
Citation: de Assumpção, J.M., Jr.;

Ando, O.H., Jr.; de Araújo, H.P.;

Gazziro, M. An Educational

RISC-V-Based 16-Bit Processor. Chips

2024, 3, 395–407. https://doi.org/

10.3390/chips3040020

Received: 9 October 2024

Revised: 18 November 2024

Accepted: 28 November 2024

Published: 30 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Educational RISC-V-Based 16-Bit Processor
Jecel Mattos de Assumpção, Jr. 1 , Oswaldo Hideo Ando, Jr. 2 , Hugo Puertas de Araújo 1 and Mario Gazziro 1,*

1 Information Engineering Group, Department of Engineering and Social Sciences (CECS), Federal University
of ABC (UFABC), Av. dos Estados, 5001, Santo André 09210-580, Brazil; jecel@merlintec.com (J.M.d.A.J.);
hugo.puertas@ufabc.edu.br (H.P.d.A.)

2 Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE),
Cabo de Santo Agostinho 54518-430, Brazil; oswaldo.ando@ufrpe.br

* Correspondence: mario.gazziro@ufabc.edu.br

Abstract: This work introduces a novel custom-designed 16-bit RISC-V processor, intended for
educational purposes and for use in low-resource equipment. The implementation, despite providing
registers of 16 bits, is based on RV32E RISC-V ISA, but with some key differences like a reduced
instruction set that is optimized for embedded systems, the removal of floating-point instructions,
reduced register count, and modified data types. These changes enable the processor to operate
efficiently in resource-constrained environments while still maintaining assembly-level compatibility
with the standard RISC-V architecture. The educational aspects of this project are also a key focus.
By working on this project, students can gain hands-on experience with digital logic design, Verilog
programming, and computer architecture. The project also includes tools and scripts to help students
transform assembly code into binary format, making it easier for them to test and verify their designs.
Additionally, the project’s open-source nature allows for collaboration and the sharing of knowledge
among students and researchers worldwide.

Keywords: soft core; processor; RISC-V

1. Introduction

Many authors have made contributions to the study of educational platforms for
teaching RISC-V architectures [1–10]. Sallar et al. [11] believes that the availability of a
modern, accessible, and FPGA-friendly RISC-V RTL implementation together with a corre-
sponding Virtual Prototypes (by using emulators) configuration would be very beneficial
for the academic community to stimulate further research and for educational purposes,
as proposed in their MicroRV32 framework presented in Figure 1.

Figure 1. Overview of the open-source HW/SW simulation and design tool flow of MicroRV32 [11].

Chips 2024, 3, 395–407. https://doi.org/10.3390/chips3040020 https://www.mdpi.com/journal/chips

https://doi.org/10.3390/chips3040020
https://doi.org/10.3390/chips3040020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chips
https://www.mdpi.com
https://orcid.org/0000-0002-6101-7063
https://orcid.org/0000-0002-6951-0063
https://orcid.org/0000-0002-0084-9085
https://orcid.org/0000-0002-8961-5196
https://doi.org/10.3390/chips3040020
https://www.mdpi.com/journal/chips
https://www.mdpi.com/article/10.3390/chips3040020?type=check_update&version=3

Chips 2024, 3 396

In order to simplify this approach, we develop the drv16 processor HW (using the
existing SW framework) as a custom implementation based on the RISC-V standard [12],
with a distinct characteristic being its reduced register count of 16 × 16-bit registers. While
it implements a subset of instructions from RV32E, those that are supported share the same
mnemonic and functionality. This design choice enables drv16 to be effectively utilized as a
helper processor in various applications, such as abstracting interfaces to peripherals like
keyboards or SD cards.

By reducing the number of registers and instructions, the drv16 processor achieves
significant area savings compared to its RV32E counterpart. In particular, its 16-bit architec-
ture should result in a design that occupies half the area required by an RV32E processor,
with even greater reductions possible relative to an RV32I processor [13]. Given the modest
memory requirements of many applications using drv16, the ability to address more than
64 KB would indeed be unnecessary.

An additional motivation for reducing the state is to make it easier for people to handle
it. A 16-bit number like 0xC7F0 is more digestible than something like 0xC7F0AA35, which
is important in an educational context. An advanced digital design and simulation tool
named DIGITAL, developed by Neemann [14], is employed for the design process.

2. Instruction Set

The design prioritizes a compact implementation while maintaining an acceptable
performance for a multi-cycle processor. The instruction set is executed in a two-clock cycle
sequence, comprising a fetch and execute phase. In cases where an immediate extension
word is present, an additional clock cycle is required, resulting in a maximum of three clock
cycles per instruction. Furthermore, the presence of multiple extensions can lead to longer
execution times. Notably, memory regions consisting entirely of zeros execute a series of
extensions at a rate of one clock cycle per word.

The clock frequency is limited by the critical path, which makes this processor slower
than a pipelined one, as seen in Equation (1):

ClockCycle > IRdelay + ControlUnitDelay + RegisterBankDelay +

ALUinputMuxDelay + ALUdelay + MemoryDelay +

byteMuxDelay + RegisterInputMuxDelay

(1)

The drv16 processor employs a binary encoding scheme for its instructions, consisting
of 16-bit words, incompatible with the RISC-V C extension. The most significant difference
is the instruction which appends 12 bits to the 4-bit immediate value of the following
instruction, effectively treating it as a unified 32-bit operation. All other instructions have
the following format:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
rD rS1 rS2 operation

Register x0 holds the current program counter (PC), but when the rD field is zero, no
register is changed, and when rS1 or rS2 is zero, the value 0 is used in place of whatever
is in x0. Using a non-latched memory, which is an option for BRAMs in some FPGAs
and is how external SRAM chips work, all instructions can run in two clock cycles (fetch
and execute). The PC holds the address of the currently executing instruction during the
execute phase, so the address presented during fetch is the result of adding two to the PC.
This has a side effect that the offset for JAL and the branches is from the current instruction
and not the next one like in RISC-V. This is compensated for in the assembler to avoid
complicating the hardware. Since we have 16-bit instead of 12-bit offsets of the RISC-V, this
is not a limitation. The offset for JALR does not need any changes since the PC does not
enter into its calculation.

Chips 2024, 3 397

In Table 1, @rS2 indicates the 16-bit value in the register addressed by the rS2 field of
the instruction while a plain rS2 indicates a 4-bit immediate value extended to 16 bits using
the start of a 32-bit instruction pair. rD indicates a four-bit immediate value that may or
may not be extended, depending on whether the previous instruction forms part of a pair.

Table 1. drv16 operation codes, mnemonics, execute, and fetch control.

Operation Mnemonic Execute Fetch

0 @IM := @IR, @IR :=
mem[@PC := @PC + 2]

1 JAL @rD := @PC + 2 @IR := mem[@PC :=
@PC + (@IM | rS2)]

1 JALR @rD := @PC + 2 @IR := mem[@PC :=
@rS1 + (@IM | rS2)]

2 BEQ cond := @rS1 = @rS2 @RI := mem[@PC :=
@PC + (cond?(@IM | rD):2)]

2 BNE cond := @rS1 ∼= @rS2 @RI := mem[@PC :=
@PC + (cond?(@IM | rD):2)]

3 BLT cond := @rS1 <@rS2 @RI := mem[@PC :=
@PC + (cond?(@IM | rD):2)]]

3 BGE cond := @rS1 >= @rS2 @RI := mem[@PC :=
@PC + (cond?(@IM | rD):2)]

4 LB @rD := SignExtend(
mem[@rS1 + (@IM | rS2)])

@IR := mem[@PC :=
@PC + 2]

5 LH @rD := mem[@rS1 +
(@IM | rS2)]

@IR := mem[@PC :=
@PC + 2]

6 SB mem[@rS1 + rD] := 8Bits(@rS2) @IR := mem[@PC :=
@PC + 2]

7 SH mem[@rS1 + rD] := @rS2 @IR := mem[@PC :=
@PC + 2]

8 LBU @rD := ZeroExtend(mem
[@rS1 + (@IM | rS2)])

@IR := mem[@PC :=
@PC + 2]

9 ADD @rD := @rS1 + @rS2 @IR := mem[@PC :=
@PC + 2]

9 ADDI @rD := @rS1 + (@IM | rS2) @IR := mem[@PC :=
@PC + 2]

A SUB @rD := @rS1 − @rS2 @IR := mem[@PC :=
@PC + 2]

A SUBI @rD := @rS1 − (@IM | rS2) @IR := mem[@PC :=
@PC + 2]

B SLT @rD := @rS1 <@rS2 @IR := mem[@PC :=
@PC + 2]

B SLTI @rD := @rS1 <(@IM | rS2) @IR := mem[@PC :=
@PC + 2]

C SRS @rD := (@rS1>>1) |
(@rS2 & 0x8000)

@IR := mem[@PC :=
@PC + 2]

C SRSI @rD := (@rS1>>1) |
(@IM & 0x8000)

@IR := mem[@PC :=
@PC + 2]

D AND @rD := @rS1 & @rS2 @IR := mem[@PC :=
@PC + 2]

Chips 2024, 3 398

Table 1. Cont.

Operation Mnemonic Execute Fetch

D ANDI @rD := @rS1 & (@IM | rS2) @IR := mem[@PC :=
@PC + 2]

E OR @rD := @rS1 | @rS2 @IR := mem[@PC :=
@PC + 2]

E ORI @rD := @rS1 | (@IM | rS2) @IR := mem[@PC :=
@PC + 2]

F XOR @rD := @rS1 ^@rS2 @IR := mem[@PC :=
@PC + 2]

F XORI @rD := @rS1 ^(@IM | rS2) @IR := mem[@PC :=
@PC + 2]

Most instructions have two variations, and the presence or not of the extension selects
between them. In the case of BEQ and BNE, it is the least significant bit of rD (extended
or not) that selects between them as the bit would otherwise be wasted since we cannot
branch to odd addresses. The same trick is used to select between JAL and JALR.

The drv16 processor includes the SUBI instruction, which is not present in RV32E due
to the latter’s ability to handle negative constants for ADDI operations. Notably absent
from drv16 are unsigned comparison instructions (SLTIU, SLTU, BLTU, and BGEU).
Additionally, LUI and AUI instructions are missing, as constants larger than 12 bits require
different generation mechanisms in the drv16 architecture. The hardware to implement
shifts can be very large when compared to the rest of the processor, so the shift operations
(SLLI, SRLI, SRAI, SLL, SRL, and SRA) were also omitted. But, SLLI x3,x4,3 can be

implemented using the sequence ADD x3,x4,x4 . ADD x3,x3,x3 . ADD x3,x3,x3 . Right
shifts are implemented using the SRS (shift right step) instruction that is not a RV32E one.

So, SRAI x3,x4,3 can be implemented as the sequence SRS x3,x4,x4 . SRS x3,x3,x3 .

SRS x3,x3,x3 while SRLI x3,x4,3 can become SRS x3,x4,zero. SRS x3,x3,zero. SRS x3,x3,zero .
The SRSI instruction is present to simplify the hardware, but is not as useful. ECALL and
EBREAK are the two remaining RV32E instructions missing from drv16.

3. Implementation

The project system.dig (showed in Figure 2) includes the drv16 processor connected to
an asynchronous RAM with 32K words of 16 bits each. Address 0xFFFE (word address
0x7FFF) is also mapped to the terminal for writes and a keyboard interface for reads.
The reset signal must be held high for at least four clock cycles to force execution to start at
the instruction at address 0x0000 in memory.

Two complications that RISC-V shares with drv16 relative to some simpler processors
are the byte access to memory and the special treatment of register zero. This is further
complicated in drv16 by storing the program counter in the register bank’s address zero
since that would have been otherwise unused. This also allows the adder in the ALU to
also increment the program counter.

The bottom third of Figure 3 shows how byte reads are handled on the left and how
byte writes are dealt with on the right. For word reads, the data just pass straight through,
while for byte reads, either the top or bottom byte of the incoming data (depending on the
address bit 0) becomes the bottom byte to be written to the register, and the top byte is
either all zeros or copies of the sign bit from the bottom byte (depending on whether LBU
or LB is being executed).

Chips 2024, 3 399

Figure 2. Complete CPU system using drv16 soft core processor. The blue lines are the data buses,
with small blue symbols indicating inputs, small red symbols indicating outputs and the big blue
symbols indicating bus intersections.

Figure 3. Implementation of the drv16 soft core processor.

For byte writes, the bottom eight bits from the register are output twice and the
corresponding signal (wrL or wrH) makes it so that one is used and the other ignored.
For word writes, the data just pass through unchanged.

4. FPGAs and ASICs

Exporting the subcomponents of drv16 as Verilog, as well as a circuit with only the
register file, and using the Yosys [15] tool to implement them for various FPGAs and
integration technologies, it is possible to make some comparisons as one has in Table 2.
In that table, the presented numbers stand for the quantity of registers/LUTs/math/DMBs
(distributed memory blocks) for each technology implementation.

Chips 2024, 3 400

Table 2. Subcomponents of drv16 as Verilog.

Technology Registers ALU execPLA Control Total: drv16

NANDs 5029 660 32 628 6534

ICE40 256/373/0/0 0/99/16/0 0/12/0/0 33/58/0/0 289/639/16/0

Gowin 0/0/0/8 0/145/17/0 0/12/0/0 33/69/0/0 33/534/17/8

Cyclone V 0/0/0/32 0/55/18/0 0/11/0/0 33/51/0/0 33/187/18/32

Xilinx 7 0/0/0/8 0/50/5/0 0/11/0/0 33/49/0/0 33/163/5/8

Figure 4 presents a comparison between drv16 and RV32E-based PicoRV32 resource
usage defined by [13].

Figure 4. Comparison of LUTs usage between the drv16 and its analog PicoRV32.

5. Datapath

The main blocks of the datapath are the register bank and the ALU. The multiplexors
of the byte memory access adaptor were previously described. Two more multiplexers
allow the data written back to the destination register to be either the ALU result, dIn
from memory, or a boolean value indicating a signed Less Than result for a comparison.
Another multiplexor allows the A input of the ALU to either come from the registers or
be the constant 0. In the same way, another multiplexor allows the B input of the ALU to
either come from the registers or the immediate value (which can be forced to the constant
0 or the constant 2 inside the control unit).

ALU

The ALU is presented in Figure 5. Looking at all instructions, we need to be able to
add and subtract a pair of 16-bit numbers; perform a bitwise AND, OR, and XOR operations
between them; and also handle the odd shift to the right combining with a bit from the
other operand. When subtracting, we need to indicate the signed comparisons A >= B
and A != B .

Two odd-looking parts of the ALU are what seem to be many shorted wires at the
very top and a large number of OR gates taking up the whole right half. The first is just
an expansion of the input signal sub from 1 bit to 16 bits (all with the same value, which is
why they are shorted) so it can be combined with the 16-bit-wide input B in an XOR gate to
invert it for subtractions. The 16-bit OR gate is shown as a tree of five four-input OR gates,

Chips 2024, 3 401

but the logic synthesis tools are free to implement that in a way that is optimized for the
different technologies. It simply detects when the ALU output is 16 zero bits.

Figure 5. ALU (Arithmetic Logic Unit).

6. Control Unit

The control unit uses the following inputs to perform its job: clock, reset, dIn, NE, and
GE. It generates the following: wr, rd, sign, word, sub, logic, logSelect, Imm, selImm, Azero,
we, Rw, Ra, Rb, selRd, and slt. There are also some internal signals such as alt, even, const2,
selConst, and immLow.

The very simple circuit in Figure 6 helps the control unit handle register zero. It
allows any of the three instruction fields to be overridden by the PC and indicates if special
handling (replace with 0 for the sources and do not write for the destination) is needed.

Figure 6. Register x0 handling.

When field rD is 0, then the result should not be saved to the register (we := 0),
unless it is (perhaps also) being forced to the PC, which happens during any fetch. When
field rS1 is 0, then input A of the ALU must be forced to zero (Azero := 1) unless
it is being forced to be the PC. Combined with what was said about reset, we have
Azero := reset | (zS1&!aPC) . When field rS2 is 0 and is not immediate, then input B

of the ALU must be forced to zero. This field is never forced to be the PC, which is why a
four-input AND gate is used in place the the full helper circuit. Activating the selImm and
selConst signals but not even (a combination also used by reset) will do the job.

Table 3 shows drv16 control unit signals for both the execute and fetch phases of
different instructions. The correspondence with Table 1 is slightly obscured since the latter

Chips 2024, 3 402

lists instructions vertically and the former horizontally, but they are two ways of describing
the same behavior.

Register IR saves the instruction read from memory during the fetch cycle and IM
saves the previous value of the top 12 bits for IM or is cleared to 0 if the previous cycle
was an execute. This allows instructions that do not depend on the prefix to indicate an
immediate to not require a prefix when that would just be 0x0000 (but the current assembler
does not take advantage of that).

The single-bit fetch flip-flop is the heart beat of the processor. Its normal output
indicates a fetch cycle while its inverted output indicates an execute cycle. A fetch can
follow an execute or another fetch where the data coming from memory will be a prefix
instruction. If reset is active, then the processor will be stuck fetching from the memory
location 0x0000. During reset, the signals to execute @IR := mem[@PC := 0] are active.
With both inputs forced to zero during reset, the values of logic and logSelect do not make
a difference.

When the instruction was JAL, JALR, or a branch with cond == true , then some
signals are changed in the next fetch cycle.

Branches are the only case where no register is written to as the result is saved in cond
instead. IR0 selects between GE and NE inputs and alt inverts the test. alt is just the lowest
bit of the immediate value before it is optionally cleared by even.

Table 3. drv16 signals.

Execute Fetch

inputs: inputs:

IR3 000000111111111 reset 100000

IR2 001111000000011 cond XXXX01

IR1 0100110001111XX IR1 XX0011

IR0 1X01010110011XX alt XX01XX

imm XXXXXXX01010101 JorB X01111

outputs: outputs:

even 1X00000X0X0X0X0 even X11111

const2 1XXXXXXXXXXXXXX const2 01XX1X

selImm 101111101010101 selImm 1

selConst 1X00000X0X0X0X0 selConst 110010

Azero 0 Azero 100000

sub 0100000001111XX sub 0

logic 000000000000011 logic X00000

aPC (force A to PC) 100000000000000 aPC X11011

lowImm 0X00110X0X0X0X0 lowImm 0X0011

rd 001100100000000 rd 1

wr 000011000000000 wr 0

we 101100111111111 we 1

sign XX1XXX0XXXXXXXX sign X

word XX01010XXXXXXXX word X

selRd 0X11XX100000000 selRd 0

slt 0XXXXXX00001100 slt 0

Chips 2024, 3 403

We can use the DIGITAL function to generate a circuit from this table. An “X” in an
input means that there are actually two columns—one with this value as “0” and another
with this value as “1”. With five inputs, the truth table will have 32 entries. An “X” in an
output means that either a “0” or a “1” are acceptable and DIGITAL can generate a smaller
circuit by selecting one or the other.

The block is named “PLA” (Programmable Logic Array) in this project because that
would be a normal way of implementing such circuits in early integrated circuits. A PLA
implements a “sum of products” combinational logic (ORs that have as inputs ANDs
connected to some of their inputs or their inverses) in a very compact layout. If a tool does
not have a PLA layout generator, then standard cells will produce the same result but with
a larger area. In FPGAs, these circuits can be implemented with just one or a few LUTs
(LookUp Tables) for each output.

The exec PLA outputs in control unit are multiplexed with the explicit circuit for the
fetch half, seen at the very bottom of Figure 7. Since only three signals are not constant in
the fetch half of the table, only the exec half is generated as the block of Figure 8.

Figure 7. Control unit of drv16 soft core processor.

Chips 2024, 3 404

Figure 8. Execution PLA (Programmable Logic Array).

7. Software

It is possible to use the GNU AS assembler, even if it is for a processor like the x86,
to generate binaries for drv16. Macros and other definitions in drv16.inc allow any assembly
program that includes it to use all the instructions defined above. One limitation is that
symbols cannot be used directly, so if a label width is defined somewhere, its data must
be read with lh x4, zero, (width-absStart) . File drv16.inc defines absStart as address 0.
The macro for pseudoinstruction LA does this internally.

A second limitation is that while the hardware does not require a prefix for memory
and control flow instructions that have immediate values of 15 or less, drv16.inc generates
a useless 0x0000 prefix anyway. A dedicated assembler doing more than one pass would
typically make programs around 25% smaller (which also eliminates clock cycles).

Chips 2024, 3 405

A bash script, as2hex, will transform an assembly source file .S into an Intel Hex
equivalent to the binary. DIGITAL can load such files directly into a memory block before
the start of a simulation.

The program gcd.S calculates the greatest common denominator between two numbers
that are built into the sources (currently 12 and 18). A message with the result and the two
numbers is printed in the terminal window. The code to print strings and decimal numbers
(always three digits with leading zeros) dwarfs the actual GCD part.

Figures 9 and 10 show the internal operations of the drv16 soft core processor evaluat-
ing a greatest common denominator of 012 and 018 and giving 006 as the result in the plain
text output on the DIGITAL Terminal.

Figure 9. Internal operations timing diagram of drv16.

Figure 10. Terminal output in plain text.

Another program was developed to test the fixed-point arithmetic capabilities of the
drv16 processor. A mandelbrot.S presented in Figure 11 demonstrates a text version of the
famous fractal.

Chips 2024, 3 406

Figure 11. Mandelbrot-type fractal generated as text output using drv16 emulation on DIGITAL tool
and its overlay with the high resolution graphical model.

8. Performance

A benchmark Table 4 was created to evaluate the performance of the drv16 processor
against other CPUs (RISC-V and non-RISC-V) using Gowin FPGA executing a simple sine
wave generator using only shifts.

Table 4. CPU benchmark.

drv16 MCPU16 [16] DarkRISCV [17]

Gowin (LUTs) 282 69 1431

Gowin (FFs) 33 48 176

Gowin (FMax) 95 MHz 313 MHz 76 MHz

Gowin (total power) 140 mW 138 mW 178 mW

Gowin (dynamic power) 19 mW 17 mW 57 mW

sine (lines of code) 62 129 57

sine (bytes of code) 164 2403 128

sine (clocks to 50 sin points) 23,118 130,831 9360

sine (per second) 4109 Hz 2392 Hz 8120 Hz

9. Conclusions

The goal of using less than half of the FPGA resources compared to RV32E imple-
mentations like PicoRV32 was achieved. The implementation in the form of an RTL-style
schematic provides another option for educators who want to teach computer architecture
using classical digital logic techniques instead of HDL languages only. The final perfor-
mance, when compared to a pipelined CPU like the DarkRISCV [17], was very good as
it achieved half the performance-generating sine waves at half the (dynamic) energy cost
using a very similar clock.

Author Contributions: The conceptualization and design was done by J.M.d.A.J. The data curation
was provied by O.H.A.J. The validation was performed by H.P.d.A. abd the project coordination was
realized by M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Chips 2024, 3 407

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available at [18].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Giorgi, R.; Mariotti, G. WebRISC-V: A Web-Based Education-Oriented RISC-V Pipeline Simulation Environment. In Proceedings

of the 46th Annual International Symposium on Computer Architecture, WCAE@ISCA, Phoenix, AZ, USA, 22 June 2019.
[CrossRef]

2. Harris, S.L.; Chaver, D.; Piñuel, L.; Pérez, J.I.G.; Liaqat, M.; Kakakhel, Z.L.; Kindgren, O.; Owen, R. RVfpga: Using a RISC-V Core
Targeted to an FPGA in Computer Architecture Education. In Proceedings of the International Conference on Field-Programmable
Logic and Applications, Dresden, Germany, 30 August–3 September 2021. [CrossRef]

3. Morgan, F.; Beretta, A.; Gallivan, I.; Clancy, J.; Rousseau, F.; George, R.; Bako, L.; Callaly, F. RISC-V Online Tutor. In Online
Engineering and Society 4.0. REV 2021; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2021. [CrossRef]

4. Nitta, C.; Kaloti, A.; Wang, S. RISC-V Console: A Containerized RISC-V Based Game Console Emulator for Education. In
Proceedings of the Annual Conference on Innovation and Technology in Computer Science Education, Dublin, Ireland, 8–13 July
2022. [CrossRef]

5. McGrew, T.; Schonauer, E. Framework and Tools for Undergraduates Designing RISC-V Processors on an FPGA in Computer
Architecture Education. In Proceedings of the 2019 International Conference on Computational Science and Computational
Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019. [CrossRef]

6. Meeradevi, T.; Kumar, M.; Mourissh, B.M.; Sivaa, V.S.; Samikannu, R.; Sasikala, S. Design of 32 Bit RISC V Processor. In
Proceedings of the International Conference on Computing Communication and Networking Technologies, Kamand, India, 24–28
June 2024. [CrossRef]

7. Poli, L.; Saha, S.; Zhai, X.; Mcdonald-Maier, K. Design and Implementation of a RISC V Processor on FPGA. In Proceedings of the
International Conference on Mobile Ad-hoc and Sensor Networks, Exeter, UK, 13–15 December 2021. [CrossRef]

8. Jamieson, P.; Le, H.; Martin, N.; McGrew, T.; Qian, Y.; Schonauer, E.; Ehret, A.; Kinsy, M.A. Computer Engineering Education
Experiences with RISC-V Architectures—From Computer Architecture to Microcontrollers. J. Low Power Electron. Appl. 2022,
12, 45. [CrossRef]

9. Oruç, A.; Atmaca, A.; Sengun, Y.N.; Yeniyol, A.S. CodeAPeel: An Integrated and Layered Learning Technology For Computer
Architecture Courses. arXiv 2021, arXiv:2104.09502.

10. Minev, P.; Kukenska, V.; Varbov, I.; Dinev, M. A Practical Computer Architecture Education with RISC-V and TL-Verilog. In
Proceedings of the 2023 XXXII International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 13–15 September 2023.
[CrossRef]

11. Ahmadi-Pour, S.; Herdt, V.; Drechsler, R.; Ahmadi-Pour, S.; Herdt, V.; Drechsler, R. The MicroRV32 framework: An accessible and
configurable open source RISC-V cross-level platform for education and research. J. Syst. Archit. 2022, 133, 102757. [CrossRef]

12. SiFive. The RISC-V Instruction Set Manual. Volume I: User-Level ISA, Version 2.2. 2017. Available online: https://riscv.org/wp-
content/uploads/2017/05/riscv-spec-v2.2.pdf (accessed on 4 September 2024).

13. Gazziro, M.; Junior, J.; Junior, O.; Cavallari, M.; Carmo, J. Design and Evaluation of Open-Source Soft-Core Processors. Electronics
2024, 13, 781. [CrossRef]

14. Neemann, H. DIGITAL—A Digital Logic Designer and Circuit Simulator. Github. Available online: https://github.com/
hneemann/Digital (accessed on 4 September 2024).

15. Shah, D.; Hung, E.; Wolf, C.; Bazanski, S.; Gisselquist, D.; Milanovic, M. Yosys+nextpnr: An Open Source Framework from
Verilog to Bitstream for Commercial FPGAs. In Proceedings of the 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), Los Alamitos, CA, USA, 28 April–1 May 2019; pp. 1–4. [CrossRef]

16. Tim. MCPU—Minimal CPU for a 32 Macrocell CPLD. Github. Available online: https://github.com/cpldcpu/MCPU (accessed
on 16 November 2024).

17. Samsoniuk, M. DarkRISCV Processor. Github. Available online: https://github.com/darklife/darkriscv (accessed on 16 Novem-
ber 2024).

18. Assumpcao, J., Jr. drv16. Github. Available online: https://github.com/jeceljr/digitalCPUzoo/tree/main/drv16 (accessed on
17 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3338698.3338894
http://dx.doi.org/10.1109/FPL53798.2021.00032
http://dx.doi.org/10.1007/978-3-030-82529-4_14
http://dx.doi.org/10.1145/3502718.3524791
http://dx.doi.org/10.1109/CSCI49370.2019.00148
http://dx.doi.org/10.1109/ICCCNT61001.2024.10726132
http://dx.doi.org/10.1109/MSN53354.2021.00037
http://dx.doi.org/10.3390/jlpea12030045
http://dx.doi.org/10.1109/ET59121.2023.10279744
http://dx.doi.org/10.1016/j.sysarc.2022.102757
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
http://dx.doi.org/10.3390/electronics13040781
https://github.com/hneemann/Digital
https://github.com/hneemann/Digital
http://dx.doi.org/10.1109/FCCM.2019.00010
https://github.com/cpldcpu/MCPU
https://github.com/darklife/darkriscv
https://github.com/jeceljr/digitalCPUzoo/tree/main/drv16

	Introduction
	Instruction Set
	Implementation
	FPGAs and ASICs
	Datapath
	Control Unit
	Software
	Performance
	Conclusions
	References

