
Citation: Brown, N. Domain Specific

Abstractions for the Development of

Fast-by-Construction Dataflow Codes

on FPGAs. Chips 2024, 3, 334–360.

https://doi.org/10.3390/chips3040017

Academic Editor: Gaetano Palumbo

Received: 31 July 2024

Revised: 25 September 2024

Accepted: 29 September 2024

Published: 4 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Domain Specific Abstractions for the Development of
Fast-by-Construction Dataflow Codes on FPGAs
Nick Brown †

EPCC, University of Edinburgh, Edinburgh EH8 9BT, UK; n.brown@epcc.ed.ac.uk
† Current address: The Bayes Centre, The University of Edinburgh, 47 Potterrow, Edinburgh EH8 9BT, UK.

Abstract: FPGAs are popular in many fields but have yet to gain wide acceptance for accelerating
HPC codes. A major cause is that whilst the growth of High-Level Synthesis (HLS), enabling the use
of C or C++, has increased accessibility, without widespread algorithmic changes these tools only
provide correct-by-construction rather than fast-by-construction programming. The fundamental
issue is that HLS presents a Von Neumann-based execution model that is poorly suited to FPGAs,
resulting in a significant disconnect between HLS’s language semantics and how experienced FPGA
programmers structure dataflow algorithms to exploit hardware. We have developed the high-level
language Lucent which builds on principles previously developed for programming general-purpose
dataflow architectures. Using Lucent as a vehicle, in this paper we explore appropriate abstractions for
developing application-specific dataflow machines on reconfigurable architectures. The result is an
approach enabling fast-by-construction programming for FPGAs, delivering competitive performance
against hand-optimised HLS codes whilst significantly enhancing programmer productivity.

Keywords: FPGAs; dataflow; high level synthesis; Lucent; programming models

1. Introduction

Field Programmable Gate Arrays (FPGAs) are extremely popular in embedded com-
puting but have yet to gain wide acceptance for High Performance Computing (HPC)
workloads. The flexible nature of FPGAs, where the electronics can be configured to
represent many different circuits has been shown to provide significant energy efficiency
benefits [1] and also improved performance for select applications [2] due to the speciali-
sation that they can provide over and able general purpose CPUs and GPUs. Given that
heterogeneous computing using GPUs has delivered very significant successes to HPC
and the HPC community has accepted, at large, the role of accelerators, it is, therefore,
somewhat surprising that whilst FPGAs have been highly successful in many other fields,
they are yet to gain wide acceptance for HPC workloads. However, energy efficiency, an
area where FPGAs often excel, is becoming of increasing importance to HPC as many
supercomputing centres look to decarbonise their workloads.

There have, in fact, been numerous efforts exploring the role of FPGAs for HPC work-
loads [2–4], and whilst FPGAs have been demonstrated to benefit certain classes of HPC
codes, for instance, those which are memory bound [5], a major limiting factor has been pro-
grammability. Whilst technologies such as AMD Xilinx’s Vitis [6] and Intel’s Quartus Prime
Pro [7] have lowered the barrier to entry for software developers, enabling programmers
to write their codes in C or C++ via High-Level Synthesis (HLS), it is still challenging to
develop highly optimised codes for FPGAs. This requires significant expertise and time to
undertake algorithmic level dataflow optimisations [8], resulting in significant performance
differences between the initial and optimised versions of kernels on FPGAs which can take
many months to tune.

One could summarise that current generation FPGA programming ecosystems en-
able software developers to write codes that are correct-by-construction, but not fast-by-
construction. Instead, we believe the programming model should enable code to be written,

Chips 2024, 3, 334–360. https://doi.org/10.3390/chips3040017 https://www.mdpi.com/journal/chips

https://doi.org/10.3390/chips3040017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chips
https://www.mdpi.com
https://orcid.org/0000-0003-2925-7275
https://doi.org/10.3390/chips3040017
https://www.mdpi.com/journal/chips
https://www.mdpi.com/article/10.3390/chips3040017?type=check_update&version=2


Chips 2024, 3 335

by construction, to suit the dataflow style. There should also be a rich set of abstractions
so the compiler retains enough knowledge about a programmer’s intentions which it can
then use when making tricky, low-level decisions. In this paper, we explore abstractions
where programmers are encouraged to structure their code in a style that provides a wealth
of information to the compiler, with the aim of demonstrating whether this can enable
software developers to write fast-by-construction codes for FPGAs. The ultimate aim of
this work is to empower software developers to be able to easily and conveniently leverage
FPGAs for their high-performance workloads.

This paper is structured as follows; in Section 2 we explore the programming problem
further before introducing, in Section 3, our proposed execution model. Section 4 then
describes the key abstractions in Lucent, our dataflow programming language used as
a vehicle to explore the execution model and associated abstractions, before tieing these
together and using them to describe an example in Section 5 and a discussion around
the implementation of our compiler in Section 6. In Section 7 we study performance
and programmer productivity for a number of kernels against other approaches, before
describing related work in Section 8 and concluding in Section 9.

The novel contributions of this paper are as follows:

• Description of how custom dataflow computing machines can enable large-scale
theoretical concurrency compared to the imperative Von Neumann model, and an
Application Specific Dataflow Machine (ASDM)-based conceptual execution model.

• Exploration of an appropriate set of programming abstractions and language semantics
enabling the convenient expression of high-level declarative algorithms that can be
transformed into a dataflow architecture.

• Demonstration that a declarative language, using our abstractions and presenting the
progression of time as a first-class concern, delivers comparable, sometimes better, per-
formance to state-of-the-art approaches whilst being significantly simpler to program.

2. Motivation: The Challenges with Von Neumann

By empowering software developers to write FPGA code in C or C++ and synthesising
this to the target hardware description language, HLS has significantly reduced the barrier
to entry in obtaining code physically running on an FPGA. However, a very significant
performance gap often exists between this initial version and the final code which has
been optimised for a dataflow architecture [1,9,10]. This is because the optimisation steps
required to close this performance gap are complex and time-consuming, requiring sub-
stantial expertise. The underlying issue is that not only are imperative languages such as C
or C++-based upon an inherently theoretical sequential model, but they are also designed
to map onto a Von Neumann execution model which is at odds with how reconfigurable
architectures, such as FPGAs, operate. Considering the denotational semantics of impera-
tive languages, the program’s current state, σ, is represented as a function mapping storage
locations (e.g., variable names) to their values. This is illustrated in Figure 1, and under the
imperative model state transformations are undertaken via explicit language operations,
such as assignment. This classical denotational representation of an imperative language’s
state means that at any one point in time, there will only be one single update to the state,
in this example updating memory location a from 1 to 1′.

Imperative languages were developed explicitly with the Von Neumann architecture
in mind, where it is natural to represent such state, σ, as a table in memory and provide
instructions that operate upon and manipulate this central table (memory). The Von
Neumann view of fetching instructions based upon the program counter and then executing
these forms the programmer’s underlying imperative language execution model. However,
this inherently sequential model is at odds with FPGAs because these are instead built on
dataflow principles and when using HLS the tooling will represent this state as a dataflow
graph which results in a significant disconnect between the hardware and programmer’s
execution model. Numerous approaches including DaCe [11], MaxJ [12], and visual tools
like Simulink have been proposed where programmers explicitly design the dataflow



Chips 2024, 3 336

in terms of nodes running concurrently connected via streams that pass data from one
to the next. However, this direct stream-style of programming is low-level and akin to
programming Von Neumann architectures by working at the level of the program counter
and individual registers. Consequently, HLS is still dominant when writing software
targeting FPGAs.

a:1
b:2
c:3
d:4
e:5

a:1’
b:2
c:3
d:4
e:5

� �’

Figure 1. Illustration of update to program state, σ, for classical imperative languages which is
fundamentally sequential.

3. Embracing Computational Concurrency via Custom Dataflow Machines.

Instead, our view is that for performance on a dataflow architecture, it is preferable
to provide a naturally concurrent approach to the update of a program’s state. At each
unit of time, all elements are updated, and this is illustrated in Figure 2, which exposes
a maximum amount of theoretical concurrency, as the entirety of the program’s state is
updated per unit of time. However, to realise this requires:

1. An architecture with significant amounts of raw concurrency.
2. A way of representing the state that supports efficient concurrent updates.
3. Programming abstractions that provide consistency across concurrent updates and

avoid interference between them.

These three requirements are not easy for a traditional Von Neumann-based architec-
ture such as a CPU or GPU to accomplish, and although the vectorisation of arithmetic
operations on CPUs and GPUs could be argued as a limited example, there are constraints
on this such as the operations supported or amount of flexible concurrency exposed.

a:1
b:2
c:3
d:4
e:5

a:1’
b:2’
c:3’
d:4’
e:5’

� �’

Figure 2. Illustration of update to program state, σ, for dataflow architectures which is fundamen-
tally concurrent.

Dataflow architectures are better suited for providing this concurrency of state update,
where the ability for operations to run in parallel provides the raw concurrency which
addresses requirement one from the above list and the state can be represented as data
flowing between the constituent operations meeting requirement two. Then, to provide an
execution model for requirement three we considered research undertaken between the
1970s and early 1990s around general purpose dataflow machines [13]. Ultimately, these
did not gain ubiquity, not least due to the inherent trade-offs and disadvantages with fixed
general-purpose dataflow designs; however, the reconfigurable nature of FPGAs enables



Chips 2024, 3 337

the operations, flow of data, and granularity to be bespoke to a specific application. Put
simply, a custom dataflow computing machine can be generated which is entirely suited to
providing this concurrency of state update on an algorithm by algorithm basis.

3.1. Application Specific Dataflow Machine Execution Model

While the imperative language programmer only very rarely programs Von Neumann-
based architectures at the assembly/machine code low-level, this still provides them with
a conceptual execution model presenting a representation of how their code is executed.
Likewise in our approach, to concurrently process and represent the program’s state,
we provide the FPGA programmer with an explicit dataflow execution model focused
around building a custom computing machine that we call an Application Specific Dataflow
Machine (ASDM). In the ASDM model all operations updating elements of state (and there
might be many such operations for each element) are undertaken concurrently, with the
flow of data between operations representing the overarching state itself. Consequently
programmers view their code as being executed by a set of concurrently running operations,
each consuming sequences of input data and transforming these to a sequence of output
data. It is our assertion that by providing this high-level representation of how code will
be executed then, given appropriate language constructs, a programmer’s code can be
effectively translated by the compiler to this custom form of hardware computing machine.

An illustration of the ASDM execution model is provided in Figure 3, where there
are five elements of state, a to e for some example code. There are five operations, all
running concurrently and external data, for instance, provided by the host, are streaming
into the operations for states a and b, and state element e is streamed out as the overall
result. Broadly, this corresponds to Figure 2, where each element of state is updated
concurrently, but crucially instead of being represented by a central table in memory as per
the Von Neumann model in Figure 1, the state is distributed across the components of the
dataflow machine.

The programmer’s conceptual execution model is of operations running concurrently
(a producer) streaming their resulting element of state to all operations that consume that
state element. Time is explicit and progresses in quanta, which is an abstract atomic unit of
time, with the guarantee that an update at one time quantum will not arrive at a consumer
operation until the next time quantum. The progression of time is a first-class concern to
the programmer and data are never at rest, with the overarching state of the ASDM (and
hence the program) continually changing from one time quantum to the next.

Figure 3. Illustration of programmer’s abstract execution model based on ASDM, where a to e
represent elements of state for some example code.

3.2. Building upon the Foundations of Lucid

One of the more well-known dataflow languages developed for general-purpose
dataflow CPUs was Lucid [14], which contained numerous novel dataflow abstractions.
Being a declarative rather than imperative language the programmer provides their logic
in code with control flow inferred by the compiler. Whilst Lucid never ran on a real-world
dataflow machine or FPGA, there have been some derivatives such as Lustre [15] and
Esterel [16] developed in the 1990s which were aimed at programming FPGAs. How-
ever, these derivatives were targeted at the efficient implementation of electronic circuits,



Chips 2024, 3 338

rather than the algorithmic level of HPC software accelerated on FPGAs by exploiting and
embracing dataflow.

When manually writing highly optimised HLS codes for FPGAs, we realised that the
underlying concepts in Lucid were applicable and we found ourselves informally following
these general underlying ideas to achieve the best performance. Consequently, whilst
Lucid was designed for fixed, general purpose, dataflow machines, the abstractions that
it provides were used as a starting point for our work here. Lucid itself is very much a
product of the 1980s in its syntax and semantics, and whilst there are a large number of
differences in our approach to Lucid, we are using the abstractions provided by Lucid as a
foundation for our work, building upon these to suit the reconfigurable nature of FPGAs
and providing rich information to the compiler.

4. The Lucent Dataflow Language

Building on our approach to providing the programmer with a conceptual execution
model of how their dataflow code will run described in Section 3, we developed the
Lucent dataflow language which aims to effectively support the concurrent state update of
Figure 2. Each member of the state, known as a sequence because it continually changes
over time, can only have one producer but multiple consumers to ensure consistency. The
most natural way to represent this was by following the declarative paradigm where the
programmer declares the logic of their algorithm and each individual member of state, and
from this, the compiler can determine the exact control flow steps required. The entire
update of the program’s state occurs at each unit of time, known as a time quantum, and
abstractly each quantum contains two parts, a work and commit phase. This is illustrated
in Figure 4 for three time quanta, where during the work phase calculation operations
are undertaken concurrently across the ASDM but these must all be completed globally
before the commit phase makes these state changes visible. Such a two-stage approach
ensures time quanta are atomic, which is important for consistency as it guarantees that
values being worked with are those from the start of the time quantum rather than updates
filtering through mid-quantum.

Figure 4. Illustration of the work and commit phase across time quanta, where the updates per
quantum are not made visible until the commit phase.

The objective of Lucent is to provide a set of programming abstractions that conve-
niently map between the programmer’s mathematical model (the sequences comprising
the state that is being updated each time quantum) and their execution model (the physical
realisation of this in hardware by the ASDM). Whilst it is not the purpose of a paper to give
a full tutorial-like description, instead we use a simple factorial calculation as a running
example to build up and highlight our key concepts and contributions.

4.1. Filters

Section 3.1 introduced the Application Specific Dataflow Machine (ASDM) execution
model and described the concept of operations continually running and generating results
each time quantum. From a code perspective, Listing 1 illustrates the first step in developing
a factorial dataflow kernel with the filter, mykernel, which is marked as external meaning that
it can be called from the host. A filter is a logical collection of sequence update declarations,



Chips 2024, 3 339

and in this example is defined as producing a sequence of output integers, one per time
quantum, and the declaration mykernel=12 results as per Figure 5 in the value 12 being
written to the output sequence every time quantum until infinity. Even from this extremely
simple example, it can be seen how the progression of time is a first-class concern, as the
declaration defines the value of a sequence over time, i.e., here mykernel holds the value 12
over time.

Listing 1. Lucent filter that streams out 12 infinitely.

1 external filter mykernel:int() where:
2 mykernel=12

Figure 5. Values of the mykernel sequence over time (the boxed value denotes the initial value).

To express the factorial calculation the language must support calling other filters,
working with input sequences of data, and undertaking conditionals, and these are il-
lustrated in Listing 2. Marked external, the mykernel filter is the entry point, defined to
produce a sequence of output integers, and accepts an integer input sequence in. There is a
factorial filter in Listing 2 which is mocked up which does not yet implement the factorial
calculation as further language constructs are still needed for that. This mocked-up factorial
filter accepts an n input sequence and line 2 contains a conditional examining, at every
time quantum, the value held in the in sequence. If this is end-of-data, EOD, then that is
written to the output; otherwise, the result of the factorial filter is written out, whose input
argument is the sequence in.

Listing 2. Example of working with input streams, calling a filter, and conditionals.

1 external filter mykernel:int(in:int) where:
2 mykernel=if (in == EOD) then EOD else factorial(in) fi
3
4 filter factorial:int(n:int) where:
5 seq:int=n*10
6 factorial=seq

Filters are similar to functions in other languages and provide convenience, for ex-
ample in Listing 2 the same result could be achieved at line 3 without the factorial filter by
the expression in*10. The declaration of seq at line 5 is contrived but illustrates an internal
sequence, which is declared and then used subsequently in the filter. This highlights
another important aspect because Lucent is a declarative, rather than imperative language
and the ordering of lines 5 and 6 does not matter because, unlike the imperative model, the
programmer is not explicitly specifying the order in which their code is running based on
program order. Instead, this is based on declarations updating sequences which comprise
the state of the program. The programmer is designing their code and relying on the
compiler to undertake the low-level decisions based on the rich source of information, such
as instruction scheduling, with the guarantee that the compiler will organise operations
such that the code makes progress each time quantum.

EOD is a special token used to signify the end of data and this is automatically included
at the end of all external input sequences. In Lucent we define a filter as terminating when
EOD is written to its output, and writing EOD to the output of the external filter will
terminate the entire kernel. Unless there is an explicit check for EOD by the programmer,
any operation involving EOD will produce EOD as the result which enables convenient
propagation of the token. Whilst the check for EOD is good practice at Line 2, strictly
speaking it is not needed because EOD in the in sequence will flow through the factorial filter.



Chips 2024, 3 340

4.2. Manipulating Values over Time

A major contribution of Lucid was the followed-by, fby, operator. This defines that
a value is followed by another value in the subsequent time quantum, enabling one to
manipulate values over time. For instance, my_seq:int = 0 fby 1 fby 2 declares that my_seq is a
sequence of type integer which is the value 0 at time quantum zero, value 1 at time quantum
one, and then value 2 at every subsequent time quantum. The statement my_seq:int = 0
fby my_seq + 1 declares that my_seq is 0 at the first time quantum and then my_seq + 1 in
subsequent time quantum, effectively a counter, and this is illustrated in Figure 6.

Figure 6. Value held in the my_seq sequence based upon the my_seq:int = 0 fby my_seq + 1 declaration,
implementing a counter.

We adopted fby in Lucent, and in this example of a counter, integer addition requires
one cycle, so whilst the value at one time quantum relies on the value at the previous time
quantum (because it is an accumulation), it can be achieved within a single cycle. However,
if my_seq were a different number representation, such as a floating point, then several
cycles might be required for the addition. For example, the AMD Xilinx Alveo U280 single
precision floating point requires eight cycles, and results in a spatial dependency between
iterations that stalls progress. Effectively, if written naively as a single addition then the
pipeline must wait those eight cycles before progressing onto the next number, or else
the accumulated value will be inconsistent as the addition at the previous iteration is not
yet completed.

Based on the data type, the Lucent compiler will detect such potential issues and
generate different target codes to ameliorate them. For example, a common optimisation
for spatial dependencies [17] is to replicate the pipeline and work in cycles of n iterations,
where each replica is updating a separate variable which is all combined at the end. By
working in cycles, one avoids these spatial dependencies each iteration; however, low-level
optimisations such as these add additional complexity to the HLS code. By contrast, this is
hidden from the Lucent programmer and in our approach can be handled by the compiler
due to the high-level declarative nature of Lucent.

4.2.1. Intermediate Dataflow Operators

In Lucid and derivatives such as Lustre and Esterel, there were numerous additional
dataflow operators hard-coded into the language which enabled programmers to manip-
ulate values over time in different ways. However, the language constructs described
in Sections 4.1 and 4.2 contain all the necessary building blocks for encoding these as
Lucent filters, rather than as part of the core language. This not only keeps the language
implementation simpler but furthermore illustrates that with a small number of operators,
it is possible to build more advanced intermediate dataflow support.

One such operator is as soon as, which checks the value in a boolean stream at each
time quantum and will stream out the value in the input sequence as soon as this is true
followed by EOD. This construct is needed for the factorial calculation to generate the
result once the calculation has reached its conclusion. Listing 3 illustrates the factorial filter
implemented in Lucent using asa, although there is still one omission that means it will not
yet quite work as required. At line 13 of Listing 3, if the value held in the expr sequence is
true then the corresponding element in the input sequence at this time quantum is streamed
out followed by EOD.



Chips 2024, 3 341

Listing 3. Lucent implementation of the as-soon-as filter.

1 external filter mykernel:int(in:int) where:
2 mykernel=if (in == EOD) then EOD else factorial(in) fi
3
4 filter factorial:int(n:int) where:
5 ctr:int = 1 fby ctr + 1
6 fac_calc:int = 1 fby fac_calc * ctr
7 factorial = asa(ctr==n, fac_calc)
8
9 filter asa:int(expr:boolean, input:int) where:

10 asa=if (expr == EOD or input == EOD) then:
11 EOD
12 else:
13 if (expr) then input fby EOD else NONE fi

If expr is false at Line 13 of Listing 3 then the NONE token is written. This is the second
special token (the other being EOD) and is used to represent an empty value. It is important
because progress must be made each time quantum, and therefore, some value must be
present in the sequence. However, there are situations, as with the asa filter, where at times
this should be an empty value to be ignored by the rest of the code as a no-operation. It can
be thought of as a bubble in the data being streamed which, similarly to the EOD token,
will be propagated by arithmetic and logical operators and ultimately ignored. This NONE
token is not present in Lucid or other derivatives but was required as we formalised the
rules around state progression for the execution model.

4.3. Nested Time via Time Dimensions

The language constructs described so far have assumed that time is constant and
progressing at the same rate for all filters. However, this can be overly simplistic and
exhibit several disadvantages. Firstly, it can be desirable for a filter to pause an input
sequence and consume the same value over many time quanta, for instance, iterating a
calculation over some input number before continuing and this is required for our factorial
calculation. Secondly, a filter might need to build up some internal state and then reset it at
some point later before further computations. Thirdly, an algorithm might conceptually
work in iterations, calculating a series of values per iteration which are fed to the next
iteration as a block.

To handle these short comings the original Lucid and derivatives contained numerous
operators and capture rules for pausing and restarting streams of data. However the
semantics of these were rather complex and in the 1990s the concept of time dimensions
was proposed in [18,19]. Time dimensions meant that the progression of time could vary
between program components and in [19] the authors postulated that this could signifi-
cantly simplify Lucid by making redundant numerous operators. This time dimension
work was only ever theoretical, and as far as we are aware, never implemented in a pro-
gramming language, but we have built upon this to enable Lucent to address the limitations
described above.

Time dimensions can be imagined as the nesting of state, and this is illustrated in
Figure 7, where for each time quantum of mykernel the nested filter runs through until
completion. Between time quanta of mykernel, the nested filter is reset and starts afresh,
and for each time quantum of mykernel the same input values are provided from mykernel
to nested filter. The factorial example requires pausing the input sequence of numbers,
iterating over a specific value to calculate the result before moving onto the next input. This
exhibits the first and second challenges described above, pausing the input sequence and
maintaining intermediate results, and Listing 4 provides the complete factorial example
illustrating the concept of time dimensions in Lucent. A time dimension d is defined and
the filter factorial marked as being part of this. If the input sequence in to the factorial filter
contains 1,2,3,4,5,EOD then without time dimensions the input to factorial would progress



Chips 2024, 3 342

each time quantum until at time quantum six EOD would be passed, and this is the problem
with the preceding factorial version in Listing 3.

Figure 7. Example of progression for two filters, mykernel and nested, where the nested filter is in
separate time dimensions and runs until completion for each time quanta of the outer mykernel filter.

The time dimension on the filter factorial solves this because, from the perspective
of the mykernel filter operating in the default time dimension, the factorial filter will run
to completion in one atomic time quantum. However, in each of these outer quanta, the
factorial filter runs for d, inner dimension time quanta. Consequently, the kernel’s output
would be 1,2,6,24,120,EOD, with each number representing the value streamed from the
factorial filter at the end of its execution in each outer, default, time quantum. Incidentally,
whilst EOD is streamed from the factorial filter for each of the outer time quanta, the
semantics of the language means that the outer time dimension will consume this.

Listing 4. Example of time dimension applied to factorial filter.

1 timedimension d
2
3 external filter mykernel:int(in:int) where:
4 mykernel=if (in == EOD) then EOD else factorial(in) fi
5
6 filter d.factorial:int(n:int) where:
7 ctr:int = 1 fby ctr + 1
8 fac_calc:int = 1 fby fac_calc * ctr
9 factorial = asa(ctr==n, fac_calc)

From the perspective of the default time dimension, factorial is running till completion
in one single time quantum. Therefore, it consumes exactly one value from the input
sequence and streams out one resulting value per outer time quantum. Within the d time
dimension, the factorial filter will run for a number of d time quanta, and the same in value
streamed in for each of these d quanta until the outer, default, time dimension progresses
to the next quantum. The semantics of the filter itself are unchanged, for instance, it will
terminate when EOD is written to its output, and such termination of filters in a time
dimension will signify one atomic time quantum from the perspective of the caller, here the
default time domain. The factorial filter will restart between outer time quanta, resetting all
internal states.

4.4. Exploiting the Type System

Lucid and derivatives were implicitly typed; however, FPGAs require that the type
is known in order to allocate appropriate resources. Furthermore, explicit typing enables
the convenient customisation of data representation and provides more information upon
which the compiler can operate. Therefore, an explicit typing approach is adopted in
Lucent, and Listing 5 illustrates an example of exploiting the type system for the factorial
example, where at line 1 the programmer defines a type variable, longlong, to be an integer
of 128 bits. There are two aspects to highlight, firstly, the existence of type variables, which
are similar to typedefs in C, and can be used as any other type in the language. Secondly,



Chips 2024, 3 343

type annotations, which are provided as arguments in square braces to the type and will
override default settings. The mykernel external filter of Listing 5 at line 4 provides an
example, where the programmer is supplying additional annotations to the type of the
output and input sequences. This hints where in external memory the data should be
located, DDR-DRAM has been selected for the output stream and bank 2 of HBM for the in
input stream.

It can also be seen in Listing 5 that the factorial filter outputs a sequence of type longlong,
the type variable defined at line 1. There are implicit type conversions occurring between
32-bit integers and longlong, for example, streaming of longlong from the factorial filter at
line 10, which is written at line 5 to the output of the mykernel filter of type int.

Listing 5. Type system to specialise data representation.

1 type longlong:=int[precision=128]
2
3 timedimension d
4 external filter mykernel:int[storage="dram"](in:int[storage="hbm", bank=2]) where:
5 mykernel=if (input == EOD) then EOD else factorial(in) fi
6
7 filter d.factorial:longlong(n:int) where:
8 ctr:int = 1 fby ctr + 1
9 fac_calc:longlong = 1 fby fac_calc * ctr

10 factorial = asa(ctr==n, fac_calc)

The language provides primitive types including integers, floating point, fixed point,
and boolean with the programmer able to specialise details of these as necessary. A benefit
of type variables, such as longlong in Listing 5, is that the type configuration is in one single
place and changing these details is trivial for the programmer. Whilst there are mechanisms
in HLS, such as typedefs or templating, it can still require explicit programming, such as
converting from floating to fixed point, which can increase code complexity. Furthermore,
HLS often requires the use of pragmas to specialise in specific decisions around types that
can be unwieldy. Instead, in Lucent this is all handled by the type system.

Leveraging the type system also enables us to address one of the potential limitations
of the ASDM execution model, namely that there is only one streaming output per filter.
This restriction simplifies the language’s semantics but can be overly restrictive where
programmers might wish to stream out multiple values from a filter. Instead of modifying
the execution model which would add complexity, the type system is used. Consequently,
a multistream type is provided, which packages multiple sequences together. From the
perspective of the execution model, language semantics and the compiler, there is still
only one output being streamed from the filter, but crucially because this is typed as a
multistream it is composed of multiple sequences.

Listing 6 illustrates the use of the multistream type for the factorial example, where the
factorial filter streams out both the factorial result and the original input number that has
been factorised. At line 8 the factorial filter is declared to stream out a multistream of two num-
bers, val which is the longlong factorial result and num which is a (32-bit) integer. Members
can be referred to by name or positional index, for instance, the declaration factorial->val at
line 11 declares the value of the val member of the multistream and factorial[1] at line 12 the
second member. Members can be written to and read from independently.



Chips 2024, 3 344

Listing 6. The multistream type enables a filter to stream out multiple sub-streams.

1 type longlong:=int[precision=128]
2
3 timedimension d
4 external filter mykernel:int(input:int) where:
5 result:multistream[longlong, int]=factorial(input)
6 mykernel=if (input == EOD) then EOD else result[0] fby result[1] fi
7
8 filter d.factorial:multistream[val:longlong, num:int](n:int) where:
9 ctr:int = 1 fby ctr + 1

10 fac_calc:longlong = 1 fby fac_calc * ctr
11 factorial−>val=asa(ctr==n, fac_calc)
12 factorial[1]=asa(ctr==n, n)

4.4.1. The List Type

Multi-dimensional lists are also provided as a type and Listing 7 illustrates their use,
where filter example1 continually streams out a list of four members, 1, 2, 3, 4, each time
quantum. The example2 filter uses an internal sequence, a to store the list with the storage
type annotation to control which on-chip memory location is used for data allocation.
In this second example, the at operator selects the element at list index 1 which is then
streamed out. The third example in Listing 7 implements a simple shift buffer where
the tail, tl, operator creates a new list with every element apart from the first, and list
concatenation, ::, combining the two lists. In this example, the tailed list is combined with
a list containing the value in the input sequence at that time quantum. Whilst Lucent’s
semantics are that lists are immutable, with a new list created whenever modifier operators
such as tail or concatenation are issued, the compiler will optimise this to avoid list copying
and allocation ensuring such operators are implemented efficiently and minimise the
storage space required.

Listing 7. Example of the list type and operators.

1 filter example1:list[int,4]() where:
2 example1=[1,2,3,4]
3
4 filter example2:int() where:
5 a:list[int, 4, storage=’’uram’’]=[1,2,3,4]
6 example2=at(a, 1)
7
8 filter example3:list[double,3](input:double) where:
9 example3=if (input == EOD) then EOD else tl(example3) :: [input] fi

There are two reasons why the size of lists must be explicit; first, the tooling needs
to know the data size to map to the appropriate number of on-chip memory resources
such as BRAM blocks; second, it provides rich information which the compiler can use to
optimise access. This second point is important because on-chip memories are, at most,
dual-ported with a maximum of two concurrent accesses per cycle. When encountering
this, HLS programmers must explicitly partition memory and determine the shape and the
size of these. This adds complexity and by contrast due to the higher level nature of the
programmer’s code, Lucent can identify memory access patterns during compilation and
undertake such optimisations.

Logical or arithmetic operations performed on lists will be undertaken concurrently, in
the same time quantum, for each pair of elements and this enables a convenient approach
to vectorisation of operations. For instance, undertaking a multiplication over two lists of
eight double floating-point elements would undertake eight double-precision floating-point
multiplications per time quantum, resulting in eight double results in a single quantum.
This use of lists is a convenient way of parallelising operations over data.



Chips 2024, 3 345

An example is illustrated in Listing 8, where the filter is defined to accept two streams,
a and b, which are typed to be lists of doubles of size 8. Consequently, each time quanta
a list with eight doubles will be streamed in and the operation, mykernel = a ∗ b, at line
2 will undertake concurrent multiplication of all pairs of elements, resulting in a list of
eight doubles streamed out per time quanta. Vectorisation via lists can be used throughout
Lucent code, and as an aside the compiler will automatically pack input data from the host
into these lists and unpack output data, so no host side data changes would be required
in Listing 8. Multi-dimensional lists also enable non-concurrent accesses on external data,
where these can be declared as lists and manipulated via list operators, for example using
at to retrieve elements at specified indexes from external memory.

Listing 8. Concurrency via list vectorisation.

1 external mykernel:list[double,8](a:list[double,8], b:list[double,8]) where:
2 mykernel=a * b

4.4.2. Generics

The as-soon-as, asa, filter was illustrated in Section 4.2.1 and describes a filter that
provides intermediate dataflow support built upon the foundations in the core language.
There are a variety of these filters in the core module, which is automatically imported
into a users code. Furthermore, there are several other modules which provide utility
functionality such as euclid which provides the Euclidean geometry abstraction atop of
sequences of data and buffer which provides different types of data storage and buffering.

As described, the type of data and static size of lists must be known at compile
time so that appropriate structures on the FPGA can be synthesised. However, this static
requirement severely limits the ability to write reusable generic filters, for instance, across
different types. To this end, we have added support for several generic type abstractions in
Lucent and these are illustrated in Listing 9.

The first of these is the ability to accept sequences that are typed generically. For
example, in Listing 9 the code for the example1 filter accepts the sequence a which it can be
seen has a type of <T>. The angular braces indicate a generic and the token, in this case
T, the generic type. The type of the b input sequence is a generic called V. These generic
types can then be referred to in the filter, for instance, the type of the c sequence is T and
the filter streams out a sequence of type T. These types are resolved by the compiler for
calls into the filter, for instance, example1(1,2) would set T and V to both be 32-bit integers,
whereas for example1(1.9,2) then T is a double precision floating point number and V is
a 32-bit integer because the compiler defaults to integer constants being 32-bit and float
constants are double precision. Separate concrete implementations of this filter will exist
for different permutations of input sequence types. It is only after a concretisation pass
by the compiler that checks are performed to ensure that operators between sequences
are permitted, for instance, raising an error if the type of T and V are incompatible in the
addition of line 3 in Listing 9.

Listing 9. Examples of generics in Lucent.

1 filter example1:<T>(a:<T>, b:<V>) where:
2 c:T=a*7
3 example1=c+b
4
5 filter example2:<T><<N, S>>(in:list[<T>, 4]) where:
6 data:list[<T>, N, storage=S]=in
7 example=at(data, 2)

The example2 filter in Listing 9 illustrates the passing of constant values to a filter.
Here, the double angular braces indicate that N and S are constants that will be provided
to the filter by the caller. The primary objective of this is to enable the generic sizing of lists,



Chips 2024, 3 346

but these can then be used freely in the filter body more generally. For example, the call
example«4, “lutram”»([1.0, 2.0, 3.0, 4.0]) would concrete N to be the constant 4, S to be the
string lutram, and the generic type T is a 32-bit integer. Effectively, for example2, this will
size the list data to be four elements of type 32-bit integer and allocated in LUTRAM rather
than the default BlockRAM.

It is also possible to pass filters as arguments to other filters as first-class values, again
these are all concreted during compilation with a separate implementation of the filter for
each permutation of generics. This passing of filters is useful as it enables the programmer
to inject some specific functionality into a generic filter.

5. 2D Jacobi: Bringing the Concepts Together

Our approach encourages programmers to express their dataflow code in a high-level
manner that can be efficiently transformed to ASDM by the compiler. Listing 10 illustrates
solving LaPlace’s equation for diffusion in 2D using Jacobi iteration. From the perspective
of the outer time dimension, an entire Jacobi iteration operates over all the data within a
single outer atomic time quantum. Hence, the use of the d time dimension on the iteration
filter in Listing 10, and it can be seen that the input and data sequences are decorated with
the d time dimension also. This places them within the d time dimension, where progression
of that dimension will progress these sequences, and from one outer time quantum to the
next these sequences will reset to the beginning.

Listing 10 also illustrates flexibility around types and numeric representation, where
at line 4 we define our own bespoke fixed point type, myfixed, of size 28 bits and 20 bits
allocated for the fractional component. The programmer has written the jacobi external
filter to represent numbers in single precision floating point, with the myfixed type used
for the Jacobi calculation and shift buffer. Mixing these datatypes is allowed and numeric
conversion is handled by the compiler and ultimately maps to the corresponding data
format conversion constructs in HLS. Whilst one could in theory support any arbitrary
primitive types, a current restriction is that these must correspond to a type in HLS. For
example, HLS only supports half, single and double precision floating points, this is also
supported in Lucent, but because of this restriction, other floating point precision such as
quarter or quadruple are not supported.

Listing 10. Illustration of solving LaPlace’s equation for diffusion in 2D using Jacobi iteration.

1 import buffer
2 import euclid
3
4 type myfixed:=fixed[precision=28, fraction=20]
5 timedimension d[streamsize=16384]
6
7 filter d.iteration:myfixed(in:myfixed) where:
8 iteration=calc(shiftbuffer<<128, 128>>(in))
9

10 filter calc:myfixed(in:list[myfixed,3,3]) where:
11 calc=if (in == EOD) then:
12 EOD
13 elif (ishalocell<<128,128>>(in)) then:
14 at(in,1,1)
15 else:
16 0.125 * (at(in,0,0) + at(in,0,1) + at(in,0,2) + at(in,1,0) + at(in,1,2) + at(in,2,0) + at(in,2,1)

+ at(in,2,2))
17
18 external filter jacobi:float(d.input:float) where:
19 ctr:int=0 fby ctr+1
20 d.data:float=iteration(input) fby iteration(data)
21 jacobi=if (ctr == 10000) then unpack(data) fby EOD fi



Chips 2024, 3 347

It can be seen in line 20 that there is a dependency on the iteration filter, where results
from one call to iteration are passed to the next. The compiler can efficiently implement this
using ping-pong buffers and streamsize must currently be provided to the time dimension
definition as it defines the amount of temporary storage, in number of elements, required
(in future we hope to remove the need for this). The unpack filter (located in the always
imported core module) called at line 21 unpacks the data sequence into the current, outer,
and time dimension, streaming results out after 10,000 completed Jacobi iterations followed
by EOD to terminate.

It should be noted that the shiftbuffer and ishalocell filters are provided in the buffer
and euclid modules, respectively, with the shiftbuffer filter implementing a 2D shift buffer
following similar principles to the 1D shift buffer, demonstrated in Listing 7. As described
in Section 4.4.2, the <<128,128>> syntax passes specific concrete constants, in this case
128 to generic filters and this is required in this case as the size of the lists implementing
the 2D shift buffer must be known at compile time.

6. Language Implementation

Whilst our main objective in this paper is to describe the programming abstractions
that underlie our approach, the compiler itself is important to highlight, albeit briefly, as it
transforms the programmer’s logic into hardware. The Lucent compiler currently targets
the AMD Xilinx Alveo family of FPGAs and leverages AMD Xilinx’s Vitis framework. This
is illustrated in Figure 8, where Lucent source files are first combined with appropriate
module files via the pre-processor. The core module is always imported, and other modules
such as euclid and buffer are imported based on the import keyword. This is then provided to
the Lucent compiler which will transform the Lucent code into the corresponding C++ HLS
device code, along with all the necessary configuration files, host level, and build support.
The device HLS code, along with configuration files are then provided to AMD Xilinx’s
Vitis tooling, along with the Lucent runtime, which generates the RTL and then progresses
this through synthesis, placement and routing to ultimately generate a bitstream that will
run on the FPGA hardware. The Lucent runtime is a collection of header files that can be
called from the device C++ HLS code and provides common functionality such as data
packing and unpacking for external writing and reading, stream replication for connecting
generated dataflow regions together, and data type conversion. Furthermore, emulation in
both software and hardware modes is supported by our flow.

Figure 8. Illustration of our compilation tool-chain flow, from the programmer’s source file to the
target FPGA.

Within the compiler itself, after preprocessing the user’s code the compiler then parses
the source to form an Abstract Syntax Tree (AST) which is then transformed into a Directed
Acyclical Graph (DAG). In the DAG each instance of an identifier such as sequences, filters
and types variables are shared between the different parts of the tree that reference it. This
DAG is then walked four times in separate phases, which involve the following:

1. Bind generic filters and types to actual values, bind filters passed as arguments and
resolve overloaded filters. These all result in separate filters in the DAG, one for each
permutation in the user’s code, enabling independent type-specific optimisations and
transformations to be applied in later phases.



Chips 2024, 3 348

2. Work at the individual operation level, resolving information such as storage location
based on annotations to types and whether filter calls are across time dimensions. Also,
determine how some operations should be implemented, for instance, maintaining
minimal data copying whilst providing the immutability property for lists.

3. Inter-operation transformation and optimisation, for example, to identify spatial de-
pendencies or conflicts on memory ports. Reorganisation of the DAG’s structure is
undertaken if appropriate and a check is inserted to ensure that the time quantum’s
split between the work and commit phase is consistent. There is no explicit synchro-
nisation point for this split, but instead, if this phase determines the interaction of
operations results in inconsistencies it adds a temporary value.

4. C++ HLS code is generated for the constituent parts and these are linked by transform-
ing into an Intermediate Representation (IR) that represents the individual dataflow
regions, connections between them and specific HLS configuration settings. This
represents the concrete C++ code for each individual part, combined with an abstract
view of how the different parts of the dataflow algorithm will be connected.

We generate the dataflow-based IR described above because, based upon this abstract
representation, it is then much easier to determine the appropriate ordering of calls to
dataflow functions, whether an output stream serves as input to multiple regions (in
that case it must be duplicated) and identify any stream consumption consistency issues.
Furthermore, on this IR it is also easier to determine which operations can be packaged
together and what operations must be separated. This IR also contains tokens that represent
configuration items specific to HLS, such as the partitioning of an array or whether a loop
is to be pipelined, and these ultimately end up as HLS pragmas.

This IR is then lowered to HLS C++ once the aforementioned operations have been
undertaken upon it, at this stage optimisations such as loop unrolling or automatic memory
partitioning are also applied based on potential issues identified within the structure of the
dataflow code. The Vitis HLS tooling is driven by appropriate pragmas, and a challenge
was how to provide correct implementation (e.g., ensuring timing is met) and enable HLS
optimisations to be undertaken effectively. Much of this depends on the structure of the
code that is generated and has required significant experimentation, not least because HLS
C++ was not designed as a target intermediate code. An example of this is termination,
because in HLS one dataflow region cannot produce and consume streams from another
specific dataflow region, or put another way, there can not be a two-way exchange of data
between dataflow regions. This is a challenge because the external filter determines the
termination of the code; however, this will inevitably consume values from other filters but
it must also instruct these to terminate.

Our solution to this limitation imposed by HLS is illustrated in Figure 9, where there
is a separate health watcher Compute Unit (CU), and this accepts an input AXI stream and
outputs an AXI stream. Each dataflow region has an additional output stream (blue arrows
in Figure 9) and these are combined by a dataflow region (the blue circle in Figure 9) which
streams this out to the health watcher. The Lucent kernel CU, which contains the dataflow
regions, accepts the health watch’s output AXI stream (green arrows in Figure 9), this is
then split into separate HLS streams by the green circle dataflow region in Figure 9 which
are then fed into individual dataflow regions. With this structure, a dataflow region can
issue the termination token to the health watcher which will then stream this back and
distribute it amongst all the dataflow regions. Whilst this is a workaround to enable tokens
to be sent to preceding dataflow regions, the health watcher could also be useful more
generally in the future to capture aspects such as erroneous situations and issue logging
or recovery.

Within an FPGA family, there are variations such as memory and chip size. Conse-
quently, platform-specific configuration is provided to the Lucent compiler which describes
the target FPGA in detail such as the available memory spaces and number of cycles
required for different operations. This platform-specific information is then used by the
compiler to make effective decisions about how to structure and generate the target code.



Chips 2024, 3 349

Currently, our compiler only supports AMD Xilinx Alveo FPGAs; however, only the ac-
tivities on the dataflow IR contain AMD Xilinx-specific activities, and the runtime also
abstracts much of the vendor-specific support that is required. Therefore, whilst it is still
further work, much of this can be leveraged to target other FPGAs such as those from Intel.

Figure 9. Illustration of a separate health watcher Compute Unit (CU) that enables loop back of
termination signal to preceding dataflow stages.

7. Performance and Productivity Evaluation

In this section, we explore the performance and productivity of our approach on
an AMD Xilinx Alveo U280 FPGA clocked at 300 MHz, using Vitis version 2021.2. For
comparison, the CPU is a 24-core 8260M Cascade Lake Xeon Platinum (with CPU code
threaded via OpenMP). All CPU and host codes were compiled with GCC version 10.2.0
and with -O3 optimisation level. For the BLAS experiments, we compared against the Vitis
Library version 2021.2. All reported results are averaged over three runs. Card level power
measurements on the FPGA are captured via XRT, and via RAPL on the CPU.

7.1. Foundational BLAS Operations

Basic Linear Algebra Subprograms (BLAS) [20] are a set of linear algebra operations
forming the cornerstone of many computational kernels. In their open source Vitis li-
brary [21], AMD Xilinx have produced their own BLAS routines which we compare against,
in addition to versions developed in DaCe [11] and HLS unoptimised for dataflow. The
latter is a baseline and representative of HPC software developers without extensive FPGA
optimisation knowledge.

As an example, we provide the code for the dot product in Listing 11 where it can
be seen that the programmer only needs to write four lines of code for this kernel, with
the Lucent compiler then determining the most efficient way to implement this. For
comparison, this code is 32 lines in the Vitis library.

Listing 11. Dot product Lucent code (scalar version).

1 filter dot_product:double(a:double, b:double) where:
2 accumulated:double=a*b fby accumulated+(a*b)
3 dot_product=if (a == EOD or b == EOD) then:
4 accumulated fby EOD

Table 1 summarises the runtime of five common BLAS operations (in double precision)
on an AMD Xilinx Alveo U280. The Vitis library can vectorise operations and we include
results for scalar runs (no vectorisation) and vectorisation. The Vitis library supports up
to 16-way vectorisation which provides the best performance and is the configuration
used, and we adopted (eight-way) vectorisation in Lucent using the list type. It can be
seen that the scalar Lucent code significantly out-performs the Naive HLS code and scalar
Vitis library code, where the Lucent compiler is generating more efficient dataflow code.



Chips 2024, 3 350

Performance of the vectorised Vitis library and vectorised Lucent code is much closer
with the simpler Lucent code performing comparatively. With DaCe the axpy, gemv, and
gemm benchmarks are written manually in the Stateful DataFlow multiGraph (SDFG)
format, explicitly defining the dataflow graph and low level attributes of this, whilst the
dot product and l2norm benchmarks are normal Python code with some function level
decoration but placing more emphasis on DaCe to undertake code conversion. For the
GEMM implementation DaCe uses a highly tuned systolic vectorised implementation
from [11], although 438 lines of code, and in Lucent we developed a systolic version with
(vect) and without (scalar) vectorisation at 46 lines of code. The Vitis library and naive
GEMM implementations do not use a systolic approach.

Table 1. Performance details of BLAS routines. Problem size of 10,000,000 for dot product, axpy, and
l2norm, 5000 for gemv, and 1000 for gemm.

Routine Naive
(ms)

DaCe
(ms)

Vitis Library (ms) Lucent (ms)

Scalar Vect Scalar Vect

dot product 286.15 167.25 265.65 31.84 87.42 15.31
axpy 61.52 34.13 259.64 38.45 41.92 8.32

l2norm 247.37 167.04 136.75 19.83 56.96 18.96
gemv 422.41 83.90 401.25 55.76 154.65 31.56
gemm 2598.84 42.63 2187.49 173.74 356.32 65.32

There are several reasons for the performance differences observed in Table 1. The first is
the level of concurrency provided by the algorithm, where multiple elements can be processed
in parallel, and it can be seen in Table 1 that the vector implementations outperform their
scalar counterparts. The second is how well the HLS kernel is optimised to avoid stalling, for
example, that the iteration interval (II) for pipelined loops, which is the frequency of iteration
processing, is one and data dependencies are removed. Thirdly, the compute part of the
kernel is continually fed with data, for instance, ensuring that proceeding dataflow stages are
generating results each cycle and that data are being most effectively read from and written
to external memory. It was our hypothesis that the compiler, by consuming a rich amount
of high-level information, could effectively undertake transformations that optimise for the
second and third points. Indeed, the third point is the reason why Lucent is undertaking
eight-way vectorisation rather than 16-way, as conducted by the Vitis library, for these routines.
This is because, following best practice [22], for efficiency, the Lucent compiler generates HLS
code that always reads from and writes to external memory in chunks of 512 bits, which is
eight double precision numbers.

Table 2 reports the energy usage, in Joules, of each of the BLAS routines implemented
across the different technologies. The energy is calculated based on the average power draw
and runtime. The power draw, which is between 27 and 30 Watts, is fairly constant across
the experiments. Consequently, it can be seen that the most significant distinguishing
feature of energy efficiency is performance. Indeed, the Lucent implementations are
competitive against those using other technologies.

Table 2. Energy usage of BLAS routines. Problem size of 10,000,000 for dot product, axpy, and l2norm,
5000 for gemv, and 1000 for gemm.

Routine Naive
(J)

DaCe
(J)

Vitis Library (J) Lucent (J)

Scalar Vect Scalar Vect

dot
product 4.83 4.83 7.52 0.95 2.56 0.46

axpy 1.76 0.95 7.37 1.09 1.13 0.25
l2norm 7.01 4.69 3.40 0.59 1.65 0.54
gemv 12.12 2.42 11.79 1.57 4.45 0.88
gemm 75.63 1.25 63.66 5.14 10.26 1.94



Chips 2024, 3 351

Table 3 reports LUT and BRAM HLS kernel resource usage for each of these routines
for scalar versions of the kernel across the technologies. It can be seen that, generally, the
naive version uses the least resources with more optimised implementations requiring more.
The Lucent implementation tends to require the most resources and there are two reasons
for this, firstly the fact that each filter is terminated dynamically via EOD which requires
additional complexity to check for this condition and terminate gracefully. Secondly, the
health watcher (whose resource usage for Lucent we include in these figures) described in
Section 6 also adds some overhead. However, unlike the other kernels the Lucent version
does not require recompilation for different problem sizes which, given the long compile
times associated with FGPA development, is a significant benefit. The resource usage of
these single HLS kernel BLAS routines is small, which makes the additional overhead of
the Lucent implementation of greater relative relevance.

Table 3. Resource usage details of scalar BLAS routines with a problem size of 10,000,000 for dot
product, axpy, and l2norm, 5000 for gemv, and 1000 for gemm.

Routine
Naive DaCe Vitis Library Lucent

BRAM LUTs BRAM LUTs BRAM LUTs BRAM LUTs

dot
product 0.17% 0.31% 0.45% 0.88% 0.54% 0.42% 0.86% 0.71%

axpy 0.17% 0.32% 0.56% 1.27% 0.51% 0.33% 0.89% 0.45%
l2norm 0.38% 0.11% 0.69% 1.05% 0.11% 0.56% 0.72% 0.95%
gemv 0.23% 0.25% 0.94% 2.21 % 0.56% 0.50% 0.93% 1.72%
gemm 0.76% 3.21% 5.37% 7.28% 1.27% 9.69% 3.45% 6.55%

7.2. Application Case Study: Atmospheric Advection

The Met Office NERC Cloud model [23] is a high-resolution atmospheric model
used by the Met Office and the wider scientific community for undertaking atmospheric
simulations. Advection, which is the movement of particles through the air due to kinetic
effects, accounts for around 40% of the overall runtime and the PW advection scheme was
previously accelerated on FPGAs in [24] and then [2]. The computational algorithm is a 3D
stencil operating over three fields U, V, and W which are wind in the x, y and z dimensions.
In total, this kernel requires 66 double-precision floating point operations per grid cell.

Figure 10 illustrates the hand-optimised dataflow design from [2], where the boxes
are HLS dataflow regions and the arrows are HLS streams that connect these. We imple-
mented a version of this scheme in Lucent and this code is somewhat similar, albeit more
complicated, than the 2D Jacobi example in Section 5. For instance, in this advection Lucent
code we leverage 3D shift buffers, and there are three separate buffers and compute regions
for each of the U, V, and W fields. Furthermore, the compute regions themselves contain
more complicated mathematics between elements in the stencil which is not symmetric.
However, in comparison to the 2D Jacobi example in Section 5, this advection benchmark
does not operate in iterations so time dimensions are not required.

We compared our version in Lucent against the hand-optimised HLS code from [2],
the original advection kernel on the 24-core Cascade Lake CPU, and a naive version in
HLS which is directly based on the CPU version without any dataflow optimisation. These
results are reported in Table 4 where single refers to a single CPU core or FPGA kernel
and entire to all 24 CPU cores or as many kernels that will fit onto the FPGA. It can be
seen that the naive HLS version compares very poorly against all other versions and the
CPU, and due to this very poor single-kernel performance, we did not scale up the number
of kernels. Furthermore, the naive version contained more lines of code than the Lucent
and CPU versions, with the additional lines in the naive version tending to be pragmas
that direct the HLS tooling around interfaces to enable the code to compile. Comparing
single kernel performance between the hand-optimised HLS and Lucent versions is most
revealing, where the hand-optimised HLS code is around 4% faster than the Lucent code,



Chips 2024, 3 352

however, at 598 lines compared with 23 lines, the Lucent code is 26 times shorter and much
simpler for the programmer to develop and maintain.

Figure 10. Sketch of hand-optimised dataflow design of advection HLS kernel from [2].

Table 4. Performance (in GFLOPs) and lines of code for PW advection kernels over problem size of
16 million grid cells.

Description GFLOPs
(Single)

GFLOPs
(Entire)

Lines of
Code

Xeon Platinum CPU 2.09 15.20 21
Naive HLS 0.018 - 32

hand-optimised HLS 14.50 80.22 598
Lucent 14.02 67.19 23

Considering performance over the entire chip, it can be seen that both the Lucent
and hand-optimised HLS versions significantly outperform the 24-core CPU. However,
hand-optimised HLS code is faster than Lucent because six hand-optimised HLS kernels
can fit onto the FPGA compared to only five Lucent kernels. To explore this further, the
LUT and BRAM resource usage for each implementation is reported in Table 5, where it can
be seen that the resource usage for the Lucent version is higher than the hand-optimised
HLS and that it is the BRAM that is the limitation here. In theory, the BRAM usage of the
Lucent version should just fit and use 99% of the FPGA’s BRAM; however, in practice, the
tooling fails during placement with this configuration.

Table 5. Resource usage for FPGA PW advection kernels.

Description LUT Usage
(Single)

BRAM Usage
(Single)

LUT Usage
(Entire)

BRAM Usage
(Entire)

Naive HLS 2.55% 8.65% - -
hand-optimised

HLS 3.78% 14.40% 22.68% 86.42%

Lucent 5.23% 16.51% 26.15% 82.55%

The average power usage and power efficiency of different implementations of this
benchmark are reported in Table 6. It can be seen that broadly the FPGA draws similar



Chips 2024, 3 353

average power for all implementations, although there is a difference when moving from
single to multiple kernels. Furthermore, the Lucent implementation draws slightly less
average power over multiple kernels compared to the hand-optimised version, but this is
most likely because it is comprised of five rather than six compute units. When predicting
power efficiency on the FPGA, the performance results in Table 4 act as a fairly accurate
gauge. It can be observed that the power efficiency of both single hand-optimised HLS
and Lucent implementations is similar, but the improved performance of six rather than
five kernels results in better power efficiency for the hand-optimised HLS implementation
when running across the FPGA.

Table 6. Average power usage and power efficiency (in GFLOPs/Watt) for PW advection kernels
over problem size of 16 million grid cells.

Description
Single Entire

Power
(Watts)

Efficiency
(GFLOPs/Watt)

Power
(Watts)

Efficiency
(GFLOPs/Watt)

Xeon Platinum
CPU 65.55 0.03 172.56 0.09

Naive HLS 32.56 0.0006 - -
hand-optimised

HLS 33.39 0.43 46.54 1.72

Lucent 33.55 0.42 44.23 1.52

7.3. Application Case Study: Credit Default Swap

Credit Default Swap (CDS) is a common financial instrument that provides an in-
surance policy against the non-repayment of loans where, for a premium, a third party
takes on the risk of loan non-repayment. Quantitative finance is the use of mathematical
models to analyse financial markets and securities, and CDS simulations are one frequent
activity to ensure that CDS sellers make informed decisions around policies and premiums,
and this is part of the wider quantitative finance domain which uses computing to model
financial transactions [25]. CDS calculates spread which is the annual amount in basis points
that the CDS protection buyer should pay the protection seller, and dividing this number
by 100 expresses this as the percentage of the loan itself. A CDS engine simulates many
different options and details [26] based upon three main inputs which are the interest (a
list of percentages of interest payable on the loan) and hazard rates (the likelihood that
the loan will default by a specific point in time) which both are constant during execution,
and a vector of options which are processed one by one. Each of these three elements
comprises two numbers, the point in time which is expressed as the fraction of a year and
the value itself.

Unlike the advection kernel explored in Section 7.2, this algorithm is not stencil based
and-so explores our approach when applied to a different pattern of operation. The code
uses a double precision floating point throughout and follows the high-level dataflow
design illustrated in Figure 11. Filters in blue iterate over a value multiple times before
outputting a value, and in Lucent are represented using time dimensions.

Accumulate for 
each �me point

Combine

Input interest 
rate, hazard
rate, op�on
details

Output 
op�on spread

Hazard 
calcula�on

Pay off 
calcula�on

Payment 
calcula�on

Accrual 
calcula�on

Accumulate for 
each �me point

Accumulate for 
each �me point

Figure 11. Illustration of Credit Default Swap (CDS) dataflow design.



Chips 2024, 3 354

We compare our Lucent CDS implementation against the CPU, AMD Xilinx’s open-
source Vitis library implementation [21], and a hand-optimised HLS kernel from [27].
Performance is measured in the number of options that are processed per second, and
Table 7 reports performance and lines of code comparison. Single is running over a single
CPU core or FPGA kernel, and entire over all 24 CPU cores or six FPGA kernels. The Vitis
library implementation performs poorly compared to others because it promotes flexibility
of integration over dataflow performance. The hand-optimised HLS approach is the fastest,
however, it is also the largest and most complex. By contrast the Lucent programmer
has written far less code (nine times less than the hand-optimised HLS code) and this
productivity has cost 3% performance for a single kernel and 4% for multiple kernels.

Table 7. Performance & lines of code for CDS engine implementations.

Description Options/sec
(Single)

Options/sec
(Entire)

Lines of
Code

Xeon Platinum CPU 8738 75,823 102
AMD Xilinx’s Vitis library 3462 16,071 252

hand-optimised HLS 27,675 114,115 742
Lucent 26,854 107,801 83

Table 8 details the average power usage and power efficiency for the different CDS
engine implementations. It can be seen that the Xeon Platinum CPU draws significantly
more power than the U280 FPGA, which is in agreement with the advection benchmark
of Section 7.2, and even the entire configuration of six kernels on the FPGA draws less
power than a single CPU core. We observe a similar pattern to the advection benchmark,
where power efficiency is largely governed by performance and even though the FPGA
draws less power than the CPU, AMD’s Vitis library is less power efficient because it
is significantly slower. The higher performance of the hand-optimised HLS and Lucent
implementations, coupled with the low power draw of the FPGA, results in these being
the two most power efficient implementations. However, in comparison to the power
usage results of the advection benchmark in Table 6, it can be seen in Table 8 that the
CDS engine implementation draws marginally more power for a single compute unit,
but less power when running with multiple compute units across the FPGA. Whilst the
differences between these benchmarks are fairly small, it does demonstrate that there is
some variablility on a benchmark by benchmark basis.

Table 8. Average power usage and power efficiency for CDS engine implementations

Description

Single Entire

Power
(Watts)

Efficiency
(Options/Watt)

Power
(Watts)

Efficiency
(Options/Watt)

Xeon Platinum CPU 65.98 132 175.39 432
AMD Xilinx’s Vitis library 35.72 97 38.09 422

hand-optimised HLS 35.86 771 37.38 3052
Lucent 35.26 762 39.88 2703

The resource usage of the FPGA CDS implementations is reported in Table 9, where it
can be seen that this is largely comparable across the implementations, although the Lucent
version requires slightly more resources which is consistent with previous benchmarks.
It is only possible to run using six FPGA kernels, not because of resource usage directly,
but because we are exhausting the number of available AXI ports in the U280 shell. A
maximum of 32 AXI ports are provided by the U280 shell and these are for all HLS compute
units, with this limitation most likely driven by a single AXI crossbar connecting to all
HLS IP blocks in the block design. For our HLS implementations, each kernel requires
five separate AXI interface ports, and whilst it would be possible to reduce this number



Chips 2024, 3 355

per kernel by bundling ports together, it is only possible to transmit one piece of data per
cycle on each AXI port. Therefore, whilst bundling would enable more HLS kernels to be
leveraged, it also would mean that data can not be transmitted concurrently for the ports
that are bundled together, thus significantly reducing single-kernel performance.

Table 9. Resource usage for CDS engine implementations.

Description LUT Usage
(Single)

BRAM Usage
(Single)

LUT Usage
(Entire)

BRAM Usage
(Entire)

AMD Xilinx’s Vitis library 9.16% 2.54% 54.96% 15.23%
hand-optimised HLS 9.52% 2.54% 56.86% 15.23%

Lucent 10.01% 2.73% 60.6% 16.38%

In conclusion, there is a small performance penalty when using Lucent compared
to hand-optimised HLS code; however, the code is far simpler. This is the same for
power efficiency, where the marginally better performance of the hand-optimised HLS
implementation provides slightly better power efficiency than the Lucent kernel. However,
the hand-optimised code has taken a long time to develop and requires considerable
expertise in all the optimisation techniques, which is one of the major reasons for a large
number of lines of code. Whilst our approach incurs a small power and resource usage
penalty in comparison to the hand-optimised HLS code, in reality, few people are likely
to undertake the work required in manually tuning their HLS code to such a degree
and instead would rely on AMD’s Vitis library. These situations would result in worse
performance and power efficiency than the CPU.

By contrast, the Lucent code is far shorter than the other FPGA implementation, and
even slightly shorter than the CPU code, because as mentioned, based upon the richness
of information provided the compiler is able to conduct much of the heavy lifting around
automatic optimisation. Whilst we observe power usage differences between the advection
and CDS engine benchmarks, it is interesting to observe that for a single benchmark the
power usage between implementations for a single compute unit on the U280 is fairly flat.
Even when scaling to multiple kernels, this only incurs a marginal increase in power usage
and this demonstrates that when considering power efficiency it is in fact performance on
the FPGA, so the kernel runs as quickly as possible, which is the most important factor.
This aligns closely with the objectives of Lucent, where the natural way in which to express
algorithms is the fast way, and by leveraging an approach that is both correct and fast by
construction one not only optimises for performance but also power and energy efficiency.

7.4. Limitations

Thus far we have concentrated on the strengths of our approach, but the design
decisions undertaken have meant that there are some trade-offs. In abstracting low-level
details from the programmer, our compiler makes specific choices based on prioritising
performance over other aspects such as power or area. This was seen in the atmospheric
advection case study (Section 7.2) where when the number of kernels was scaled up then
one less Lucent kernel was able to fit on the FPGA compared against hand-optimised HLS
code. One reason for this increased resource usage is supporting the EOD token for filter
termination. This is a powerful approach as it provides dynamic termination which is
determined at runtime. In comparison to other approaches, such as DaCe, when using
Lucent the problem size is not a compile time constant, and therefore, the code does not
need to be recompiled between configurations. Given the long build times involved in
FPGA bitstream generation, this is very beneficial but it has been observed does incur some
overhead. Development of a compiler optimisation pass to determine whether termination
needs to be dynamic throughout, or in fact, whether some termination of some filters could
be handled statically would likely provide benefit. Furthermore, the use of the type system
is a way in which the programmer could provide hints to the compiler via annotations to
direct it in the decisions that it makes.



Chips 2024, 3 356

Another limitation is that programmers must learn a new language and paradigm.
This is a major ask of developers and whilst we would argue that, compared with the effort
required to write high-performance HLS code this is time well spent, the reality is that
many FPGA programmers are unlikely to switch. However, we see a major contribution
of this work being the underlying dataflow execution model and language abstractions,
which are language agnostic to drive the development of code-level dataflow abstractions
that can be applied to existing languages. These could be encoded as Domain Specific
Languages (DSLs) inside existing languages, such as Python, or even as an Intermediate
Representation (IR) within the compiler itself.

There are some limits to the expressivity of our approach, for instance, the lack of
loops makes it more verbose to iterate through data in multiple dimensions and hence the
euclid Lucent-provided module as illustrated in Listing 10 to abstract this. The suitability of
the dataflow architecture and underlying conceptual ASDM execution model forms the
major limitation as to what algorithms are suitable to be expressed in this way. There have
been a number of HPC codes ported to FPGAs and the examples described in this paper
illustrate a variety of access and compute patterns in use; however, algorithms that are very
tightly coupled with extensive feedback loops will be less suited to our approach, although
they would also be less suited to a dataflow architecture.

8. Related Work

Instead of presenting the programmer with a dataflow execution model and abstrac-
tions, an alternative is to place the emphasis on improved compiler technology in extracting
the essence of dataflow from existing Von Neumann-based languages. The Merlin com-
piler [28] optimised HLS code by requiring the programmer to leverage a small number of
Merlin-specific pragma annotations which would then assist in identifying key patterns and
transforming these based upon known optimisation techniques. However, our argument
is that C or C++ code is such a long way from the dataflow model that the work that the
compiler has to conduct in optimising these is significant, and instead, it makes more sense
to provide improved abstractions to the programmer. This is illustrated by [28] by the fact
that there is only one application considered, a logistic regression. MultiLevel Intermediate
Representation (MLIR) [29] is a form of IR, and ScaleHLS [30] leverages MLIR to capture
dataflow patterns from HLS code via a series of MLIR dialects. These place emphasis on
the compiler to extract dataflow and make appropriate decisions, rather than our approach
where the programmer encodes it. ScaleHLS shows promise and can complement our
model and abstractions as improved compiler technology could then further assist the
Lucent compiler in undertaking optimal low-level decisions.

Stencil-HMLS [31] leverages MLIR to automatically transform stencil-based codes
to FPGAs. Driven by extracting stencils from existing programming languages [32] and
Domain Specific Languages [33], this work operates upon the MLIR stencil dialect [34] to
generate resulting code structures that are highly tuned for FPGAs and then provided to
AMD Xilinx’s HLS tool at the LLVM-IR level. This work demonstrates that based upon
domain-specific abstractions, in this case, stencils, one is able to leverage the knowledge
and expertise of the FPGA community to transform these abstract representations into
an efficient dataflow form. Furthermore, it was also demonstrated that energy usage
and efficiency are largely driven by performance on the FPGA. However, this approach
is only for stencils, whereas our approach is general, and there is a large semantic gap
between the stencil mathematical representation and target optimised dataflow code. This
places significant pressure on the transformation and is somewhat tied to the specific
stencil in question. In contrast, our approach is much more general and can handle many
different types of applications. By constraining the programmer to write their code in a
specific manner using the ASDM execution model and abstractions present in Lucent, our
approach closes the semantic gap and makes the job of generating efficient target code
more straightforward for the compiler.



Chips 2024, 3 357

DaCe [11] is a middle ground between IR and dataflow programmer abstraction, and
we compared the performance of BLAS operators in DaCe on the U280 against our approach
in Section 7.1. Dataflow algorithms can be expressed directly in DaCe’s Stateful DataFlow
multiGraph (SDFG) by the programmer, and this tends to provide the best performance
but can be verbose and complex (for instance, the DaCe gemm implementation used in
Section 7.1 from [11] is 438 lines of code) and requires lower level details such as the
type of storage and size of stream buffers. It is often preferable for programmers to
reason about their code mathematically rather than operationally, and it is also possible to
transform existing codes into DaCe IR, which works well for libraries such as Numpy [35].
However, for general-purpose user codes, there is a semantic gap between DaCe IR and a
user’s Python code which must be bridged. The dot product and l2norm benchmarks in
Section 7.1 followed this approach for DaCe, which resulted in poor performance because
of unresolved spatial dependencies in the generated code causing stalls. In contrast, our
approach requires the user to write their code directly using our languages and ASDM
execution model, with the view that by doing so their code is in the correct form for
a dataflow architecture such that the compiler can more easily undertake the low-level
decisions required.

Approaches such as hlslib [36] and Maxelor’s MaxJ [12] aim to deliver dataflow ab-
stractions encoded as a class library but the programmer is still using a Von Neumann
language. For instance, the MaxJ programmer uses Java to encode their application based
on pre-provided abstractions which are then synthesised by Maxelor’s compiler. Whilst
MaxJ provides a rich set of class-based dataflow mechanisms, compared to our declarative
approach the programmer must still drive their FPGA code via a Von Neumann-based
language and retains responsibility for making numerous low-level decisions with detailed
knowledge of the underlying architecture. Maxelor’s NBody simulation code [37] is an ex-
ample where the code is verbose with several complex concerns such as the number of ports
and access mode for on-chip memory. Working with Von Neumann constructs, such as vari-
ables and loops, programmers must structure loops appropriately to avoid dependencies
and set options such as the pipeline factor to translate Java to hardware efficiently.

The Clash [38] functional language is a hardware description language heavily based
around Haskell and, unlike our approach, Clash transforms to VHDL. However, Clash is
designed for a different type of workload and is much lower level than our approach, for
instance, having been used to develop a RISC-V core [39]. Including hardware features
such as signals, the clock, and reset Clash programmers are working much more at the
circuit level than Lucent, and furthermore, only primitive Haskell types are supported
which cannot be configured as in Lucent. Whilst there is a version of matrix multiplication
provided in Clash, this is integer only because the language does not support floating
point arithmetic numeric representation. By contrast, Lucent is much more aimed at the
algorithmic level, to enable developers to abstractly develop fast by construction dataflow
algorithms with the ASDM execution model in mind. Similar to Clash, Lava [40] is a
Haskell module for FPGA design and unlike Clash is embedded within Haskell which, on
the one hand, means that the programmer need not learn a new language but on the other
hand is restricted by the assumptions made in Haskell and the fact that static analysis can
not be performed, which Clash addresses.

There are Domain Specific Languages (DSLs) providing abstractions for specific prob-
lem domains for FPGAs [41]. An example is [42] for stencil-based algorithms on FPGAs
and [43] for image processing. Whilst these show promise, compared to our general pur-
pose approach, they are limited to a specific class of problem domain and algorithm like
Stencil-HMLS [31]. Instead in this work, we have explored a general-purpose dataflow
model and programming abstractions that can encode a wide variety of applications.

9. Conclusions and Future Work

In this paper, we have explored a conceptual execution model and dataflow abstrac-
tions that aim to empower software developers to write fast-by-construction dataflow codes



Chips 2024, 3 358

for FPGAs. Basing the programmer’s execution model on bespoke Application Specific
Dataflow Machines (ASDM), we present a language called Lucent which builds on some
of the concepts developed in Lucid, and Lucent was then used as a vehicle to explore
appropriate abstractions for programming FPGAs. The underlying dataflow abstractions
and declarative nature of Lucent have been described, as well as how these can be used
for building more complex abstractions, and how the type system provides additional
flexibility and data customisation. We also described the concept of time dimensions, which
until this point had only been studied theoretically, and by adopting this notion were able
to provide improved expressivity in a logical and convenient manner.

We compared performance for several BLAS kernels, a real-world atmospheric ad-
vection scheme, and quantitative finance CDS against hand-optimised HLS, AMD Xilinx’s
Vitis open source library, DaCe, and CPU baseline. In all cases finding that Lucent performs
comparatively, or better, than the Vitis library and DaCe, and is comparable against hand-
optimised code, but is also much simpler. The next step is to target Intel’s Stratix-10 FPGAs
which will enable portability across FPGA vendors. It would also be interesting to port
Lucent to other architectures, such as AMD Xilinx’s AI engines [44] which are an example
of coarse-grained reconfigurable architectures and at the time of writing, have been both
packaged with their FPGA solutions and also with their main-stream AMD CPUs via Ryzen
AI. It would also be interesting to expand the range of number representations that are
supported in Lucent, for instance, Posits or coupling with custom IP blocks that provide
their own numeric representation. The ability of FPGAs to flexibly provide support to
handle processing these numbers in hardware is a potential advantage of them, and Lucent
could be useful in hiding the complexity around leveraging these in codes.

It is generally tough to convince programmers to learn a new language; however,
Lucent is really a vehicle to explore and develop the concepts and abstractions introduced
in this paper. Such concepts could then be encoded in existing tools or languages. For
instance, developing an MLIR dialect based upon Lucent, in which existing language and
algorithmic patterns can then be targeted during compilation would be beneficial. This
would likely significantly close the semantic gap between imperative, Von Neumann-based,
languages and the dataflow paradigm, effectively acting as a stepping stone when lowering
from these imperative languages to FPGAs.

We conclude that, by basing their conceptual execution model on an ASDM where
all elements of the program state are updated concurrently in a consistent manner, and
using a declarative language and the abstractions presented, software developers are
able to develop fast-by-construction codes for FPGAs more productively and obtain high
performance by default.

Funding: This research was funded by the ExCALIBUR EPSRC xDSL project grant number EP/W007940/1.
This research was supported by an RSE personal research fellowship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors acknowledge support from EPCC, including use of the NEXTGenIO
system, which was funded by the European Union’s Horizon 2020 Research and Innovation pro-
gramme under Grant Agreement no. 671951. For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising
from this submission.

Conflicts of Interest: The authors declare no conflicts of interest

Abbreviations
The following abbreviations are used in this manuscript:



Chips 2024, 3 359

HPC High Performance Computing
FPGA Field Programmable Gate Array
HLS High Level Synthesis
ASDM Application Specific Dataflow Machine
CPU Central Processing Unit
GPU Graphical Processing Unit
AST Abstract Syntax Tree
DAG Directed Acyclical Graph
IR Intermediate Representation
BLAS Basic Linear Algebras Subprograms
CDS Credit Default Swap
SDFG Stateful DataFlow multiGraph

References
1. Brown, N. Exploring the acceleration of Nekbone on reconfigurable architectures. In Proceedings of the 2020 IEEE/ACM Interna-

tional Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC), Atlanta, GA, USA, 13 November
2020; pp. 19–28.

2. Brown, N. Accelerating advection for atmospheric modelling on Xilinx and Intel FPGAs. In Proceedings of the 2021 IEEE
International Conference on Cluster Computing (CLUSTER), Portland, OR, USA, 7–10 September 2021; pp. 767–774.

3. Karp, M.; Podobas, A.; Kenter, T.; Jansson, N.; Plessl, C.; Schlatter, P.; Markidis, S. A High-Fidelity Flow Solver for Unstructured
Meshes on Field-Programmable Gate Arrays. In Proceedings of the 2022 International Conference on High Performance
Computing in Asia-Pacific Region, Virtual Event, Japan, 11–14 January 2022 ; pp. 125–136.

4. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural
networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2017; pp. 45–54.

5. Firmansyah, I.; Changdao, D.; Fujita, N.; Yamaguchi, Y.; Boku, T. Fpga-based implementation of memory-intensive application
using opencl. In Proceedings of the 10th International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, Nagasaki, Japan, 6–7 June 2019; pp. 1–4.

6. Xilinx. Vitis Unified Software Platform Documentation. Available online: https://docs.amd.com/v/u/2020.2-English/ug1416-
vitis-documentation (accessed on 28 September 2024).

7. Intel. Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide. Available online: https://www.intel.com/content/www/
us/en/programmable/documentation/mwh1391807516407.html (accessed on 28 September 2024).

8. de Fine Licht, J.; Blott, M.; Hoefler, T. Designing scalable FPGA architectures using high-level synthesis. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Vienna, Austria, 24–28 February 2018;
pp. 403–404.

9. Cong, J.; Fang, Z.; Kianinejad, H.; Wei, P. Revisiting FPGA acceleration of molecular dynamics simulation with dynamic data
flow behavior in high-level synthesis. arXiv 2016, arXiv:1611.04474.

10. Fraser, N.J.; Lee, J.; Moss, D.J.; Faraone, J.; Tridgell, S.; Jin, C.T.; Leong, P.H. FPGA implementations of kernel normalised least
mean squares processors. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2017, 10, 1–20. [CrossRef]

11. Ben-Nun, T.; de Fine Licht, J.; Ziogas, A.N.; Schneider, T.; Hoefler, T. Stateful dataflow multigraphs: A data-centric model for
performance portability on heterogeneous architectures. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Denver, CO, USA, 17–22 November 2019; pp. 1–14.

12. Tech, M. Multiscale Dataflow Programming; Technical Report; Maxeler Technologies: London, UK, 2015.
13. Veen, A.H. Dataflow machine architecture. ACM Comput. Surv. (CSUR) 1986, 18, 365–396. [CrossRef]
14. Wadge, W.W.; Ashcroft, E.A. Lucid, the Dataflow Programming Language; Academic Press: London, UK, 1985; Volume 303.
15. Halbwachs, N.; Caspi, P.; Raymond, P.; Pilaud, D. The synchronous data flow programming language LUSTRE. Proc. IEEE 1991,

79, 1305–1320. [CrossRef]
16. Berry, G. A hardware implementation of pure Esterel. Sadhana 1992, 17, 95–130. [CrossRef]
17. Brown, N. Porting incompressible flow matrix assembly to FPGAs for accelerating HPC engineering simulations. In Proceedings

of the 2021 IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC),
St. Louis, MO, USA, 15 November 2021; pp. 9–20.

18. Faustini, A.A.; Jagannathan, R. Multidimensional Problem Solving in Lucid; SRI International, Computer Science Laboratory: Tokyo,
Japan, 1993.

19. Ashcroft, E.A.; Faustini, A.A.; Wadge, W.W.; Jagannathan, R. Multidimensional Programming; Oxford University Press on Demand:
Oxford, UK, 1995.

20. Lawson, C.L.; Hanson, R.J.; Kincaid, D.R.; Krogh, F.T. Basic linear algebra subprograms for Fortran usage. ACM Trans. Math.
Softw. (TOMS) 1979, 5, 308–323. [CrossRef]

21. Xilinx. Vitis Libraries. Available online: https://github.com/Xilinx/Vitis_Libraries (accessed on 28 September 2024).

https://docs.amd.com/v/u/2020.2-English/ug1416-vitis-documentation
https://docs.amd.com/v/u/2020.2-English/ug1416-vitis-documentation
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
http://doi.org/10.1145/3106744
http://dx.doi.org/10.1145/27633.28055
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1007/BF02811340
http://dx.doi.org/10.1145/355841.355847
https://github.com/Xilinx/Vitis_Libraries


Chips 2024, 3 360

22. Xilinx. Vitis—Optimising Performance. Available online: https://docs.amd.com/v/u/2020.1-English/ug1416-vitis-
documentation (accessed on 28 September 2024).

23. Brown, N.; Lepper, A.; Weil, M.; Hill, A.; Shipway, B.; Maynard, C. A directive based hybrid met office nerc cloud model. In
Proceedings of the Second Workshop on Accelerator Programming Using Directives, Online, 16 November 2015; p. 7.

24. Brown, N. Exploring the acceleration of the Met Office NERC cloud model using FPGAs. In Proceedings of the International
Conference on High Performance Computing, Frankfurt, Germany, 16–20 June 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 567–586.

25. Dempster, M.A.H.; Kanniainen, J.; Keane, J.; Vynckier, E. High-Performance Computing in Finance: Problems, Methods, and Solutions;
CRC Press: Boca Raton, FL, USA, 2018.

26. Hull, J.; Basum, S. Options, Futures and Other Derivatives; Prentice Hall: Upper Saddle River, NJ, USA, 2009.
27. Brown, N.; Klaisoongnoen, M.; Brown, O.T. Optimisation of an FPGA Credit Default Swap engine by embracing dataflow

techniques. In Proceedings of the 2021 IEEE International Conference on Cluster Computing (CLUSTER), Portland, OR, USA,
7–10 September 2021; pp. 775–778.

28. Cong, J.; Huang, M.; Pan, P.; Wang, Y.; Zhang, P. Source-to-source optimization for HLS. In FPGAs for Software Programmers;
Springer: Cham, Switzerland, 2016; pp. 137–163._8 [CrossRef]

29. Lattner, C.; Amini, M.; Bondhugula, U.; Cohen, A.; Davis, A.; Pienaar, J.; Riddle, R.; Shpeisman, T.; Vasilache, N.; Zinenko, O.
MLIR: A compiler infrastructure for the end of Moore’s law. arXiv 2020, arXiv:2002.11054.

30. Ye, H.; Hao, C.; Cheng, J.; Jeong, H.; Huang, J.; Neuendorffer, S.; Chen, D. ScaleHLS: A New Scalable High-Level Synthesis
Framework on Multi-Level Intermediate Representation. arXiv 2021, arXiv:2107.11673.

31. Rodriguez-Canal, G.; Brown, N.; Jamieson, M.; Bauer, E.; Lydike, A.; Grosser, T. Stencil-HMLS: A multi-layered approach to the
automatic optimisation of stencil codes on FPGA. In Proceedings of the SC’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 556–565.

32. Brown, N.; Jamieson, M.; Lydike, A.; Bauer, E.; Grosser, T. Fortran performance optimisation and auto-parallelisation by
leveraging MLIR-based domain specific abstractions in Flang. In Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, USA, 12–17 November 2023;
pp. 904–913.

33. Bisbas, G.; Lydike, A.; Bauer, E.; Brown, N.; Fehr, M.; Mitchell, L.; Rodriguez-Canal, G.; Jamieson, M.; Kelly, P.H.; Steuwer,
M.; et al. A shared compilation stack for distributed-memory parallelism in stencil DSLs. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems, San Diego, CA, USA, 27
April–1 May 2024; Volume 3, pp. 38–56.

34. Gysi, T.; Müller, C.; Zinenko, O.; Herhut, S.; Davis, E.; Wicky, T.; Fuhrer, O.; Hoefler, T.; Grosser, T. Domain-specific multi-level IR
rewriting for GPU: The Open Earth compiler for GPU-accelerated climate simulation. ACM Trans. Archit. Code Optim. (TACO)
2021, 18, 1–23. [CrossRef]

35. Ziogas, A.N.; Schneider, T.; Ben-Nun, T.; Calotoiu, A.; De Matteis, T.; de Fine Licht, J.; Lavarini, L.; Hoefler, T. Productivity,
portability, performance: Data-centric Python. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, St. Louis, MO, USA, 14–19 November 2021; pp. 1–13.

36. de Fine Licht, J.; Hoefler, T. hlslib: Software engineering for hardware design. arXiv 2019, arXiv:1910.04436.
37. Maxeler. N-Body Simulation. Available online: https://github.com/maxeler/NBody (accessed on 28 September 2024).
38. Baaij, C.; Kooijman, M.; Kuper, J.; Boeijink, A.; Gerards, M. C? ash: Structural descriptions of synchronous hardware using

haskell. In Proceedings of the 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, Lille,
France, 1–3 September 2010; pp. 714–721.

39. Cox, D. Where Lions Roam: RISC-V on the VELDT. Available online: https://github.com/standardsemiconductor/lion (accessed
on 28 September 2024).

40. Bjesse, P.; Claessen, K.; Sheeran, M.; Singh, S. Lava: Hardware design in Haskell. ACM Sigplan Not. 1998, 34, 174–184. [CrossRef]
41. Kapre, N.; Bayliss, S. Survey of domain-specific languages for FPGA computing. In Proceedings of the 2016 26th International

Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–12.
42. Kamalakkannan, K.; Mudalige, G.R.; Reguly, I.Z.; Fahmy, S.A. High-level FPGA accelerator design for structured-mesh-based

explicit numerical solvers. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Portland, OR, USA, 17–21 May 2021; pp. 1087–1096.

43. Stewart, R.; Duncan, K.; Michaelson, G.; Garcia, P.; Bhowmik, D.; Wallace, A. RIPL: A Parallel Image processing language for
FPGAs. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2018, 11, 1–24. [CrossRef]

44. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx adaptive compute acceleration platform: Versaltm architecture. In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26
February 2019; pp. 84–93.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://docs.amd.com/v/u/2020.1-English/ug1416-vitis-documentation
https://docs.amd.com/v/u/2020.1-English/ug1416-vitis-documentation
http://dx.doi.org/10.1007/978-3-319-26408-0_8
http://dx.doi.org/10.1145/3469030
https://github.com/maxeler/NBody
https://github.com/standardsemiconductor/lion
http://dx.doi.org/10.1145/291251.289440
http://dx.doi.org/10.1145/3180481

	Introduction
	Motivation: The Challenges with Von Neumann
	Embracing Computational Concurrency via Custom Dataflow Machines.
	Application Specific Dataflow Machine Execution Model
	Building upon the Foundations of Lucid

	The Lucent Dataflow Language
	Filters
	Manipulating Values over Time
	Intermediate Dataflow Operators

	Nested Time via Time Dimensions
	Exploiting the Type System
	The List Type
	Generics


	2D Jacobi: Bringing the Concepts Together
	Language Implementation
	Performance and Productivity Evaluation
	Foundational BLAS Operations
	Application Case Study: Atmospheric Advection
	Application Case Study: Credit Default Swap
	Limitations

	Related Work
	Conclusions and Future Work
	References

