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Abstract: The plant seed-borne microbiome comprises microorganisms vertically inherited from
the mother plant. This microbiome is often linked to early-life protection and seedling growth
promotion. Herein, we compare the seed-borne bacteriomes of a commercial hybrid (Santa Helena)
and a landrace maize variety (Sol da Manhã). The landrace variety displays a more diverse seed-borne
microbiome, featuring a variety of taxa across samples with an average Shannon’s diversity index
of 1.12 compared to 0.45 in the hybrid variety. The landrace variety also showed a greater alpha
diversity of 165.8, in contrast to 144.1 in the hybrid. Although both microbiomes lack a functional
nitrogen fixation apparatus, we found a remarkably distinct presence of genes associated with
phytohormone production and phosphate solubilization, particularly in the landrace variety. In
addition, we recovered 18 metagenome-assembled genomes (MAGs), including four from potentially
novel species. Collectively, our results allow for a better understanding of the contrasting diversity
between maize varieties. The higher potential for phytohormone production in landraces, the absence
of nif genes in both varieties, and the identification of core microbiome taxa offer valuable insights
into how microbial communities impact plant health and development. This knowledge could pave
the way for more sustainable and innovative agricultural practices in crop management.

Keywords: metagenome; bacteriome; plant growth-promoting bacteria; metagenome-assembled
genomes; microbial diversity

1. Introduction

When examining the intricate world of microscopic ecosystems, plants are dynamic
habitats in their own right. Plants rely heavily on the microbial communities within and
around them [1], engaging in a myriad of complex interactions that can be beneficial,
antagonistic, or neutral [2]. The plant bacteriome comprises bacteria acquired from the
surrounding soil and those vertically transmitted during seed development. These verti-
cally inherited bacteria comprise the resident or seed-borne microbiome. The seed-borne
microbiome is often associated with seedling growth and protection [3].

Factors such as plant genotype and environmental conditions can influence plant
microbiome composition and functions, emphasizing the dynamic nature of these bacte-
rial communities [4]. Different plant genotypes are likely to diverge in their seed-borne
microbiomes due to artificial selection and recruitment of other bacteria from the soil [5].
In addition, neighboring plants [6] and long-term processes such as global warming [7]
can influence a plant microbiome. Maize is a suitable model for studying seed-borne mi-
crobiomes. Besides its great economic relevance as the second most produced agricultural
commodity in the world [8], maize has a well documented evolutionary and domestication
history, valuable germplasm collections, and other genetic resources [9,10].
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Although previous works have shown a difference in microbiome composition be-
tween hybrid and landrace maize varieties [11], the roles of seed-borne bacteria and their
implications for plant development remain unclear. Some studies suggest that plant
domestication may lead to a decrease in the transmission capability of the seed-borne
microbiome [12], which would gradually compromise its composition and diversity in crop
varieties used in intensive agriculture systems. Such a reduction in seed-borne microbial
diversity may be linked to negative outcomes, like increased disease susceptibility [13].

Metagenomic studies have also shown a strong correlation between reduced micro-
biome diversity and declines in both crop productivity and disease resistance [7,14]. Within
a plant core microbiome, several taxa play pivotal roles, such as Pantoea, renowned for
their diverse plant-growth-promoting traits [15,16]. Furthermore, specific bacterial genes
as observed in Pseudomonads [17], can also enhance the capability of plant–microbe
interactions [18]. Notably, the maize microbiome exhibits a prevalence of families like
Rhizobiaceae, Burkholderiaceae, and Microbacteriaceae, particularly during early plant
development [19]. These families are usually associated with traits such as phosphate
solubilization and nitrogen metabolism [20–23].

With a rising emphasis on sustainable agriculture, bioinoculants have been adopted
over the last four decades, a market that grows at an annual rate of 10% worldwide [24].
By integrating environmentally compatible inoculants with insights from large-scale micro-
biome analyses, we can modify the “stage 0” of the seed microbiome. This approach aims
to enhance crop productivity and protection [3] while also compensating for any potential
reduction in seed-borne microbial diversity in intensive crop varieties. Currently, the
most effective way to increase crop production is through the widespread use of chemical
pesticides and fertilizers. However, this demand for chemical inputs increases dependency
on imported products that compromise the sovereignty of several countries for food, fiber,
and energy production [25,26]. Furthermore, the intensive use of agrichemicals is often
associated with groundwater contamination [27], human diseases [28], and the death of
pollinating insects [29]. In this scenario, the adoption of sustainable practices based on plant
growth-promoting bacteria (PGPB) constitutes an attractive alternative [30]. PGPB typi-
cally promote plant growth through diverse mechanisms of action such as biofertilization,
bioprotection, or biostimulation [31].

In the present work, we investigate the seed-borne bacteriomes of maize varieties de-
rived from two distinct breeding strategies. We evaluated the microbiome of a commercial
hybrid and a landrace maize variety, the latter originating from organic production in an
agroforestry ecosystem. We analyzed the structure and diversity of these microbiomes,
with particular emphasis on their differences and potential to promote plant growth.

2. Methods
2.1. Maize Varieties

The varieties used were the “SHS 5050” double hybrid commercial variety (SH) and
the “Sol da Manhã” homozygous landrace variety (SOL). SH is a hybrid variety from a local
Santa Helena retailer with production in northwest Minas Gerais, Brazil. This company
works to improve maize yield and uniformity, dealing with a large-scale production area
irrigated under a central pivot. The SOL variety was donated by the family of the agribusi-
ness farmer Jamil Bráz Corinto to Prof. Samuel Kamphorst (UNILA, Brazil). This variety
originated from agricultural growth corridors in Santo Antônio do Rio Verde, Goiás, Brazil.
SOL was initially cultivated in indigenous lands and has been cultivated in agroforestry
systems for over 15 years, a period during which it has undergone meticulous participatory
mass selection. The cultivation of SOL is a collaborative effort supported by EMBRAPA
and in collaboration with the Movimento Camponês Popular (MCP).

2.2. Planting

Maize seeds from both varieties were rinsed with sterile distilled water five times
and soaked for five hours to break dormancy and standardize germination. The seeds
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were carefully distributed into sterile 2 L glass jars filled with 700 g of Basaplant substrate
sieved through a 2 mm mesh previously autoclaved for four one-hour cycles for complete
sterilization. We irrigated the substrate with 250 mL of autoclaved distilled water and
divided it into three distinct sectors, each containing 10 seeds. We sealed the glass jars
with cotton to allow gas exchange while maintaining the seedlings under axenic conditions
throughout the incubation period. We conducted the experiment in a Biological Oxygen
Demand (BOD) incubator (100 µmol/m2/s), maintaining the temperature at 28 ◦C “day”
and 25 ◦C “night”, following a 12 h light/12 h dark cycle for 7 days. The choice to work
with germinated seeds was so that the microbiome would mimic the real scenario of plant
development in the substrate instead of studying only the quiescent seed microbiome [15,32].

2.3. 16S and Metagenomic Sequencing

The rhizospheric substrate was collected by brushing it from the seedlings and DNA
extraction conducted using the DNeasy PowerSoil Pro Kit (Qiagen—Hilden, Germany)
following the manufacturer’s instructions. DNA was sequenced using an Illumina NextSeq
instrument at NGS (Piracicaba, Brazil). We also sequenced a DNA sample from the au-
toclaved substrate to serve as a negative control (“C1”) for contamination in shotgun
sequencing. The raw sequencing reads were submitted to NCBI SRA under BioProject
PRJNA1069023. For 16S rRNA sequencing, we used the Wizard Genomic DNA Purifica-
tion Kit (Promega – Madison, Wisconsin, United States) followed by sequencing using
the Sanger method using the 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-
TACGGYTACCTTGTTACGACTT-3′) universal primers [33].

QIIME2 v. 2023.5.1 [34] was used to process 16S metataxonomic data and to remove
reads from mitochondrial and chloroplast 16S rRNA. The SILVA database Release 138 [35]
was used to infer taxonomic classification.

For metagenome analysis, we used Bowtie2 v. 2.3.4.3 [36] and Samtools v. 1.9 [37] to
remove fragments of maize DNA. Sequencing quality was evaluated with FastQC v. 0.12.1
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 7 August 2023)
and low-quality fragments trimmed using Trimmomatic v. 0.39 [38]. The taxonomic
distribution of the reads was conducted with Kaiju v. 1.6.2 [39]. Microbiome diversity
analyses were conducted with VEGAN [40].

For optimizing the screening of plant growth promotion capacity in the metagenomes,
the microbiome biotechnological potential was inferred using an in-house database of genes
associated with different plant growth promotion traits (i.e., nitrogen fixation, phosphate
solubilization, phytases, ACC deaminase, and auxin production) (Pedrosa–Silva, Henaut–
Jacobs, Venancio, in preparation). This database was constructed by selecting genes widely
known for their plant growth promotion capabilities. The database also contains copies
of each gene from every different genera that are available in UniProt. These genes were
compared with the metagenomes using Usearch [41] with a 60% identity threshold.

2.4. Metagenome-Assembled Genomes (MAGs)

Metagenome assembly was conducted using SPAdes v. 3.15.5 [42] with the “--meta”
parameter. Assembly quality was inferred using QUAST v. 5.0.2 [43] to help choose
the best assembly parameters. Only contigs longer than 1750 base pairs were retained.
MAGs were binned with MetaBAT2 v. 2.2.15 [44] (Kang et al., 2019). The GTDB toolkit
Release 08-RS214 [45] was used to infer the taxonomy and BUSCO v. 5.4.2 [46] to assess the
completeness and duplication levels of the MAGs. The redundancy between the MAGs
was estimated with pyani v. 0.2.12 and their genes were predicted with Prokka v. 1.13 [47].
To categorize the MAGs, the MIMAG methodology was used [48], and we retained only
non-redundant MAGs that were classified as High-quality or Finished. These were then
submitted to GenBank for further analysis.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3. Results and Discussion
3.1. Metagenomics Sequencing Depth Satisfactorily Captured Sample Diversity

We started the analysis with the C1 control sample, which had 1881 operational
taxonomic units (OTUs) (Tables S1 and S2). Most of these OTUs are exclusive to C1,
suggesting that they result from residual DNA from bacteria killed during sterilization.
Conversely, the OTUs from SH and SOL are remarkably more abundant than those of
C1, most likely because of living bacteria in these samples. These results support the
observation that the DNA reads sequenced from the SH and SOL samples were indeed
from the seed-borne microbiome, with virtually no substrate DNA contamination.

To assess the coverage of our data, we estimated the taxa per sample (Figure 1)
and computed the Good’s coverage index for each sample (Table 1). These analyses
demonstrated that our sequencing data achieved robust taxonomic coverage, capturing
80% of the microbial diversity at 10 million reads in both varieties. Notably, the Good’s
index is in line with the rarefaction curves, with only a slight variation where SH exhibits
marginally lower Good’s indexes in comparison to SOL. SH samples also exhibited a
more delayed plateau phase (Figure 1), which is consistent with their greater number
of singletons (Table 1) that probably originated from low-abundance bacteria that are
unlikely to significantly contribute to the community structure. Nevertheless, we kept these
singletons for downstream analysis because of the overall low bacterial DNA amounts in
our samples.
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of species from each sample.

Table 1. Complete sample information with sample identification based on the description in the
Methods section (Santa Helena variety = SH; Sol da Manhã variety = SOL).

Sample Variety Number of OTUs in
Metagenomic Data

Total Read
Count

16S Read
Count Singletons Good’s

Index

Shannon’s
Diversity

Index

Alpha
Diversity

SH1 SHS-5050 1741 17,853,454 40,046 123 99.99924 0.46 150.28
SH2 SHS-5050 1637 20,265,869 43,507 225 99.99879 0.44 138.62
SH3 SHS-5050 1670 17,844,958 41,191 209 99.99872 0.45 143.42

SOL1 Sol da Manhã 1899 18,881,650 41,568 40 99.99963 1.56 172.00
SOL2 Sol da Manhã 1821 18,250,328 41,631 69 99.99955 0.82 158.52
SOL3 Sol da Manhã 1888 20,837,848 37,682 38 99.99972 0.99 166.88
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3.2. The Hybrid Maize Genotype Harbors a Homogeneous Seed-Borne Bacteriome

We sequenced 124,744 and 120,881 16S rRNA partial gene sequences in the SH and SOL
samples, respectively (Table 1). In our 16S metataxonomic data, we observed a substantial
abundance of the Burkholderiaceae family in SH and SOL, mainly from the Burkholderia
and Paraburkholderia genera (Figure 2B). Previous studies reported the prevalence of the
Burkholderiaceae family in maize rhizosphere microbiomes [11], which could suggest a
higher likelihood of these bacteria being inherited across plant generations. Importantly,
Burkholderia species have been associated with nitrogen fixation and stress resistance in
maize [49,50]. Another possible explanation for this persistence is the biological profile of
the Burkholderiaceae family. Known for their endophytic lifestyle, they possess a highly
developed motility apparatus, which could enhance their ability to colonize seeds [51]. One
of the most frequent species in both maize varieties was Burkholderia cenocepacia (Table S1),
which is part of the Burkholderia cepacia complex that has been widely reported as associated
with plant growth promotion [52]. The inoculation of B. cenocepacia improved maize
production (cob length, number of grains per cob, grain weight, and 100-grain weight) in
the field, with better results when combined with Alcaligenes aquatilis [53].
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Figure 2. Relative abundance of OTUs. (A) Metagenome shotgun sequencing data (higher taxonomic
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samples and reads without taxonomic assignment were collectively classified as “Other”; (B) 16S
rRNA data.

It is important to acknowledge that some B. cenocepacia strains are pathogenic to
humans, particularly to immunocompromised individuals [54]. Conversely, other B. ceno-
cepacia strains are non-pathogenic and deemed safe [55,56]. Hence, it is feasible to strategi-
cally incorporate non-pathogenic strains in inoculants or synthetic microbiomes to harness
the beneficial features of B. cenocepacia as a PGPB while mitigating potential risks to hu-
man health.

Burkholderiaceae accounted for over 90% of the SH microbiome. In addition, all
classified reads from the SH 16S metataxonomic data were assigned to the Burkholderia–
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Caballeronia–Paraburkholderia genera (Figure 2B). In contrast, the SOL samples displayed
a substantial presence of various taxa and variable proportions of Burkholderiaceae in
their composition (Table S1). Principal Component Analysis (PCA) further highlighted this
distinction, with the SH samples almost completely overlapping, while the SOL samples
were more dispersed (Figure 3). We can also see a greater separation of SOL1 from the
other samples on the X-axis, which might reflect the lower prevalence of Burkholderia in
this specific sample based on the contribution of this taxa to the PCA.
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The homogeneity found in the SH samples mirrors the inherent genetic uniformity
of the hybrid variety. It is well established that the plant genotype profoundly influences
the microbiome composition and that intensive agriculture can reduce microbiome di-
versity [57]. Previous research has shown that inbred maize varieties exhibit changes in
microbiome recruitment over time, with more recently developed germplasms recruit-
ing fewer microbial taxa capable of nitrogen fixation and favoring larger populations of
microorganisms that contribute to nitrogen loss [58]. It is reasonable to assume that SH
experienced a loss of microbiome diversity due to its long-term use in intensive agriculture
when compared to SOL, which is also reflected in the high occurrence of singletons in those
samples. Another critical aspect to consider is that the intensive use of chemical fertilizers
and pesticides reduces the selective pressure on recruiting a supportive microbiome by
plants [59], which might also be the case in commercial varieties like SH.

3.3. The Seed-Borne Microbiome Harbors Multiple Phosphate Solubilization Genes but Is Likely
Unable to Fix Nitrogen

Bacteria can promote plant growth through various mechanisms, either directly or
indirectly. Here we used a list of manually curated genes to investigate the presence
of direct plant-growth promotion mechanisms, including nitrogen fixation, phosphate
solubilization, ACC deaminase, and auxin production.

We expected a greater abundance of nitrogen fixation genes in SOL because of the
gene loss driven by extensive breeding and chemical nitrogen fertilization in varieties
like SH [58,60]. Contrary to our hypothesis, the nifHDK core nitrogenase genes were
absent in both varieties. Nevertheless, we found nifB and nifUS, which are involved in
the biosynthesis of the FeMo nitrogenase cofactor [61,62] and in providing the essential
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Fe-S clusters for the biosynthesis of FeMo-Co [63], respectively. In the SH samples, we
found nifQ, responsible for molybdenum incorporation, which acts in conjunction with
other genes (nifB, nifNV, and nifE) in the biosynthesis of the nitrogenase iron-molybdenum
cofactor [64,65] (Figure 4). The relevance of these nif genes in the absence of the core
nitrogenase subunits remains unclear. However, it is important to emphasize that even non-
intensive agricultural management involves nitrogen fertilization, which could reduce the
selective pressure for retaining diazotrophic microorganisms in the seed-borne microbiome.
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We found all the pqq genes for inorganic phosphate solubilization in all samples,
except for the pqqA gene (not necessary for PQQ cofactor synthesis [66]). Further, phytase
genes are absent in metagenomes, supporting the dominance of inorganic phosphate
solubilization in the seed-borne microbiome. Seeds are usually rich in stored organic
compounds such as phytates, which plants and their microbiomes can access during
germination. Furthermore, inorganic phosphate availability in the soil can often be a
limiting factor for plant growth [67]. Hence, the evolution of the seed-borne microbiome
to prioritize the solubilization of inorganic over organic phosphate is compatible with
the general availability of phosphorus in soils used in agriculture [68]. In this scenario,
these microbial communities play a crucial role in supporting early seedling growth by
making inorganic phosphate available, directly contributing to the seedling’s immediate
phosphorus demands.

3.4. The Seed-Borne Microbiome May Affect Phytohormone Production

We found distinctive patterns of auxin biosynthesis genes, with SH harboring the
nthB gene, while SOL showed a dominance of ipdC and iaaH. These results show much
greater auxin biosynthesis potential in the SOL seed-borne microbiome. In this context,
we can hypothesize that increased utilization of nitrogen fertilizers could compensate for
any deficiency in microbial-produced auxin, and intensive breeding might render auxin-
producing microorganisms dispensable, with plant varieties that are more efficient in
nitrogen utilization and auxin biosynthesis being selected [69,70].

We also found the ACC deaminase gene acdS in all samples. ACC deaminases convert
ACC in α-ketobutyrate and ammonia [71,72], lowering ethylene levels in the plant [31].
Reduced ethylene levels can delay senescence [73] and increase plant resistance to stressful
environments [74] and pathogen attacks [75]. Hence, the prevalence of acdS could be linked
to the needs of crop plants under stressful conditions, leading to better crop performance
and growth [76].

3.5. Metagenome-Assembled Genomes (MAGs) in Seed-Borne Microbiome

A total of 18 valid bacterial MAGs were recovered from the seed-borne metagenome
(Table 2). We identified ten high-quality MAGs that met the stringent criteria of at least 90%
genome completeness and up to 5% contamination. There were five medium-quality draft
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MAGs, with 50 to 90% completeness and less than 10% contamination, and one low-quality
draft MAG, with less than 50% genome completeness and more than 10% contamination.
Two MAGs exhibited duplication levels exceeding 10% and were likely contaminated.

Table 2. MAGs’ features and metadata. MAGs classified only at the genus level are presented
between parentheses.

Assembly Contigs Total Length
(bp) GC (%) N50 L50 Classification Completeness

(%)
Duplication

(%)

SH1.2 67 7,326,046 66.84 159,765 12 Burkholderia cenocepacia_B 97.8 0.4
SH1.3 107 7,837,774 68.31 126,332 18 Burkholderia gladioli 91.9 0.6
SH2.1 71 7,313,029 66.85 179,016 14 Burkholderia cenocepacia_B 98.1 0.4
SH2.2 82 7,745,205 68.3 150,959 16 Burkholderia gladioli 92.1 0.4
SH3.1 66 7,322,313 66.84 188,414 14 Burkholderia cenocepacia_B 97.9 0.4
SH3.3 100 7,780,057 68.26 120,202 20 Burkholderia gladioli 93.9 0.4

SOL1.1 784 2,479,334 58 3304 264 (Terriglobus) 49.2 0.3
SOL1.2 472 3,628,554 71.42 12,246 96 (Curtobacterium) 91.3 0
SOL1.7 504 9,566,513 67.44 35,148 78 Burkholderia gladioli 75.5 24
SOL1.9 18 4,819,029 57.46 374,213 5 Pantoea dispersa 69.2 0.9
SOL1.10 58 8,220,759 65.06 258,149 10 Paraburkholderia tropica 95.8 1.2
SOL1.11 182 5,852,377 68.83 47,277 37 (Burkholderia) 51 15
SOL2.3 12 4,843,396 57.44 690,450 2 Pantoea dispersa 73.6 0.9
SOL2.4 92 8,328,544 67.93 222,006 12 Burkholderia gladioli 99.2 0.7
SOL3.3 20 4,859,991 57.45 416,592 4 Pantoea dispersa 74.7 0.9
SOL3.4 661 3,263,738 71.34 5741 171 (Curtobacterium) 76.1 0.3
SOL3.6 1435 8,789,041 64.69 8009 303 Paraburkholderia tropica 59.2 3.1
SOL3.8 203 7,160,874 68.82 62,203 41 Burkholderia gladioli 95.2 0.4

Remarkably, we discovered four MAGs belonging to novel species, including two from
the Curtobacterium, one from Burkholderia, and one from Terriglobus. These four novel MAGs
were found in the SOL samples, with SOL1.2 being classified as high quality according to
the MIMAG methodology [48]. Furthermore, the two unknown Curtobacterium MAGs were
99% identical, supporting their affiliation with the same novel species.

It is reasonable to assume that identifying a high-quality MAG is more common for
abundant strains. Thus, the independent recovery of the same MAG in different samples
strongly supports its robust occurrence in the seed-borne microbiome. Species such as
Burkholderia gladioli, found in all six samples, might have an essential role in the seed-borne
microbiome. Importantly, given the ANI values greater than 99%, we probably found
the same B. gladioli strain in all six samples. B. gladioli has been previously reported as a
beneficial seed-borne bacteria, showing a good repertoire of phosphatases and no nitrogen
fixation genes [77], which is consistent with the results presented herein. B. gladioli has
also been shown to enhance plant resistance to Fusarium oxysporum by inducing fungal cell
death [78]. We hypothesize that the presence of B. gladioli in all samples could represent a
seed-borne biocontrol mechanism to counter phytopathogenic fungi during germination
and early post-germination development.

Another interesting MAG is that of a B. cenocepacia strain found in all SH samples.
B. cenocepacia is also a known biocontrol agent [79] generally associated with Fusarium
wilt protection. Furthermore, B. cenocepacia has been reported to protect against Fusarium
root rot by controlling other Fusarium species that may interact with F. oxysporum [80].
The co-occurrence of B. cenocepacia with B. gladioli in the SH seed-borne microbiome may
indicate an evolving system in which the maize plant recruits biocontrol agents. Our
findings also suggest that these two strains are compatible and could work together, either
additively or synergistically. With further validation, these strains might be utilized in a
novel biocontrol strategy.
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4. Concluding Remarks

In this study, we demonstrated that a landrace maize variety has a more diverse and
less uniform (between samples) seed-borne microbiome than a hybrid commercial variety.
We identified a higher potential for phytohormone production in the landrace microbiome.
Our exploration of MAGs revealed that certain taxa are consistently present across different
varieties, supporting the existence of a core seed-borne microbiome. Additionally, we
observed an unexpected absence of nif genes in both varieties, which may be linked to
the widespread use of nitrogen fertilization, even in non-extensive agricultural environ-
ments. Understanding the dynamics of seed-borne microbiome evolution could guide the
development of novel precision agriculture applications.
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