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Abstract: Despite exhibiting intriguing features associated with its multipurpose applications and
drought tolerance, Ferula communis remains a wild and uncultivated species, with limited experimen-
tal research on its biology, starting from seed germination and extending to its ecology. The purpose
of this study was to investigate potential germination and kinetics in F. communis seeds in response
to four cold stratification periods (0, 15, 45, and 90 days at a constant temperature of 5 ◦C) and four
temperatures (5, 10, 15, and 20 ◦C) under continuous darkness. F. communis exhibited a pronounced
germination potential exceeding 90%, with the optimal temperature for germination falling within the
range of 5 ◦C to 15 ◦C, without necessitating cold stratification. A dramatic drop of the germination
percentage was observed at 20 ◦C (<10%), suggesting a form of conditional dormancy attributed to
the higher temperature tested.
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1. Introduction

Ferula communis L. (giant fennel) is a perennial wild plant, belonging to the Apiaceae
family, that grows naturally on the wasteland of the Mediterranean and Central Asia
regions, blossoms in March and April, and goes dormant in early summer in dry climate
conditions. It presents deep tap roots, clumps of leaves developing in winter and early
spring, and a tall flowering stem (up to 3 m) with numerous yellow flowers clustered in
umbels. Ferula communis has a fairly abundant production of seeds that varies in size and
absolute weight of the seeds depending on the place of growth of the plant. Usually, they
measure between 3 and 6 mm in length with an elongated and cylindrical shape, and a
color that can vary, but they commonly appear dark brown or black. Seeds of the Ferula
genus may exhibit dormancy, characterized by a hard seed coat that needs to be scarified
or stratified to improve germination rates [1].

Ferula species have a long history of extract application in various medical and thera-
peutic contexts due to their well-documented significant biological activities. These extracts
have been utilized in both human and veterinary practice to address a wide range of
ailments, including headaches, digestive disorders, rheumatism, arthritis, and tumoral
activity [2–7]. The biological activities of plant extracts from areal parts and roots were
investigated in in vitro experiments involving several fungi, demonstrating fungitoxic
effects on colony growth [8]. Historical records, dating back to the Roman period, doc-
ument symbiotic relationships between Ferula species and other plants [9], notably with
Pleurotus eryngii, a widely appreciated edible mushroom species [10]. Alternatively, some
authors reported a toxic effect on animals and humans [11] and prenylcoumarin com-
pounds were thought to be responsible for the toxic effects on sheep, goats, cattle, and
horses [12]. Nevertheless, Arnoldi and coauthors [4] and subsequently Rubiolo and coau-
thors [13] differentiated two different chemotypes of F. communis, the ‘nonpoisonous’ and
the ‘poisonous’, helping in interpreting the opposite effect and use described.
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Traditional use of the stems is also reported for small furniture, but limited scientific
studies are available on the properties of fibers. Ferula-plant-derived fillers have been used
as an alternative reinforcing agent in composite materials due to its lightness, biodegrad-
ability, low cost, and renewability [14]. Recently, Touil and coauthors [15] investigated the
potential integration of F. communis fiber into building materials to enhance their thermo-
mechanical properties and reduce weight, thereby minimizing the utilization of landfills
dedicated to this waste category. Potential use as an energy source was also proposed in
bioethanol production [16].

All the aforementioned issues associated with F. communis suggest its potential val-
orization within the context of the new approach of the European Union’s common policy
for agriculture and environment aimed at maintaining rural areas and landscapes, in which
farmers are protectors and promoters not only of the agro-environment but also of the nat-
ural habitat including wild species. Due to its rapid growth, the ability to tolerate drought
linked to the deep root system and xerophytic adaptations, the widespread distribution
in wasteland characterizing many areas of the Mediterranean basin, and its versatile use,
F. communis appears as an interesting wild species worthy of study.

Despite the recognition of its multipurpose potential, F. communis largely remains an
undomesticated and uncultivated species with limited experimental research on its biology
starting from seed germination and its ecology. The germination traits of diverse accessions
within the Ferula genus were examined, revealing complex germination cues characterized
by the presence of dormancy mechanisms that inhibit germination until the requirement
for cold stratification is fulfilled [17–21].

With this consideration in mind, we conducted an experimental trial on the seed
germination of F. communis L., specifically focusing on germinability and its kinetics, to
evaluate the optimal seed germination temperature and the effects of cold stratification in
terms of duration.

2. Materials and Methods
2.1. Seed Material and Collection Site

We identified and collected mature seeds of F. communis from Etna Mountain (Pedara,
700 m asl—37◦37′25′′ N, 15◦03′24.19′′ E) during the late summer of 2023. The collection
area is classified as Csa (warm temperate, dry and hot summer) following the Köppen and
Geiger climate classification, with 14.4 ◦C as the average annual temperature and an annual
precipitation of 595 mm.

In the region where the seeds were collected, the physiological maturity of seeds begins
in late spring, and their natural dispersal occurs during the summer and early autumn
periods, characterized by acropetal kinetics of the composed umbels. In late July 2023, seeds
were collected from disseminating flowers, selecting bottom simple umbels. Immediately
after collection, seeds were air-dried for 1–2 days and then stored at room temperature
(20 ± 2 ◦C) in paper bags until the start of the germination experiment. Immediately
preceding with the germination test, seed surface disinfection was performed by immersing
them in a 5% sodium hypochlorite (NaOCl) solution for 5 min, followed by two rinses
with demineralized sterile water. No fungicide treatment was performed to avoid possible
interference of the active ingredient on germination.

2.2. Germination Test

The experimental treatments were as follows: firstly, seeds were subjected to four
different levels of cold stratification (0, 15, 45, and 90 days) at a constant temperature
of 5 ◦C and a relative humidity of 70% (±2%); then, seeds were maintained in a cabinet
germinator (KW-Apparecchi Scientifici, Italy) at four distinct temperature levels (5, 10,
15, 20 ◦C) in a condition of continuous darkness. The experiments were arranged in a
completely randomized design with three replications per thesis. Each replication involved
thirty seeds arranged in Petri dishes containing double layered Whatman No. 1 filter paper,
moistened with 5 mL of distilled water. Sterilized–distilled water (maintained at the same
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treatment temperature) was added as required to ensure non-limiting moisture conditions
for germination.

Germinated seeds were counted and removed every 24 h for 40 days. Seeds were
considered germinated when a primary radicle protrusion 2 mm long was observed,
according to the guidelines of the International Seed Testing Association [21].

2.3. Statistical Analysis

At the end of the trial, the final germination percentage (FGP) was computed. A
factorial 2-way (cold stratification × temperature) ANOVA model was performed. When
ANOVA indicated a significant effect, differences among the combination of treatments
were tested with the Tukey multiple comparison test (HSD test) using the CoStat 6.4
statistics software package. Percentage data were transformed in arcsen before the statistical
analysis, whereas data included in the tables represent original values.

To study seed germination kinetics, we plotted the cumulated number of germinated
seeds over time and fitted the derived data modifying the three-parameter logistic curve
proposed by P. F. Verhulst (Verhulst 1838, 1845) as follows:

y = a/(1 + exp(−(x − x0)/b))

This function allowed the direct biological interpretation of germination behavior and
generates cumulative estimates of seed germination.

Gcum(t) =
Gmax

1 + e−(
t−t50

b )

where Gcum(t) is the cumulative percentage of germination at time t (days); Gmax is the
asymptotic final germination percentage value at t → +∞; t50 is the inflection point where
Gcum equals half of Gmax, representing the time, in days, to reach 50% of germinated seeds;
and b is the slope, a dimensionless “shape factor,” which primarily controls the steepness
of the germination curve (Figure 1).
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The obtained curves were compared, applying the extra sum of the square F test.
When the null hypothesis was rejected, the best-fit values of each obtained parameter
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(Gmax, t50, and b) were compared with a t test using GraphPad 6.0 (GraphPad Software Inc.,
San Diego, CA, USA):

t =
|α − β|√

SEα2 + SEβ2

where the numerator is the difference between best-fit values of the target parameter for two
specific theses and the denominator is an estimate of the standard error of that difference,
computed as the square root of the sum of the squares of the two standard error values.

The three parameters’ sigmoid curve chosen for this experiment, and widely adopted
for a germination test, is affected by the lack of information on some key phases of the
germination process. Based on the experimental dataset, we computed the following
intervals: (i) the initial stage encompassing imbibition and the lag phase (IS-LP), extending
from the experiment’s onset to the date of the first seed germination, and (ii) the interval
between the end of the lag phase and the date when the last seed germinated (LP-LSG),
indirectly inferred through the dimensionless “shape factor” b. The ANOVA analysis was
performed on obtained data.

3. Results

The analysis of variance for the final germination percentages (Table 1) showed signifi-
cant differences exclusively due to temperature. The comparison of the mean values for the
different levels elucidated that the observed result was mainly related to the germination
failure observed under the highest temperature (10% of germinated seeds at 20 ◦C).

Table 1. Result of two-way ANOVA for the effects of cold stratification and temperature.

Source of Variation FGP IS-LP LP-LSG

F Values p F Values p F Values p

Cold Stratification (CS) 1.67 ns n.d. n.d.
Temperature (T) 113.14 *** 7.22 * 7.22 ns

Interaction (CS × T) 0.87 ns n.d. n.d.
*, *** Significant at the 0.01 and 0.001 probability level, respectively; ns = not significant; n.d. = not detected. FGP:
final germination percentage; IS-LP: duration of the initial stage (imbibition and lag phase); LP-LSG: duration of
the interval between the date when the last seed germinated and the end of the lag phase.

Conversely, 94% of germinated seeds were counted, averaging the remaining tempera-
ture levels (Table 2).

Table 2. Final germination percentage and phase durations computed from experimental dataset of
Ferula communis seeds.

Temperature
FGP IS-LP LP-LSG

% days days

5 ◦C 96.7 a 27.0 a 27.0
10 ◦C 90.0 a 18.0 b 18.0
15 ◦C 96.7 a 20.0 b 20.0
20 ◦C 10.0 b -- --

Means followed by the different letters in each column are significantly different based on the Tukey test at the
0.05 probability level. FGP: final germination percentage; IS-LP: duration of the initial stage (imbibition and lag
phase); LP-LSG: duration of the interval between the date when the last seed germinated and the end of the
lag phase.

Considering the final germination percentage (FGP) as the principal variable in a
germinability assessment and noting the absence of a discernible response to stratification
for FGP, the investigation of germination kinetics has focused exclusively on temperature-
related data. Furthermore, the low number of seeds germinated at the highest level
of temperature (20 ◦C) conflicts with the biological interpretation of the sigmoid curve



Seeds 2024, 3 200

parameters. Consequently, the curve interpolation was restricted to datasets corresponding
to temperatures of 5, 10, and 15 ◦C.

The extra sum of the square F test showed statistical differences between the interpo-
lated curves for the three temperature levels (Figure 2).
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From the analysis of the single parameters of each curve (Table 3), no differences
emerged comparing the asymptote Gmax values (94.4%), whereas for T50, the extreme
values were achieved at 10 ◦C (23.4 days) and 5 ◦C (29.2 days), respectively. The lowest
temperature obtained the highest b (18.4), twofold higher when compared to the other
levels, and the longest duration of the initial stage.

Table 3. Sigmoid curve parameters (mean ± standard error).

Temperature Gmax T50 b

% s.e days s.e s.e

5 ◦C 94.7 ±1.67 29.2 ±0.15 a 18.4 ±1.46 a

10 ◦C 91.9 ±1.98 23.4 ±0.26 b 9.1 ±0.80 b

15 ◦C 96.6 ±2.97 27.5 ±0.33 ab 8.9 ±0.73 b

Gmax is the asymptotic final germination percentage value; t50 is the inflection point where the cumulative
percentage of germination equals half of Gmax; b is the slope, a dimensionless “shape factor”. Means followed by
the different letters in each column are significantly different based on the Tukey test at the 0.05 probability level.

4. Discussion and Conclusions

Cold stratification is a vital mechanism for various species in temperate regions, where
winters are cold, ensuring the timely cessation of dormancy when favorable conditions for
seedling emergence are established after the winter season [22,23]. In the Mediterranean
climate condition, characterized by mild/wet winters and hot/dry summers, the temper-
ature plays a critical ecological role, governing the germination dynamics, ensuring that
seeds remain dormant during the hot and dry summer months, thereby synchronizing
their germination with the cooler and moister conditions, typically experienced during the
winter season.

Our results emphasize that the F. communis exhibits high germination potential (>90%)
within an optimal temperature range of 5 to 15 ◦C and does not require cold stratification
for germination. However, it germinates at significantly lower percentages at 20 ◦C (10%),
indicating a kind of conditional dormancy. These conditionally dormant seeds became
nondormant the following winter, when lower temperatures and increased moisture levels
signal the ideal condition for germination and seedling emergence [24–26].

Limited researchers addressed the germination of the wild genus of Ferula, whereas
many authors observed primary seed dormancy in the Apiaceae family and reported a posi-
tive effect of cold stratification on germination [27–30]. In particular, on the Ferula genus,
Nikolaeva [1] reported a cold stratification requirement of some species for germination
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and the effective temperature for this requirement was 0–3 ◦C. On the contrary, Aghilian
and coauthors [30] stated that pre-chilling had no effect on seeds of Ferula gummosa Boiss
dormancy breaking. Even fewer researchers focused on F. communis, and contrasting results
have been obtained. Ari and coauthors [31] observed higher germination in F. tingitana
L. (60%) than F. communis (3%) and hypothesized that F. communis might have seed dor-
mancy and need prechilling treatment, but no specific trials have been described in their
paper. On the contrary, Sanna and coauthors (2009, cit. by Dettori et al. [32]) reported
a high germination percentage of F. communis (higher than 80%) in a temperature range
of 10–15 ◦C without prechilling treatment. Our experiment’s findings, involving an even
lower temperature (5 ◦C), provided further support for this hypothesis. Additionally, our
analysis of germination kinetics revealed a specific impact of the coldest temperature, in
particular on the duration of the period when radicle protrusion is observed. The signifi-
cantly higher value of b calculated at 5 ◦C, reflecting the interval between the initial and
final primary radicle protrusions, suggests a higher synchronicity of the protrusion phase
at lower temperature. This result should be stated even though the ANOVA, conducted
on the duration of the LP-LSG interval in response to germination temperatures, failed to
define this difference (Table 2), likely due to the large variation observed in the different
replications of 15 ◦C treatment. In addition, the dramatic drop in the germination percent-
age observed at 20 ◦C represents, as well, a relevant result of our experiment. Assuming
the optimum range of temperature usually imposed in germination trials (20–25 ◦C), the
sensitivity stated in our study could explain the very low values reached in many of the
studies concerning this species or related genus. In addition, the positive effect on the
germination of priming treatment reported by several authors in Ferula spp. suggests the
opportunity to evaluate if the high percentage of non-germinated seeds observed at 20 ◦C
remains viable in a soil seed bank for the following season.

In summary, our research provides valuable insights into managing Ferula communis L.
seed germination, crucial for biodiversity conservation under the Mediterranean climatic
conditions. However, it is imperative that future studies delve deeper into elucidating the
underlying mechanisms governing seed germination activities, as well as the associated
physiological processes. Such investigations aim to devise strategies for enhancing and
standardizing germination rates.
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