increased when shear cutting is performed with a high
cutting gap width in combination with a sharp punching tool; see Figure 11c.

Here, the appearance of several defects is evident over a relatively small area of the
cut edge of approximately 2 mm.

Figure 12 shows such a region after the heat treatment and at an advanced stage of
crack initiation. Furthermore, Figure 12b,d examine the microstructure at the cutting plane
A-A, while Figure 12c,e present an enlarged area of the latter at the upper right corner.
The recrystallized fringe can be considered crack-inhibiting due to its fine-grained and
stress-free structure. However, in this case, it appears that the crack initiation started from
the intergranular interface. Furthermore, it is noteworthy that the fine-grained and thus
crack-inhibiting edge region are not as pronounced at this point, which is why the initial
crack formation can occur more easily.
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Figure 11. (a) Small cutting clearance (15 µm) with sharp tool, (b) high cutting clearance with worn
tool wear state, (c) high cutting clearance and sharp tool leading to high amount of grain debonding.
White rectangles mark these areas.

Although the fringe of the newly formed fine grain structure is present, at the position
of the incipient crack below the shiny crystalline surface of the grain boundary, there is no
fine grain formation. Thus, the microstructure in the region of the notch base is relatively
comparable to the condition without heat treatment. Accordingly, it is understandable why
no significant improvement in fatigue life is observed for this fatigue specimen.
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Figure 12. (a) An edge view via an optical microscope of a grain breakout after stress relief annealing
and subsequent cyclic loading; (b–e) an EBSD cross-sectional view of the edge region with advanced
crack propagation and a zoom-in on the fine-grained recrystallized zone. This example is created
using the parameter 50-S and tested with an upper stress of 390 MPa.
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4.2. Microstructural Cause of Grain Debonding

As a next step, Figure 13 discusses the potential cause of the grain breakouts by using
two exemplary shear-cut specimens with different characteristics. In addition to the EBSD
image quality and the local misorientation angles, the grain orientations are also evaluated
on a pixel-by-pixel basis. For this purpose, the associated Schmid factors for the {110}<111>
slip system family are calculated based on the known orientation data. These slip systems
are considered because alloying of silicon causes the deformation and slip band formation
in iron to take place along the {110} planes preferentially [17–19]. Furthermore, the tendency
for slipping on the {110} planes is favored by the high deformation velocities present during
shear cutting [20]. In example 1 (left column), a grain with a high Schmid factor of 0.49 is
present in the area of the fracture surface at the cutting edge. Therefore, this corresponds
to a favorable orientation for deformation in the vertical direction. This grain orientation
gives rise to numerous shear bands, which typically stop at orientation differences at the
corresponding grain boundaries.
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Figure 13. Implications of grain orientations on the microstructural behavior during shear cutting
utilizing two representative examples taken as cross-sections. The cutting direction proceeded
from top to bottom. Favorable orientations (high Schmid factor) show evidence of ductile shear
bands, while unfavorable orientations (low Schmid factor) exhibit brittle shear and grain breakout.
(a,b) Pattern Quality Maps, (c,d) maps of grain orientation spread, (e,f) Schmid factor maps for the
slip system family {110}<111>.

On the right side of Figure 13, a second example is given. Despite identical shear-
cutting parameters, a completely different characteristic is revealed here. In the lower grain,
hardly any shear bands are present. With a Schmid factor of 0.36, this is an unfavorable
orientation with regard to forming in the punching direction. Therefore, instead of ductile
deformation, the grain behaves in a rather brittle manner, and the formation of shear bands
is absent. Instead, the deformation concentrates on the grain boundary, which is the nearest
weak point, especially the part of the grain boundary perpendicular to the loading direction
that experiences deformation, see black and white circles. If such a grain breaks out as
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a result of this strain localization, an exposed grain boundary is left behind, which, in
combination with the geometric notch effect, favors the local formation of a crack. This
tendency for intergranular breakouts of grains and grain subregions is also reflected in
Figure 13d,f. Here, the grain boundary lies perpendicular to the vertically acting cutting
force and features an increasing misorientation angle at the grain boundaries. This indicates
the localized deformation of the vertical grain boundary; see the white frame. While crystal
orientations with a large deformation capacity (high Schmid factor) can withstand the
stresses acting due to their ductility, more unfavorable orientations are “crushed” or cut
in a brittle way. Contrary to expectations, the 35-W and 50-W variants achieve higher
fatigue life values than the 35-S and 50-S parameter sets. This seems to be caused by the
notches that develop because of the orientation-dependent deformation tendency. For 35-S
and 50-S, the sharp punching die favors the observed breakouts of whole grains or grain
subregions, causing a more severe degradation of fatigue resistance.

5. Conclusions

The effect of a heat treatment in the form of stress relief annealing (SRA) on fatigue
behavior is studied in dependence on the shear-cutting parameter for a non-oriented electri-
cal steel. Therefore, two edge conditions and three cutting clearances are compared. After
shear cutting, the six edge conditions are subjected to a subsequent heat treatment at 700 ◦C
for 1 h. Thereby, it is found that SRA can significantly improve the fatigue behavior. For
the fatigue strength limit set at 106 cycles, an increase between 5% and 18% is observed
depending on the edge condition. This is caused by the recrystallization that takes place
near the cutting edge and is characterized by the formation of newly formed dislocation-
poor and randomly oriented crystals. Accordingly, the high dislocation density and regions
with strain hardening are largely eliminated. However, the amount of improvement varies
depending on the shear-cutting parameters. For most settings, the finer-grained and relaxed
microstructure can delay crack initiation. However, the improvement is weak if critical
notches are created by grain breakouts during shear cutting. This is because topographical
damage in the form of cutting defects like grain breakouts cannot be compensated for by
SRA. Here, despite a fine-grained and stress-relaxed microstructure in the neighboring
grains, the formation of cracks occurs with less cycles or load. Consequently, the improve-
ment potential for the shear-cutting edge condition ‘worn’ is higher than ‘sharp’ due to
fewer notches being present. This is related to the fact that most of the intense plastic
deformation and strain hardening, which has a detrimental effect on fatigue performance,
is dissolved due to SRA. On the other hand, with a worn tool, the amount of the newly
formed microstructure is more extensive because a worn tool enlarges the hardening zone.
Consequently, to fully utilize the benefits of SRA, coarse topographic damage and the
formation of critical cutting defects should be minimized as well. In addition to the known
benefits for the magnetic properties, this also optimizes the mechanical properties.
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