
����������
�������

Citation: Ko, P.-H.; Hsueh, Y.-L.;

Hsueh, C.-W. A Low-Storage

Blockchain Framework Based on

Incentive Pricing Strategies. FinTech

2022, 1, 250–275. https://doi.org/

10.3390/fintech1030020

Academic Editor: Shyan-Ming Yuan

Received: 18 July 2022

Accepted: 27 August 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Low-Storage Blockchain Framework Based on Incentive
Pricing Strategies
Po-Han Ko 1,2, Yu-Ling Hsueh 1,2,* and Chih-Wen Hsueh 3

1 Department of Computer Science & Information Engineering, National Chung Cheng University,
Chiayi 621301, Taiwan

2 Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng
University, Chiayi 621301, Taiwan

3 Department of Computer Science and Information Engineering, National Taiwan University,
Taipei 10617, Taiwan

* Correspondence: hsueh@cs.ccu.edu.tw; Tel.: +886-5-272-0411

Abstract: Nowadays, blockchain bloat is an endangering issue caused by inefficient transaction
storage mechanisms. Based on the Distributed File System (DFS), the blockchain network can reduce
the local storage to solve the blockchain bloat problem. However, storing all blocks on DFS is not
durable or scalable. Hence, classifying blocks into hot and cold was adopted in previous works. The
blockchain nodes can reduce the time consumption and storage consumption by storing hot blocks
locally. However, the previous works are not able to periodically check block integrity and do not
provide a reward mechanism to encourage DFS system nodes to store blocks. We extend previous
works based on the InterPlanetary File System (IPFS) and design an innovative scheme to incentivize
IPFS nodes. The IPFS nodes are regulated with smart contracts and behave under the pricing strategy
controls to increase profit. By adopting proof of retrievability, we guarantee the integrity of the
blocks. Further, the redundant scheme extends our pricing strategy to improve the durability of our
proposed framework. A load-balancing pricing strategy and a general pricing strategy are provided
in the framework to reward the DFS nodes. Extensive experiments are presented to demonstrate
that the latency and throughputs of our model are competitive, while still maintaining data integrity
in the system. The additional increased throughput takes only 0.167% of that produced by the
original Bitcoin and the upload latency takes only 6.67% of the mining time of the Bitcoin Mainnet.
Furthermore, our load-balancing pricing strategy achieves the effectiveness to ensure the redundancy
of blocks and reduces the overall storage consumption up to 97% using the load-balancing pricing
strategy, compared to the non-load-balancing pricing strategy.

Keywords: blockchain; blockchain bloat; smart contract; load balancing; proof of retrievability

1. Introduction

Blockchain [1], which maintains a decentralized distributed digital ledger with a
protocol requiring a block architecture, was first announced by Satoshi Nakamoto in
the Bitcoin white paper of 2008. Various researchers have worked with blockchain and
have provided different chains, such as Bitcoin, Ethereum [2], and Hyperledger [3]. The
blockchain mechanism guarantees that the system can not be controlled by a specific
organization or government. Blockchain technology is applied in many different fields,
including e-voting [4,5], green energy [6,7], the banking and financial services industry [8,9],
the Internet-of-Things (IoT) [10,11] and supply chain management [12–14]. Blockchain has
increasingly been studied in recent years. Change et al. [15] analyzed a serious of literature
reviews on blockchain technologies and their applications in various fields. In [16], Change
et al. designed a blockchain Newsvendor model with the optimal adoption considering
both profit optimization and adoption cost. Furthermore, a modeling framework was
provided to serve as a guideline for various application domains. Similarly, in [17], the

FinTech 2022, 1, 250–275. https://doi.org/10.3390/fintech1030020 https://www.mdpi.com/journal/fintech

https://doi.org/10.3390/fintech1030020
https://doi.org/10.3390/fintech1030020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fintech
https://www.mdpi.com
https://orcid.org/0000-0001-9233-614X
https://orcid.org/0000-0003-2478-7891
https://doi.org/10.3390/fintech1030020
https://www.mdpi.com/journal/fintech
https://www.mdpi.com/article/10.3390/fintech1030020?type=check_update&version=1


FinTech 2022, 1 251

impact of blockchain technology on supply chain management was investigated to study
the information flow. In particular, the proposed model is built for industry to maximize
the profit and a generic framework is provided for blockchain technology design.

Blockchain transactions, especially Bitcoin, are formed into blocks and are stored in
local storage. For example, Bitcoin nodes store all transaction data into local LevelDB.
However, there is an endangering issue in the blockchain storage mechanism. For instance,
each Bitcoin node has to store whole all transaction blocks in its local storage, requiring
over 300 GB [18], which is shown in Figure 1. It is hard to promote a new node to join the
chain if it does not have enough local storage. Some researchers have provided solutions.
In [19,20], their models adopt Byzantine Fault Tolerance (BFT) and Reed–Solomon coding
to reduce the overall storage consumption in the network. Data blocks are encoded through
Reed–Solomon coding into chunks and are distributed to nodes. Each node does not need
to store an entire block in its storage but can decode the block by retrieving the chunks
from the nodes. Through the BFT mechanism, the encoding messages are broadcast to
all nodes. The adoption of encoding messages ensures the lower bound of the number of
storing service nodes. Their model reduces the overall storage consumption from O(n)
to O(1). However, they constructed their model based on the permissioned blockchain,
which is not suitable for public blockchain.

Version August 27, 2022 submitted to Journal Not Specified 2 of 26

2008 2010 2012 2014 2016 2018 2020 2022

0

50

100

150

200

250

300

350

400

Year

Si
ze

(G
B)

Figure 1. The size of the Bitcoin blockchain from 2009 to 2022.

the information flow. In particular, the proposed model is built for industry to maximize 36

the profit and a generic framework is provided for blockchain technology design. 37

Blockchain transactions, especially Bitcoin, are formed into blocks and are stored in 38

local storage. For example, Bitcoin nodes store all transaction data into local LevelDB. 39

However, there is an endangering issue in the blockchain storage mechanism. For instance, 40

each Bitcoin node has to store whole all transaction blocks in its local storage, requiring 41

over 300 GB [18], which is shown as Figure 1. It is hard to promote a new node to join the 42

chain if it does not have enough local storage. Some researchers have provided solutions. 43

In [19,20], their models adopt Byzantine Fault Tolerance (BFT) and Reed-Solomon coding to 44

reduce the overall storage consumption in the network. Data blocks are encoded through 45

Reed-Solomon coding into chunks and are distributed to nodes. Each node does not need 46

to store an entire block in its storage but can decode the block by retrieving the chunks 47

from the nodes. Through the BFT mechanism, the encoding messages are broadcast to 48

all nodes. The adoption of encoding messages ensures the lower bound of the number of 49

storing service nodes. Their model reduces the overall storage consumption from O(n) 50

to O(1). However, they constructed their model based on the permissioned blockchain, 51

which is not suitable for public blockchain. 52

Other researchers have investigated different solutions to the previous problem by 53

applying Distributed File Systems (DFS). Chou et al. [21] proposed a scheme that classifies 54

the hot data and cold data in Bitcoin. Their scheme stores cold data on the InterPlanetary 55

File System (IPFS) and hot data on the local storage system. Zheng et al. [22] proposed an 56

IPFS-based blockchain data storage model in which all transactions are stored in IPFS. The 57

miners in the network verify the received transactions and save the verified transactions 58

into IPFS. The transaction hash is packed into a new block. Subsequently, the new block is 59

broadcast and verified by other miners. The miners append the new block to blockchain 60

after verifying it. The research mentioned above only focuses on the solution to reduce 61

the transaction data on the local storage. However, for the DFS solutions, there are three 62

challenges that the previous works do not solve. First of all, these solutions do not guarantee 63

the integrity of data that is stored on DFS for a certain period. These phases are not 64

formulated to execute sequentially, which may incur a synchronous issue. However, our 65

framework becomes more stable after being performed for a period of time. Secondly, it 66

Figure 1. The size of the Bitcoin blockchain from 2009 to 2022.

Other researchers have investigated different solutions to the previous problem by
applying Distributed File Systems (DFS). Chou et al. [21] proposed a scheme that classifies
the hot data and cold data in Bitcoin. Their scheme stores cold data on the InterPlanetary
File System (IPFS) and hot data on the local storage system. Zheng et al. [22] proposed an
IPFS-based blockchain data storage model in which all transactions are stored in IPFS. The
miners in the network verify the received transactions and save the verified transactions
into IPFS. The transaction hash is packed into a new block. Subsequently, the new block
is broadcast and verified by other miners. The miners append the new block to the
blockchain after verifying it. The research mentioned above only focuses on the solution
to reduce the transaction data on the local storage. However, for the DFS solutions, there
are three challenges that the previous works do not solve. First of all, these solutions
do not guarantee the integrity of data that is stored on DFS for a certain period. These



FinTech 2022, 1 252

phases are not formulated to execute sequentially, which may incur a synchronous issue.
However, our framework becomes more stable after being performed for a period of time.
Secondly, it is unsafe to trust the storage providers without a vetting process. Lastly, these
solutions do not provide a solution to the load-balancing problem. As a result, the storage
servers prefer to store much more popular blocks and make multiple replications in the
network. This may cause some unpopular blocks to be lost and there may be consensus
failure in the network. In this work, a novel mechanism is proposed to distribute blocks to
the IPFS network with auditing and reward for a certain period of time to overcome three
challenges. The mechanism integrates the reputation table to reduce the risk of tampering
with the blocks or malicious offline behavior. Furthermore, we propose our pricing policy
and provide a way to reward the nodes and regulate the replications in the network. In
summary, the significant contributions of this work are listed as follows:

1. We propose a novel storage reduction mechanism executed periodically to audit the
integrity of data stored on the IPFS nodes and reward the IPFS nodes. We integrate a
smart contract into our system to control storing blocks and auditing. By adopting our
smart contract, IPFS nodes are not likely to manipulate blocks or go offline to prevent
failure, which damages their profits during the challenging progress. With the proof
of retrievability, we effectively ensure the integrity of blocks in low-time consumption.
This mechanism maintains the consensus of the blockchain and provides scalability
of the blockchain. Furthermore, we limit the nodes to uploading duplicated blocks to
decrease the bandwidth and storage consumption;

2. A redundant scheme is adopted to replicate the blocks and decrease the risk of losing
blocks in our pricing strategies. The IPFS nodes are encouraged to involve the replica-
tion of blocks so as to improve the tenacity of our framework. This scheme improves
the durability of blocks. However, it is possible that nodes that are responsible for
storing the same block go offline. Therefore, as a last resort, we select full nodes in the
contract to improve the availability of blocks to prevent the failure of the node. The
full node receives the most rewards to remain online;

3. We have designed pricing strategies to incentivize the IPFS nodes. This paper provides
two pricing strategies: a balancing strategy and a non-balancing strategy. The non-
balancing pricing strategy provides the IPFS nodes with more rewards when storing
more blocks. The balancing pricing strategy controls the IPFS nodes to provide
storage and bandwidth and restricts the number of IPFS nodes that store the same
block in their storage. These two strategies provide different levels of durability and
consume different storage sizes. We evaluate the access full node frequency of two
pricing strategies in our experiments. This framework can be adopted as a general
solution and applied in various fields, such as e-voting, IoT, and banking and financial
service industries.

The rest of the paper is organized as follows. Section 2 reviews the related work. The
assumptions and the tools of our model are described in Section 3. The system framework
is proposed in Section 4. In Section 5, various experiments were conducted to show the
effeteness of our system. Finally, we conclude the paper in Section 6.

2. Related Work

In this section, the previous works are briefly introduced in three parts: scalable
blockchain, data integrity and data redundancy.

2.1. Scalable Blockchains

To achieve scalability of blockchain, Dai et al. [23] proposed a network encoding
distributed storage (EN-DS) framework concept to reduce the storage consumption in
the blockchain network. Blocks are encoded through NC-DRDS and NC-RLDS, and
architecture distributed to all nodes. With their scheme, the storage consumption is reduced
to 1/k, where k represents the number of split packets that can recover the original block,
and the bandwidth is reduced to 1/n, where n represents the number of all split packets.



FinTech 2022, 1 253

Janitha et al. [24] proposed a scheme to reduce the data bloating problems caused by the
IoT devices in their food supply system. They define three layers in their framework:
storage, blockchain and data. The actual data are stored in the distributed database in the
distributed File System Networks (DFSNs), which belong to storage layer. The hash of
the data in the distributed database will be put into the smart contract on the blockchain
layer. Their scheme provides storage recycling to identify expired products and execute
storage recycling once a week. The construct of the blocks is similar to the one in [22] and
recorded the product information. This scheme provides a way to distribute their data
into the distributed file system and to reduce the storage consumption of the network.
However, it is only suitable for private chains. It is thus necessary to figure out a public
chain solution. Sohan et al. [25] designed a system using IPFS and dual-blockchain methods.
IPFS was adopted as a secondary blockchain. The IPFS nodes store the transactions and
put the IPFS Content-Identifier (CID) into raw blocks. The IPFS node that generates the
raw block does not distribute the raw block to the whole network and generates the CID of
the raw block. The IPFS nodes put the raw block’s CID into blocks that broadcast in the
main blockchain network. IPFS nodes are in charge of storing the blocks in this scheme.
The storage consumption of the blockchain nodes decreases significantly. However, the
incentive mechanism, which ensures the blocks’ availability, is not proposed in their scheme.
A summary is shown in Table 1.

Table 1. Literature Comparison of scalable blockchains.

Pros Cons

Qi et al. [19] • Low storage consumption
• Enhanced storage scalability

• Only for permissioned blockchain

Zheng et al. [22] • Low storage consumption
• IPFS-based framework

• Risk of losing transactions
• Large bandwidth occupancy

Chou et al. [21]
• Hot and cold classifiers
• IPFS-based framework
• Low bandwidth occupancy

• Risk of losing bandwidth

Yin et al. [26]
• Load-balancing
• Smart contract support
• Local proof of storage

• Inaccessible public data

2.2. Data Integrity

When clients store data on a cloud server or distributed file system, the servers need to
guarantee data integrity. Ateniese et al. [27] proposed a PDP scheme that allows clients to
verify the file stored on the server without accessing the entire file from the server. The PDP
scheme does not require high bandwidth, and clients do not have to store the metadata to
verify the file stored by the server. However, their scheme does not prevent the server from
losing the file after validating it.

A scheme based on blockchain was proposed to prevent losing files after validating
them. In [28], Endolith was proposed to verify the file integrity. Endolith adopts a smart
contract to store the audit data and store the file into the Hadoop distributed file system.
The data owner uploads, retrieves and verifies his data through Endolith. The hash of the
data is held in the smart contract and compared when the data owner retrieves or verifies it.
Nevertheless, this model could not prevent the single point failure caused by a centralized
service. Li et al. [29] developed a new PDP model based on blockchain with multiple
replicas. Multiple replicas are generated by data owners and are uploaded to multiple
cloud storage. They redesigned the PDP model based on pseudorandom functions with
shorter parameters, enhancing efficiency. Although this model offers an efficient way to
execute the PDP model, it does not provide a solution to frequently verify the data stored



FinTech 2022, 1 254

on cloud storage. Xu et al. [30] designed a fair auditing scheme to verify data integrity
for the user. This scheme contains a smart contract that guarantees data integrity on the
network storage service provider through the commutative hash technique at the setup
phase. The arbitrable smart contract provides a way to audit the data stored by the network
storage service provider. Authority nodes maintain the network’s blockchain, and users do
not have to keep all transaction blocks. Xu et al. [31] proposed a deduplicate data auditing
scheme based on blockchain to solve the overhead produced by uploading many duplicate
data. The user will first check for duplicates on the blockchain to prevent duplicate upload
data to the server. Once the comparable data have been uploaded, the owners have to prove
they are the owners and send the proof to the storage provider. Storage providers verify
the proof and add the user into the index table of the data if the verification is passed. This
scheme efficiently reduces the overhead and executes without third-party authentication.

Tron et al. [32,33] developed a decentralized file system based on Ethereum. This
system splits files into small pieces and spreads the file through a distributed pre-image
archive. This system also provides an incentive mechanism for providing network band-
width and storage. The incentive mechanism of bandwidth promotes the trade services
between peers, and the incentive mechanism of storage incentivizes peers, guarantee-
ing long-term data preservation. Protocol Labs proposed Filecoin [34]. This framework
provides a decentralized storage network that allows clients to store files by spending
individual coins. The storage miner receives coins when it stores files for a certain period
of time. Filecoin presents two schemes: Proof-of-Replication and Proof-of-Spacetime, to
reward the storage miner. These schemes against storage miners are opportunistic to lose
the file and receive the reward from the user. Yu et al. [35] developed a checking model to
check the integrity of large continuous data. This model provides a data time sampling
scheme to randomize a set of files to audit and combine the trapdoor delay function into
proof of retrievability to reduce the time delay. The user executes the sampling function and
computes the verification tag before uploading his files. The verification tag set includes
every proof while storing the data. This model reduces the time delay of verifying the
proof during storage and guarantees data safety.

To avoid the decreasing storage durability caused by the unbalancing data distribution,
Yin et al. [26] proposed the scheme with financial incentives. The nodes that store the file
are rewarded according to the number of data they store. Smart contracts were adopted to
ensure the integrity of the data. The nodes need to prove the integrity of the data stored
before the expiry time defined by the user. They designed an income function for nodes
to achieve load-balancing. Different nodes compete to store the file to obtain rewards and
are punished when the number of stored data blocks is over the balanced line. A balanced
line is dynamically chosen according to the number of nodes and data in the network.
Shen et al. [36] proposed a scheme to incentivize all network participants to collaborate on
data sharing. The scheme adopts the Shapley value to evaluate the contributions of each
participant to the network. They also proposed a reliable model to transfer critical data in
the blockchain network. The miners in the network are rewarded after transferring data.
This scheme encourages the participants to contribute more data to receive more rewards.

2.3. Data Redundancy

Storj Labs, Inc. presented Storj [37]. This framework presents a data-repair process to
repair the data lost by the offline nodes and an auditing process to validate the integrity
of the data. Storj adapts the erasure code to achieve necessary redundancy and increase
the durability of data through repairing the data. This framework provides a protocol to
ensure that users trust the storage server which manages to preserve the outsourcing data,
and the storage server trusts that it can be paid by the user for allocating the storage and
bandwidth for use. Liang et al. [38] provide a scheme to replicate data in the network 4.0
environments and it involves with the techniques related to industrial internet of things
(IIoT), cloud computing, and cloud computing for industry. In their scheme, they design a
model to recover the data in few nodes and reduce the tine complexity during the encoding



FinTech 2022, 1 255

process. The cloud network recovers the data through the block and checks the hash stored
on the blockchain network when one or multiple nodes fail. This scheme improves the
durability of data stored on the blockchain-based industrial network.

3. Preliminary

This section introduces the necessary preliminaries and the tools utilized in our network.

3.1. Assumptions and Notations

The following assumptions which are used in our paper and the notations in Table 2
are defined in this section.

1. IPFS nodes do not manipulate the content while passing the content to other nodes.
The IPFS is combined into our blockchain model in this paper. IPFS constructs a
peer-to-peer network and distributes the network’s content to provide a distributed
database. The content is passed through several nodes while retrieving the content
in the IPFS network. We assume that the IPFS nodes do not tamper with the content
while passing it;

2. IPFS nodes benefit themselves as much as they can. IPFS nodes provide their own
space to store the blocks from our chain and receive the reward according to the
contributions. IPFS nodes ensure their benefit by storing more blocks in their space
until the space is full;

3. IPFS nodes should not be trusted. In Filecoin [34], the Storage Miner is punished
when it fails to provide the content stored on its local storage. However, the blockchain
network could not afford to lose any blocks. When IPFS nodes joined the network
to provide the storage service, users in the blockchain network could not justify the
trustworthiness of the newly joined IPFS nodes. The reputation system and the pricing
strategy based on this assumption are developed to audit IPFS nodes for users to
ensure that they would not lose blocks for malicious reasons.

Table 2. Notations.

Symbol Description

λ Secret parameters to generate keymac.
keymac Mac key generated by the user.
PoR Proof of the retrievability scheme.
F The file used in the proof of the retrievability scheme.
F̃ The file processed in PoR.St.
I Subset of [1, n] with a randomly selected q chunks index.
n Number of chunks.
s Number of sectors.
name Random name of the file F̃.
chal Challenge message of the block produced by user.
Chal The set of cidchal . Chal: {cidi}(i ≤ i ≤ numberchal).
interval A challenge interval.
Tag A tag produced via PoR.St.
numberchal Number of challenge blocks.
proo f Proof of the file F̃ generated by IPFS nodes.
blkcold A cold block.
blklatest The latest block containing the contract most of the time in the

blockchain network.
cid Identifier of the block in the IFPS network.
o Number of blocks in the contract.
q Number of elements picked from subset [1, n].
m Number of registered IPFS nodes.
w Punishment factor.



FinTech 2022, 1 256

Table 2. Cont.

Symbol Description

lm Number of blocks stored in the IPFS node m.
ci Number of nodes that storing the block i, i = 1, 2, 3, . . . , lm.
Rnb(lm) Non-balancing reward of node m.
Rb(lm) Balancing reward of node m.
α Number of the single block replica.
θ Reward of storing blocks.
δ Threshold of the balance strategy.

3.2. Proof of Retrievability

In our model, proof of retrievability (PoR) [39] is adopted to verify the integrity of the
transaction stored in IPFS. keys are generated through the simple message-authentication
codes (MAC) scheme, which is much more efficient than generating keys through RSA
algorithm [40]. We formulate five five following key functions:

• PoR.Keygen(�) → (keymac). The Keygen function generates the mac key keymac of
user by using the security parameters �;

• PoR.St(keymac, F) → Tag, F̃, name. This St function takes the file F and mac key
keymac as input. The file F is split into n chunks by the size of sector s. The file F
consists of each chunks { fi,j}(1 ≤ i ≤ n, 1 ≤ j ≤ s). Subsequently, we compute the
Tag : {tagi,j}(1 ≤ i ≤ n, 1 ≤ j ≤ s) using the MAC function that takes the random
file name name and each chunks as the inputs. The Tag, the processed file F̃ and the
random file name name are output in this function;

• PoR.Chal(keymac, name, timelimit) → chal. The challenge function takes a random
subset I in the set [1, n] with l elements as chal to challenge the storage provider;

• PoR.Prove(chal, F̃, Tag) → proo f . The response algorithm takes chal and the file
F̃, which the storage provider stores. The storage provider decodes the file F̃ into
{ fi,j}(1 ≤ i ≤ n, 1 ≤ j ≤ s) and computes the proof of the chal with file chunks
fi,j(i ∈ I, 1 ≤ j ≤ s) with Tag. The storage provider returns the proo f to the users;

• PoR.Veri f y(chal, proo f , name) → {0, 1}. The verify algorithm takes chal, name and
the proo f as the inputs and the {0, 1} as the output. If the storage provider passes
verification, where all q chunks are validated, the algorithm outputs 1. Otherwise, the
algorithm outputs 0.

3.3. Role Definitions

Before introducing our mechanism, three roles—user, IPFS node and miner—are
defined as follows.

• User has the requirements of achieving the blocks data and uploads the cold blocks
which are not required by the IPFS nodes;

• IPFS node owns multiple storage devices and is paid by storing the blocks data and
providing users with bandwidth to achieve the blocks. This role has the responsibility
to prove the integrity of blocks. Therefore, if the IPFS nodes lose the transaction data
pieces, they lose their rewards and are not allowed to store blocks based on the smart
contract. IPFS nodes are part of the users;

• Miner participates in mining blocks. Miner may also be a user.

3.4. Hot and Cold Classifiers

In [21], Chou et al. proposed a solution to classify cold blocks and hot blocks. They
designed two algorithms to classify the hot and cold blocks during the initial phase.
According to their discovery, the most nearly genesis blocks and recent blocks are high-
frequency blocks. We adapt their approach in our model to classify the hot and cold blocks
in the initial phase. Two algorithms were defined in this scope, the front-k algorithm



FinTech 2022, 1 257

and the recent-k algorithm. In their definition, Fk represents the maximum index of the
blocks which is near the genesis block and Rk represents the minimum index of the most
recent blocks. User stores those blocks that block index from 0 to Fk and from Rk to Blktotal ,
representing the highest index of blockchain. The users can define these parameters. The
front-k algorithm and recent-k algorithm are shown in Equation (1).

blk(i) =


Hot, if 0 ≤ blk(i) ≤ Fk,
Hot, if Rk ≤ blk(i) ≤ Blktotal ,
Cold, otherwise.

(1)

After the initial block download (IBD) phase, some hot blocks might be cold blocks for
users. Therefore, the working-set is adapted and integrated with the classifier. When the
number of blocks stored on the user’s local storage reaches the maximum of the working-
set storage, the low-frequency blocks are seen as cold blocks and are stored on IPFS. The
pseudocode of inserting blocks into and reading blocks from the working-set is shown as
Algorithms 1 and 2, respectively. Algorithm 1 takes the most recent block blklatest, the blocks
set in working-set Blkworkingset, and the cold block blkcold as inputs. Lines 2 to 5 present the
order process with the working-set when a new block is received. The most frequent block
is placed at the top of the working-set table. Lines 6 to 9 present the process of popping-out
the low-frequency blocks from the woringset. If the working-set table is full, these lines are
executed. The last block of the working-set table is seen as the low-frequency block and is
prepared to upload to IPFS. The cold block is output and is ready to be uploaded to IPFS.

Algorithm 1: InsertBlockIntoWorkingSet(): Inserts new block into the working-
set table.

input : blklatest: the most recent block; Blkworkingset: the blocks stored in the
working-set

output : blkcold: the cold block need to be distributed
1 blknow = blklatest;
2 for index = 1 to Blkworkingset.Maximumsize do
3 Blkworkingset[index] = blknow;
4 blknow = Blkworkingset[index + 1];
5 end
6 if Blkworkingset.size = Blkworkingset.Maximumsize then
7 blkcold = Blkworingset.last;
8 Blkworkingset.last.pop;
9 . Pop-out the low-frequency block from the working-set table.

10 return blkcold;

Algorithm 2 takes the index of the block Indexblk as input. If the block does not exist
in the working-set, the user needs to obtain the block from the IPFS network, shown in
Line 3. Otherwise, the user needs to find the blocks in the working-set table and reorder
the working-set table caused by the reading behavior. The reading and reordering blocks
procedure is shown in Lines 4 to 10. Then the block is output at the end of this algorithm.
With the working-set, users can free their space by distributing cold blocks to the IPFS
nodes. Hence, we adopt this classifier in our model.



FinTech 2022, 1 258

Algorithm 2: ReadBlockFromWorkingSet(): Read block from the working-set
and update the order

input : Indexblk: the index of the block
output : blkindex: the block needed by user

1 if Blkworkingset.notexist(Indexblk) then
2 blkindex = GetFromIPFS(Indexblk);
3 return blkindex;
4 p = Blkworkingset. f indIndex(Indexblk);
5 blknow = Blkworkingset[p];
6 for index = 1 to p do
7 blkold = Blkworkingset[index];
8 Blkworkingset[index] = blknow;
9 blknow = blkold;

10 end
11 blkindex = Blkworingset[1];
12 return blkindex;

4. System Framework

This section describes our storage reduction mechanism and the pricing strategy. Our
framework is briefly shown in Figure 2. Our framework is based on the public chain which
adopts Proof-of-Work (PoW) as a consensus mechanism. When the new block is generated,
the user receives the new block from the blockchain network via the Peer-to-peer (P2P)
protocol in the blockchain core. The core classifier classifies the hot blocks and cold blocks.
The hot blocks are stored at the local storage and maintained through the working set
by updating the order of the blocks. The cold blocks need to be distributed to the IPFS
nodes. However, as mentioned in Section 3.1, IPFS nodes benefit themselves as much as
possible and should not be trusted before auditing. Therefore, smart contracts are adopted
to reward and regulate IPFS nodes. Different IPFS nodes would join the smart contract as a
coalition. We further describe the smart contract in Section 4.1.

Version August 27, 2022 submitted to Journal Not Specified 9 of 26

Algorithm 2: ReadBlockFromWorkingSet(): Read block from the working-set
and update the order

input : Indexblk: the index of the block
output : blkindex: the block needed by user

1 if Blkworkingset.notexist(Indexblk) then
2 blkindex = GetFromIPFS(Indexblk);
3 return blkindex;
4 p = Blkworkingset. f indIndex(Indexblk);
5 blknow = Blkworkingset[p];
6 for index = 1 to p do
7 blkold = Blkworkingset[index];
8 Blkworkingset[index] = blknow;
9 blknow = blkold;

10 end
11 blkindex = Blkworingset[1];
12 return blkindex;

possible and should not be trusted before auditing. Therefore, smart contracts are adopted 296

to reward and regulate IPFS nodes. Different IPFS nodes would join the smart contract as a 297

coalition. We further describe the smart contract in Section 4.1. 298

Figure 2. The concept of our framework.

At the end of this section, our pricing strategy and the reputation mechanism described 299

in Section 4.2 are introduced. To encourage the IPFS nodes to store the blocks appropriately, 300

the pricing strategy are applied in our model. We combine the redundancy with a factor 301

for replicating the blocks to multiple IPFS nodes to decrease the risk of losing the blocks 302

in our pricing strategy. The details of our pricing strategy are described in Section 4.2.1. 303

Furthermore, the misbehavior of IPFS nodes endangers blocks saving. We integrate the 304

reputation system for each user and select full nodes to store all blocks. The reputation 305

system is integrated with the blockchain core to prevent deploying the user’s blocks to 306

misbehavior contracts. The details are proposed in Section 4.2.2. 307

Figure 2. The concept of our framework.

At the end of this section, our pricing strategy and the reputation mechanism described
in Section 4.2 are introduced. To encourage the IPFS nodes to store the blocks appropriately,
the pricing strategy are applied in our model. We combine the redundancy with a factor



FinTech 2022, 1 259

for replicating the blocks to multiple IPFS nodes to decrease the risk of losing the blocks
in our pricing strategy. The details of our pricing strategy are described in Section 4.2.1.
Furthermore, the misbehavior of IPFS nodes endangers blocks saving. We integrate the
reputation system for each user and select full nodes to store all blocks. The reputation
system is integrated with the blockchain core to prevent deploying the user’s blocks to
misbehavior contracts. The details are proposed in Section 4.2.2.

4.1. Smart Contract

The class diagram of our smart contract is shown in Figure 3. There are four phases to
deploy and retrieve blocks: the setup phase, upload phase, challenge phase and retrieval
phase.These phases are not formulated to execute sequentially, which may incur a syn-
chronous issue. However, our framework becomes more stable after being performed for a
period of time. Our contract is inherited from ORC20, which is similar to ERC20 [41] in
Ethereum and is implemented in our contract. Six major functions are designed in our con-
tract: save_blocks(), remove_blocks(), proo f _blocks(), user_sign_up(), user_o f f line() and
calculate_reward(). The function save_blocks() records the blocks saved by IPFS nodes. In
this function, PoR.Veri f y() is adopted to verify IPFS nodes’ proof. Next, remove_blocks()
is used to remove the registration of storing some blocks, which means that IPFS nodes
give up the right to store these blocks and receive the reward of these blocks. Then the
proo f _blocks() function is used to prove the blocks in the challenge phase. IPFS nodes sign
up the contract through the user_sign_up() function and sign out the contract through the
user_o f f line() function when they no longer store the blocks. At last, the calculate_reward()
function is used to calculate the reward of all IPFS nodes. This function implements our
pricing strategy in Section 4.2.1. The details of each phase are described as follows.

Version August 27, 2022 submitted to Journal Not Specified 10 of 26

4.1. Smart Contract 308

The class diagram of our smart contract is shown in Figure 3. There are four phases to 309

deploy and retrieve blocks: the setup phase, upload phase, challenge phase and retrieval 310

phase.These phases are not formulated to execute sequentially, which may incur a syn- 311

chronous issue. However, our framework becomes more stable after being performed for 312

a period of time. Our contract is inherited from ORC20, which is similar to ERC20[41] in 313

Ethereum and is implemented in our contract. Six major functions are designed in our con- 314

tract: save_blocks(), remove_blocks(), proo f _blocks(), user_sign_up(), user_o f f line() and 315

calculate_reward(). The function save_blocks() records the blocks saved by IPFS nodes. In 316

this function, PoR.Veri f y() is adopted to verify IPFS nodes’ proof. Next, remove_blocks() is 317

used to remove the registration of storing some blocks, which means that IPFS nodes give 318

up the right to store these blocks and get the reward of these blocks. Then the proo f _blocks() 319

function is used to prove the blocks in the challenge phase. IPFS nodes sign up the contract 320

through the user_sign_up() function and sign out the contract through the user_o f f line() 321

function when they no longer store the blocks. At last, the calculate_reward() function 322

is used to calculate the reward of all IPFS nodes. This function implements our pricing 323

strategy in Section 4.2.1. The details of each phase are described as follows. 324

ORC20

Contract
Blocks : block[]
Ipfs : ipfsnode[]
Proofs : proof[]
replication : int

+ save_blocks(pubkey, hash, cid, tagcid, chalcid, proofcid, . . . ) : void
+ remove_blocks(pubkey, hash, . . . ) : void
+ proof_blocks(pubkey, hash, cid, chalcid, proofcid, . . . ) : void
+ user_sign_up(pubkey, ip) : void
+ user_offline(pubkey) : void
+ calculate_reward() : void
+ FindSaveBlock(pubkey): block[]

block
hash : char[]
cid : char[]
tagcid : char[]
savedFileIpfs : int[]

ipfsnode

pubkey : char[]
ip : char[]

proof

cid : char[]
hash : char[]
ipfsIndex : int
time : int32_t

0..*
0..*

0..*

Figure 3. The class diagram of our smart contract.

4.1.1. Setup phase 325

In the setup phase, users must know the available IPFS nodes to distribute the blocks. 326

Therefore, IPFS nodes have to sign up to inform their online status to users. There are 327

two ways to sign up: deploy a new contract or join an existing contract. As we mentioned 328

before, the smart contract can be seen as an IPFS nodes coalition. IPFS nodes in the same 329

contract can share the reward equally. For IPFS nodes, the fewer IPFS nodes signed up in 330

the same contracts, the more rewards they can gain. However, we integrate the reputation 331

system to distribute the blocks to those high-reputation coalitions so it is much riskier for 332

Figure 3. The class diagram of our smart contract.



FinTech 2022, 1 260

4.1.1. Setup Phase

In the setup phase, users must know the available IPFS nodes to distribute the blocks.
Therefore, IPFS nodes have to sign up to inform their online status to users. There are
two ways to sign up: deploy a new contract or join an existing contract. As we mentioned
before, the smart contract can be seen as an IPFS nodes coalition. IPFS nodes in the same
contract can share the reward equally. For IPFS nodes, the fewer IPFS nodes signed up in
the same contracts, the more rewards they can gain. However, we integrate the reputation
system to distribute the blocks to those high-reputation coalitions so it is much riskier for
IPFS nodes to deploy a new contract. Blockchain users store the IPFS nodes’ information in
local storage and prepare to distribute their blocks to the IPFS nodes.

Before IPFS nodes start to store transactions for gaining rewards, they submit a
transaction to the blockchain to sign up on the network. IPFS nodes need to provide proof
of local space, which they claim in the transaction. The setup transaction is broadcast to
each blockchain node and is validated. The pseudocode of the setup contract is shown as
Algorithm 3. Line 1 presents the strategy of IPFS nodes. If the strategy of the IPFS node is
the coalition, the IPFS node finds the best profit contract to join. Otherwise, creating a new
contract in Line 4 is another option for IPFS nodes. Once the contract is created or selected,
the IPFS node signs up and sends the transaction to the contract, which is presented in
Line 5.

Algorithm 3: Setup(): the IPFS node deploys a new contract or signs up to an
existing contract.

input : pk: public key; strategy: the strategy of IPFS nodes: including joining the
coalition or creating a new contract; ipAddress: the IP address of IPFS
nodes

output : contract: the contract to send transaction or deploy
1 if strategy = StrategyOption.coalition then
2 contract = chooseBestPro f itContract()
3 else if strategy = StrategyOption.newContract then
4 contract = Contract.new()
5 contract.Signup(pk, ipAddress)
6 return contract

4.1.2. Upload Phase

After a user receives the blocks from the blockchain network and the cold blocks are
classified by a hot-cold classifier, the user then needs to upload the cold blocks to the IPFS
network. The pseudocode of users and IPFS nodes are shown in Algorithms 4–6. The
sequence diagram of this phase is shown in Figure 4.

Before the user uploads his blocks to the IPFS network, the user checks up on the
contracts already uploaded to the blockchain. If there is a contract containing the cold
block’s hash, other users have already uploaded that cold block. As a result, the users
are involved in validating the blocks instead of uploading their blocks. However, if the
validation fails, the user has to pick up another contract to store the blocks. Furthermore,
the reputation of the failed contracts can be decreased. The reputation factors influence
the behavior of users. The details are described in Section 4.2.2. Once the user chooses the
contract, the user notifies the IPFS nodes to store the specific block. The user sends the
message including the block hash, the cid of the blocks, the cid of the challenge, and the cid
of the tag files to the IPFS nodes via the P2P network.



FinTech 2022, 1 261Version August 27, 2022 submitted to Journal Not Specified 12 of 26

User IPFS Node Miner

mining()

blk
blk

InsertBlockIntoWorkingSet()

blkcold
UploadBlocks()

msg
msg : {cidblk, cidTag, cidchal}

IPFS: pin()

receiveBlocks()

proo f
transaction

mining()

blk
blk

receiveContract()

State

Figure 4. The sequence diagram of the upload phase.

Algorithm 4 shows the pseudocode of the user uploading their blocks to IPFS nodes. 374

The user selects the contract with a reputation of not less than 0 in Line 3. If the user finds 375

that the block already exists in the contract, the user produces the challenge and goes ahead 376

into the challenge phase in Line 5 and Line 6. Otherwise, the user produces the Tag in Line 377

9 and the Chal in Line 11. After uploading the Tag, Chal and blk, the user appends the cid 378

of these files into msg in Line 14 and sends it to the IPFS nodes. In Algorithm 5, Line 5 379

shows that the IPFS nodes gather the block from IPFS. One of the specific features of the 380

IPFS network is that all files are stored single. In other words, only one user stores a unique 381

file. However, IPFS provides some solutions to prevent such a single failure. The IPFS 382

node creates a cache file when providing files. It is unsafe to relate to the cache to prevent 383

the blocks from getting lost in our situation. We use the Pin function to gather the file at 384

the local storage and provide them for the whole IPFS network. According to the user 385

challenge, Line 6 generates the proof of blocks through the PoR.chal protocol. Hence, the 386

proof is stored in the IPFS network in Line 7 and is used to prove the block in the contract. 387

In Line 13, the IPFS node dynamically stores the blocks into local storage; the details are 388

described in Section 4.2.1. 389

When the user receives the new transaction which contains the contract, the user exe- 390

cutes Algorithm 6. The user conducts the contract with the contract function save_blocks() 391

in Line 3. Then user verifies the proofs in Line 9. If the verification passes, the user finds 392

Figure 4. The sequence diagram of the upload phase.

When IPFS nodes receive the user’s message to gather the cold blocks from the IPFS
network, they generate the proof and push it into the IPFS network. Although uploading
the proof into the smart contract is another solution to validate the integrity, the size of
the CID is much smaller than the whole proof. After validating, the proofs are no longer
necessary for the future and are enabled to forget to reserve more free storage space for
storing other blocks. Therefore, the IPFS nodes send the contract transactions with the CID,
the hash of the block and the CID of proof to the miner for packing them into new blocks.
When other IPFS nodes receive the contract transaction, they try to request the blocks they
have not stored before from the IPFS node and store them for rewards. Eventually, this
block is stored in duplicate in different IPFS nodes. The details of this process are described
in Section 4.2.1. During this process, the user receives the contract transaction from the
network and the hash of the block is compared with the hash of the cold blocks at the local
storage. If the hashes of two blocks are the same, users execute the proof validation process.
The block is to be deleted after the validation is succeeded. Otherwise, the user has to
request other contracts to store the block.

Algorithm 4 shows the pseudocode of the user uploading their blocks to IPFS nodes.



FinTech 2022, 1 262

Algorithm 4: UploadBlocks(): User uploads the cold blocks
input : Blkcold: the set of cold block to upload; Parameters: the parameters which

are needed for integrity validation; Contracts: the list of contracts;
Reputations: the list of reputation

output : msg: the message to be sent to the IPFS nodes;
1 for index = 0 to Contracts.size() do
2 msg = [];
3 if Repuatations. f ind(Contract[index].hash).value > 0 then
4 foreach blkcold ∈ Blkcold do
5 if contract.exists(blkcold.hash) then
6 ProduceChallenge();
7 break;
8 else
9 Tag, F̃, name = PoR.St(keymac, blkcold);

10 chal = PoR.Chal(keymac, name, timelimit);
11 cidblk = uploadIPFS(blkcold);
12 cidTag = uploadIPFS(Tag);
13 cidchal = uploadIPFS(chal);
14 msg.append(Contract.nodes, cidblk, cidTag, cidchal);
15 end
16 end
17 end
18 end
19 return msg;

The user selects the contract with a reputation of not less than 0 in Line 3. If the user
finds that the block already exists in the contract, the user produces the challenge and goes
ahead into the challenge phase in Line 5 and Line 6. Otherwise, the user produces the Tag
in Line 9 and the Chal in Line 11. After uploading the Tag, Chal and blk, the user appends
the cid of these files into msg in Line 14 and sends it to the IPFS nodes. In Algorithm 5,
Line 5 shows that the IPFS nodes gather the block from IPFS. One of the specific features of
the IPFS network is that all files are stored single. In other words, only one user stores a
unique file. However, IPFS provides some solutions to prevent such a single failure. The
IPFS node creates a cache file when providing files. It is unsafe to relate to the cache to
prevent the blocks from getting lost in our situation. We use the Pin function to gather the
file at the local storage and provide them for the whole IPFS network. According to the user
challenge, Line 6 generates the proof of blocks through the PoR.chal protocol. Hence, the
proof is stored in the IPFS network in Line 7 and is used to prove the block in the contract.
In Line 13, the IPFS node dynamically stores the blocks into local storage; the details are
described in Section 4.2.1.

When the user receives the new transaction which contains the contract, the user exe-
cutes Algorithm 6. The user conducts the contract with the contract function save_blocks()
in Line 3. Then user verifies the proofs in Line 9. If the verification passes, the user finds
the block in the set of the already deployed list. If the block is in the set, the user increases
or decreases the reputation of the contract in Lines 12 and 14. Otherwise, the users save the
blocks on disk in Line 17.



FinTech 2022, 1 263

Algorithm 5: ReceiveBlocks(): IPFS node receives the storing request
input : msgs: the message of storing data request;pubkey: the public key of the

IPFS node;
output : transaction: the contract transaction

1 transaction.command = "save_blocks";
2 transaction.pubkey = pubkey;
3 i = 0;
4 foreach msg ∈ msgs do
5 blkcold, Tagblk, Chalblk = gatherFromIPFS(msg.cidblk, msg.cidTag, msg.cidchal);
6 proo fblk = PoR.prove(blkcold, Tagblk, Chalblk);
7 cidProo f = uploadIPFS(proo fblk);
8 transaction.Blocks[i].cid = cid;
9 transaction.Blocks[i].proo f cid = cidProo f ;

10 transaction.Blocks[i].hash = Blkcold.hash;
11 transaction.Blocks[i].chalcid = msg.cidchal ;
12 transaction.Blocks[i].tagcid = msg.cidTag;
13 dynamicStoringBlocks();
14 end
15 return transaction;

Algorithm 6: receiveContract(): User receives the contract transaction.
input : transaction: the contract transaction; contract: the contract whose address

and the contract address of the transaction are the same;
output : contractupdated: the contract which has already been modified;

1 contractupdated = contract;
2 if transaction.command == ”save_blocks” then
3 contractupdated.save_blocks(transaction.pubkey, transaction.Blocks[0].hash,

transaction.Blocks[0].cid, transaction.Blocks[0].tagcid,
transaction.Blocks[0].chalcid, transaction.Blocks[0].proo f cid, . . . ,
transaction.Blocks[i].hash, transaction.Blocks[i].cid,
transaction.Blocks[i].tagcid, transaction.Blocks[i].chalcid,
transaction.Blocks[i].proo f cid);

4 hashalreadyDeploy, cidalreadyDeploy = FindAlreadyDeployBlk();
5 foreach block ∈ transaction.Blocks do
6 proo f = GetBackFromIPFS(block.proo f cid);
7 name = FindOutBlockName(block.hash);
8 chal = GetBackFromIPFS(block.chalcid);
9 result = PoR.Veri f y(chal, proo f , name);

10 if block.hash ∈ hashalreadyDeploy then
11 if result == 1 then
12 IncreaseContractReputation(contract.hash);
13 else
14 DecreaseContractReputation(contract.hash);
15 end
16 else
17 SaveToDisk(block);
18 end
19 end
20 end
21 return contractupdated;



FinTech 2022, 1 264

4.1.3. Challenge Phase

To make the challenge phase clearer, Figure 5 shows the procedure of this phase.

Version August 27, 2022 submitted to Journal Not Specified 14 of 26

Algorithm 6: receiveContract(): User receives the contract transaction.
input : transaction: the contract transaction; contract: the contract whose address

and the contract address of the transaction are the same;
output : contractupdated: the contract which has already been modified;

1 contractupdated = contract;
2 if transaction.command == ”save_blocks” then
3 contractupdated.save_blocks(transaction.pubkey, transaction.Blocks[0].hash,

transaction.Blocks[0].cid, transaction.Blocks[0].tagcid,
transaction.Blocks[0].chalcid, transaction.Blocks[0].proo f cid, . . . ,
transaction.Blocks[i].hash, transaction.Blocks[i].cid,
transaction.Blocks[i].tagcid, transaction.Blocks[i].chalcid,
transaction.Blocks[i].proo f cid);

4 hashalreadyDeploy, cidalreadyDeploy = FindAlreadyDeployBlk();
5 foreach block ∈ transaction.Blocks do
6 proo f = GetBackFromIPFS(block.proo f cid);
7 name = FindOutBlockName(block.hash);
8 chal = GetBackFromIPFS(block.chalcid);
9 result = PoR.Veri f y(chal, proo f , name);

10 if block.hash ∈ hashalreadyDeploy then
11 if result == 1 then
12 IncreaseContractReputation(contract.hash);
13 else
14 DecreaseContractReputation(contract.hash);
15 end
16 else
17 SaveToDisk(block);
18 end
19 end
20 end
21 return contractupdated;

User IPFS Node Miner

ProduceChallenge()

Chal
Chal

ProveBlocks()

Proo f s
transaction

mining()

blk
blklatest

PoR.Veri f y()

{0/1}

Figure 5. The sequence diagram of the challenge phase.Figure 5. The sequence diagram of the challenge phase.

After the user uploads the blocks to the IPFS node, the IPFS node has to be validated
by the user through the PoR protocol to commit the block integrity. Therefore, the user
has to generate the chal to that IPFS node, which already stored the blocks and declared
the store action in the smart contract. In this phase, we define interval, which represents
the challenge interval, and numberchal , which represents the number of challenging blocks.
For example, if interval equals 1000 and numberchal equals 50, the user randomly selects
50 blocks to validate every 1000 blocks. In each block which needs to be challenged, the user
randomly chooses l pieces of the blocks and produces the Chal: {chali}(1 ≤ i ≤ numberchal)
through the PoR.Chal protocol. Once the user generates the chal, the user sends the chal to
the IPFS node via P2P. During the P2P connection, there are two ways to send the challenges
and proofs: sending them directly via P2P or uploading them to the IPFS network. In
this scope, the second solution is much better. The hash of the IPFS network is much
smaller than the size of the challenge or proofs, so the bandwidth of the message is much
smaller. Furthermore, other users could also prove the blocks by retrieving the challenge
and the proof with the CID hash. After receiving the chal from the user, the IPFS node
needs to prove the block F̃ corresponding to the chal through the PoR.Prove protocol and
produce the proo f . The proo f is then uploaded to the smart contract and is validated by
every blockchain node. If the proo f has been proved successfully, the user increases the
reputation of the contract to which the IPFS node belongs and may select this contract the
next time. Otherwise, the user decreases the reputation of the IPFS nodes according to our
reputation strategy.

In Algorithm 7, the user randomly selects numberchal blocks in Line 2. Suppose that
the rand() function generates a unique random number from a given set. Line 5 finds the
name of this block from local storage with the hash hashindex. Then, Line 6 generates the
chal of this block through PoR.Chal. When the IPFS nodes receive the Chal from the users,
they conduct Algorithm 8. IPFS nodes find the Tag and blk, which are related to hash. Then



FinTech 2022, 1 265

proo f is computed through PoR.Prove with Tag and blk. Once the proo f is received from
the IPFS nodes, the user conducts Algorithm 9. The user verifies the Proo f s in Line 5 and
updates the reputations according to the result in Line 7 or Line 9.

Algorithm 7: ProduceChallenge(): User produces challenge.
input : nodei: the node which is the target of the challenge, 1 ≤ i ≤ m; Hashi: the

hash set of blocks which are stored by the IPFS node i; numberchal : the
number of challenging blocks; keymac: the mac key generated by the user;
State: the contract state;

output : Chal: the challenge set
1 for j = 0, 1, . . . , numberchal do
2 index = rand(0, Hashi.length);
3 hashindex = Hashi[index];
4 Hashi.pop(index);
5 namej = FindOutBlockName(hashindex);
6 chalindex = PoR.Chal(keymac, namej, timeNow());
7 cidchal = uploadIPFS(chalindex);
8 Chal.append(hashindex, cidchal);
9 end

10 return Chal;

Algorithm 8: ProveBlocks(): IPFS node proves the challenge.
input : Chal: the set of chal produced by user in Algorithm 7;
output : Proo f s: the set of proo f generated through PoR.Prove

1 for i = 0, 1, . . . , Chal.length do
2 chali = gatherFromIPFS(Chal[i][1]);
3 Tagi = FindTag(Chal[i][0]);
4 blkhash = FindBlock(Chal[i][0]);
5 proo f = PoR.Prove(chali, blkhash, Tagi);
6 cidproo f = uploadIPFS(proo f );
7 Proo f s.append(cidproo f );
8 end
9 return Proo f s;

Algorithm 9: ValidateChal(): User validates the challenge.
input : Chal: the challenge produced by the user; Proo f s: proof produced by IPFS

node; addcontract: the contract address;
output : result: the result of validating the proof. The result will be 1/0.

1 for j = 0, 1, . . . , Proo f s.length do
2 namej = FindOutBlockName(Chal[i][0]);
3 chalj = gatherFromIPFS(Chal[i][1]);
4 proo f j = gatherFromIPFS(Proo f s[j]);
5 result = PoR.Veri f y(chalj, proo f j, namej) ;
6 if result == 1 then
7 IncreaseContractReputation(addcontract);
8 else
9 DecreaseContractReputation(addcontract);

10 end
11 end
12 return result;



FinTech 2022, 1 266

Although the IPFS node may decide to refuse the challenge without the supervision
of users, the IPFS node does not lose any reward and still benefits while providing the
blocks. To prevent this situation, these misbehaving IPFS nodes have to be removed from
the contracts. As we mentioned in Section 3.3, IPFS nodes are the part of users and have
the right to challenge other IPFS nodes. Hence, the IPFS node challenges misbehaving
IPFS nodes and receives a failure response or no response. It sends the contract transaction
to remove that failure node. When half of the IPFS nodes send and receive the remove
transaction, that misbehaving IPFS node no longer has permission to store the blocks and
can not achieve any reward from the contract.

4.1.4. Retrieval Phase

To connect the block to the previous block and to prevent double-spending, the user
needs to read the particular blocks from the disk. There are three places to find out the
blocks in our scheme: the working-set table, cold pool, and IPFS network. The higher
frequency blocks may be more possibly stored in the working set table to improve the hit
ratio. However, the cold blocks may be fulfilled in the working set table and be appended
to the cold pool. Therefore, the user finds the cold block in the cold pool after finding it in
the working-set table. When the user cannot find it in the local storage, they can retrieve
the blocks from IPFS with the CID. With the PoR protocol, users can validate the blocks’
integrity and push blocks into their working-set table.

4.2. Pricing Strategy, Redundancy and Reputation

In previous sections, we have already introduced all phases of our contract. Although
the PoR protocol could validate blocks stored in the IPFS nodes, it is not a solution to
prevent the IPFS nodes from getting offline or behaving maliciously. We adopt two solutions
in our framework, pricing strategy and reputation. On the one hand, the pricing strategy
regulate IPFS in an incentive way. The involvement of replicating blocks based on a
pricing strategy is incentive for IPFS nodes. When the IPFS node stores more blocks, it
can receive more rewards and increase the redundancy of blocks. On the other hand, the
reputation provides a way for the users to prevent deploying their blocks to those low
credit coalition contracts.

4.2.1. Pricing Strategy and Redundancy

To incentivize IPFS nodes to store blocks, it is necessary to design a reward strategy.
In our framework, we provide two pricing strategies: the balancing pricing strategy and
the non-balancing pricing strategy. The symbols we defined are shown as Table 2. The
pricing strategy is conducted by each node in each interval. Our framework defines the
interval as 100 blocks because the mining reward is offered to the miner every 100 blocks.
Furthermore, the IPFS nodes dynamically adjust their number of saving blocks to fit each
block’s pricing strategy to achieve the maximum benefit.

In general, IPFS nodes prefer to store as many blocks as possible to maximize their
profit. We first propose a non-balancing strategy to reward the IPFS nodes. The reward of
this strategy is shown as Equation (2). The symbol o represents the block number deployed
to this contract and m represents the number of IPFS nodes registered in this contract. Let
lm denote the number of the saving blocks stored in node m. The reward is positively
related to the number of stored blocks.

Rnb(lm) =
{ lm×θ

o×m , (0 < lm ≤ o×m),
0, otherwise.

(2)

However, there might be a situation in which a single node stores numerous blocks,
which causes a single failure. To balance the block distribution in the IPFS network, we then
designed a balance pricing strategy. We defined a dynamic threshold to rule the maximum
storing block number. The threshold is defined as Equation (3), where α represents the
replication number of this contract. For example, α = 3 means there are at least three



FinTech 2022, 1 267

nodes to store the same block i. In other words, there is three times data redundancy in
this contract.

δ = α× o
m

. (3)

Furthermore, the reward mechanism is given by Equation (4) according to our dynamic
threshold in Equation (3). In each block, there are ci nodes that store the same blocks, where
i = 1, 2, 3, . . . , lm. We let θ denote the rewards. Furthermore, we define a punishment
factor w, which limits the reward. We suppose that the IPFS node gains the maximum
rewards when it stores δ blocks and gains no pay when it stores w× δ blocks. In our reward
mechanism, we increase each block’s replication factor to encourage the IPFS nodes to
retrieve blocks whose numbers are lower than α. If the IPFS node is storing blocks in which
ci is 2, the IPFS node may achieve 1.5× lm × θ

δ when α is 3 and lm ≤ δ.

Rb(lm) =


∑lm

i=0(
α
ci
× θ

δ ), (0 ≤ lm ≤ δ),

∑lm
i=0(

α
ci
)× −θ

δ×(w−1) +
θ

w−1 , (δ < lm ≤ w× δ),
0, otherwise.

(4)

However, according to [26], given a fixed profit, it is hard to encourage IPFS nodes
to retrieve data blocks when storing the same quantity of blocks. Therefore, a threshold
is defined to push IPFS nodes to store more blocks. Assume that an IPFS node stores lm
blocks, where lm ≤ δ. Thus, the IPFS node stores lm + 1 blocks after retrieving one more
block. Given the storage cost constant factor z, z× lm represents the storage cost of an IPFS
node. Equation (4) is simplified to Equation (5), as the saving condition in each block is
not considered.

Rb(lm) =


lm
δ , (0 ≤ lm ≤ δ),

lm × −θ
δ×(w−1) +

θ
w−1 , (δ < lm ≤ w× δ),

0, otherwise.
(5)

Finally, lm + 1 blocks are stored in the IPFS nodes, where lm + 1 > δ + 1
m . The formulas

of the threshold before encouraging IPFS nodes, and the modified threshold are given by
Equations (6) and (7), respectively.

y =
lm × θ

δ
− z× lm (6)

y′ = (lm + 1)× −θ

(δ + 1
m )× (w− 1)

+
θ

w− 1
− z× (lm + 1). (7)

Let y′ blocks push to IPFS nodes for storing more blocks, where y′ > y. We assume the
maximum profit, where lm = δ. To simplify the equation, let θ = 1 and m ≥ 1 . As shown
in Equation (8), the mathematical derivation is similar to the details in [26].

−(lm + 1)
(δ + 1

m )× (w− 1)
+

1
w− 1

− z× (lm + 1) >
lm
δ
− z× lm

−(δ + 1)
(δ + 1

m )× (w− 1)
+

1
w− 1

− 1 > z

−(δ + 1)
δ + 1

m
+ 1− (w− 1) > z× (w− 1)

1− δ− 1
δ + 1

m
> z× (w− 1) + w + 1

1
m
− 1 > (z× (w− 1) + w + 1)× (δ +

1
m
).

(8)



FinTech 2022, 1 268

In Equation (5), since we define that w must be greater than 0, the value of the equation
must also be greater than 0. The threshold is redefined as shown in Equation (9).

δ = α× (b o
m
c+ 1). (9)

In our smart contract, we design a function called dynamicStoringBlocks() to drive the
IFPS nodes to dynamically adjust the number of blocks stored in their own local storage.
The pseudocode is shown in Algorithm 10. In Line 1, the IPFS node finds out the number
of blocks it registered to store in the contract. The IPFS node compares the num with the
δ, as shown in Line 2 and Line 13. On the one hand, if the num is smaller than δ, the IPFS
node randomly selects the block from the block set that it has not saved as a candidate to
store. If the num has not been over the δ, this block is chosen into Blockssave. On the other
hand, when num is larger than δ, the IPFS node removes those blocks already over the α.

Algorithm 10: dynamicStoringBlocks(): IPFS nodes dynamically adjusts the
number of blocks with load-balancing pricing strategy.

input : contract: the contract; pubkey: the public key of the IPFS node
output : Blockssave: the Block set which the IPFS node wants to save; Blocksremove:

the Block set which S wants to remove
1 num = contract.FindSavedBlock(pubkey).length ;
2 if num < α× contract.Blocks.length / contract.Ip f s.length then
3 Blocksnever_saved = NotSavedBlocks(contract,pubkey);
4 saving_num = 0 ;
5 foreach block : contract.Blocks do
6 while num + saving_num <

contract.replication× contract.Blocks.length/contract.Ip f s.length do
7 randIndex = rand(0,Blocksnever_saved.length);
8 Blockssave.append(Blocksnever_saved[randIndex]);
9 Blocksnever_saved.pop(randIndex);

10 saving_num = saving_num + 1;
11 end
12 end
13 else if num > α× contract.Blocks.length/contract.Ip f s.length then
14 sortedDESCByIpfsRegisterNumber(contract.Blocks);
15 foreach block : contract.Blocks do
16 if contract.FindSaveBlock(pubkey).has(block) == 1 and num >

contract.replication× contract.Blocks.length/contract.Ip f s.length then
17 Blocksremove.append(block);
18 num = num− 1;
19 end
20 end
21 return Blockssave,Blocksremove;

Although the pricing strategy provides a way to protect the blocks from being lost,
blocks are still facing the risk of offline nodes. We design a full node in our contract to
store the whole blocks in the contract. The full nodes are selected randomly from those low
failure rate nodes. The reward of full nodes is significantly higher than general nodes to
encourage these full nodes.

4.2.2. Reputation

Each user has its reputation table, which means their reputation mechanism works
independently. The user selects those contracts with a high reputation in the upload phase.
As we mentioned in Section 4.1.3, the reputation of the contract increases when the user



FinTech 2022, 1 269

verifies the proof provided by the IPFS node. Most of the time, the reputation table is a
form of self-insurance and is not involved in the reward mechanism. However, it is still
critical to the IPFS node because users provide the blocks to them to achieve the rewards.

5. Experimental Results

The experiments aim to evaluate the performance of our framework. The experiments
were conducted by running several nodes in the Bitcoin network in regtest mode. The
details of our hardware specification are shown in Table 3. The Bitcoin core version is
0.18.0 and has already been modified to implement smart contracts. These nodes are all
running in docker containers with IPFS. The IPFS version is 0.12.2. First of all, we evaluate
different time latency of running the six nodes that act in different roles, including the
upload, challenge and retrieval phases. Next, we prove our load-balancing pricing strategy
by evaluating the number of block in six nodes. Furthermore, the throughput of our
framework was evaluate. Finally, the access full node rate of our framework was evaluated.

Table 3. Hardware specification for our experimental environment.

CPU Intel(R) Core(TM) i9-9900K CPU *1 & i7-8700K CPU *3
& i7-7700K CPU *1 & E5-1620 CPU *1

Ram 32 GB *4 & 24GB *2
SSD 1TB *1 & 512 GB *4 & 250GB *1
OS Linux Ubuntu 18.04 LTS Distribution

5.1. Latency

In the first experiment, the latency between different phases was discussed. We create
one miner, three IPFS nodes, and two users in our blockchain network. We then ran each
node on separate computers to make the scenario more real. The latency of different phases
in generating 3000 to 4000 blocks was evaluated. Table 4 shows the parameters of this
experiment. When the size of the working set is large, the space requirement at the local
storage is high. As a result, the hit ratio is very likely to be high as well so that the chance
of requesting data blocks from IPFS nodes is low. On the other hand, a larger size of cold
pool incurs more transmission time. The interval of challenge determines the level of data
security. If the interval is short, more challenges are issued frequently for validation; hence,
the system incurs longer latency.

Table 4. Experimental parameters.

Parameters Values

Size of working set 100 blocks
Size of cold pool 30 blocks

Interval of mining 3 s
Interval of challenge 300 blocks
Blocks to challenge 10 blocks

Total blocks 4000

To generate the coin to deploy and call the contract, we conducted mining of 100
blocks in IPFS nodes computers, which means the experiment starts at a height of 300.
Firstly, the results of the upload phase were evaluated. Figure 6 shows these results.



FinTech 2022, 1 270

Version August 27, 2022 submitted to Journal Not Specified 20 of 26

node on separate computers to make the scenario more real. The latency of different phases 511

in generating 3,000 to 4,000 blocks was evaluated. Table 4 shows the parameters of this 512

experiment. When the size of the working set is large, the space requirement at the local 513

storage is high. As a result, the hit ratio is very likely to be high as well so that the chance 514

of requesting data blocks from IPFS nodes is low. On the other hand, a larger size of cold 515

pool incurs more transmission time. The interval of challenge determines the level of data 516

security. If the interval is short, more challenges are issued frequently for validation; hence, 517

the system incurs longer latency. 518

Table 4. Experimental parameters

Parameters Values

Size of working set 100 blocks
Size of cold pool 30 blocks

Interval of mining 3 seconds
Interval of challenge 300 blocks
Blocks to challenge 10 blocks

Total blocks 4000

To generate the coin to deploy and call the contract, we conducted mining of 100 519

blocks in IPFS nodes computers, which means the experiment starts at a height of 300. 520

Firstly, the results of the upload phase was evaluated. Figure 6 shows this results. 521

1000 2000 3000

10−3

10−1.7

10−0.4

100.9

102.2

Height

La
te

nc
y(

se
c)

Total Latency PoR.St Latency Contract Latency

Figure 6. The time latency of the upload phase.

For the first 400 blocks, the overall latency is higher than most of the time. The cold 522

blocks stacking in the cold pool and deployed when nodes are available causes the result. 523

On average, the latency of deploying the blocks to IPFS nodes overcomes 40 seconds, 524

which takes only 6.67% of the mining time of the Bitcoin mainnet (10 minutes per block 525

on average). We consider the latency to be acceptable. Furthermore, the latency caused by 526

the proof of retrievability was illustrated. The average latency of PoR.St is 0.0015 seconds. 527

Compared with the overall latency, it is efficient to compute. 528

Figure 6. The time latency of the upload phase.

For the first 400 blocks, the overall latency is higher than most of the time. The cold
blocks stacking in the cold pool and deployed when nodes are available causes the result.
On average, the latency of deploying the blocks to IPFS nodes overcomes 40 s, which takes
only 6.67% of the mining time of the Bitcoin Mainnet (10 min per block on average). We
consider the latency to be acceptable. Furthermore, the latency caused by the proof of
retrievability was illustrated. The average latency of PoR.St is 0.0015 s. Compared with the
overall latency, it is efficient to compute.

Secondly, we conducted the latency of the challenge phase, which is shown in Table 5.
Contract broadcasting consumes most of the time. Finally, the performance of the retrieval
phase was evaluated. The average time of retrieving from IPFS is twice that of the local
storage. However, it is acceptable to retrieve from IPFS in 0.01 s. Unlike the original
blockchain, our framework increases the latency incurring from broadcasting and mining
blocks. Nevertheless, our framework guarantees block integrity and a robust network.

Table 5. Average latency in each phase.

Upload Phase Retrieve Phase
Challenge Phase

Tag Contract Total Local IFPS

0.0015 s 13.304 s 14.038 s 0.00563 s 0.01 s 23.274 s

5.2. Throughput

To avoid increasing the overloading of the network, the throughput of our framework
was evaluated. We executed the experiments using the same parameters as described in
the previous section, which are shown in Table 4. To focus on the throughput effect of
our framework, the blockchain that does not contain transactions other than contracts
were conducted. As shown in Figure 7, we compare the results in two different heights
of source Bitcoin. Firstly, the throughputs when the height of Bitcoin is under 4000 were
compared. Our throughput performance is similar to the throughput of Bitcoin. Secondly,
we compare our framework with Bitcoin with height between 700,000 and 710,000. The
increased throughput in our framework takes only 0.167% of the original Bitcoin. The
number of transactions is extremely low in our network, which means our framework



FinTech 2022, 1 271

does not increase the overhead to influence blockchain performance. It shows that our
framework is scalable to be deployed in different applications.

Version August 27, 2022 submitted to Journal Not Specified 21 of 26

Secondly, we conducted the latency of the challenge phase, which is shown in Table 5. 529

Contract broadcasting consumes most of the time. Finally, the performance of the retrieval 530

phase was evaluated. The average time of retrieving from IPFS is twice that of the local 531

storage. However, it is acceptable to retrieve from IPFS in 0.01 seconds. Unlike the original 532

blockchain, our framework increases the latency incurring from broadcasting and mining 533

blocks. Nevertheless, our framework guarantees block integrity and a robust network. 534

Table 5. Average latency in each phase

Upload phase Retrieve phase Challenge phaseTag Contract Total Local IFPS

0.0015s 13.304s 14.038s 0.00563s 0.01s 23.274s

5.2. Throughput 535

To avoid increasing the overloading of the network, the throughput of our framework 536

was evaluated. We executed the experiments using the same parameters as described in 537

the previous section, which are showns in Table 4. To focus on the throughput effect of 538

our framework, the blockchain that does not contain transactions other than contracts 539

were conducted. As shown in Figure 7, we compare the results in two different heights 540

of source Bitcoin. Firstly, the throughputs when the height of Bitcoin is under 4000 were 541

compared. Our throughput performance is similar to the throughput of Bitcoin. Secondly, 542

we compare our framework with the Bitcoin with height between 700,000 to 710,000. The 543

increased throughput in our framework takes only 0.167% of the original Bitcoin. The 544

number of transactions is extremely low in our network, which means our framework 545

does not increase the overhead to influence blockchain performance. It shows that our 546

framework is scalable to be deployed in different applications. 547

1000 2000 3000 4000

105

106

107

108

109

Height

By
te

s

Bitcoin with height between 700k to 710k
Bitcoin with height between 1 to 4000
Our framework

Figure 7. The throughputs between different heights of bitcoin and our framework.Figure 7. The throughputs between different heights of bitcoin and our framework.

5.3. Full Node Access Rate

Although the full node is provided to decrease the risk of missing blocks, the frequency
of requesting blocks from the full node is as low as possible with the efficiency pricing
strategy. These experiments are conducted to show the frequency of retrieving the blocks
from full nodes. The experiments were conducted 100 times and randomly chose the offline
IPFS nodes. The blockchain height is 10,000 and the number of IPFS nodes is 100. The
average size of the blocks is 223.8345 bytes. To distinguish the effect of storage size on
access rate, two experiments were carried out with different storage sizes. In the first
experiment, we limited the storage size of IPFS nodes between 50 KB and 100 KB and
randomly assigned different sizes. The result of this experiment is shown in Figure 8.

The experimental results show that the access rate of the balancing strategy is lower
than the access rate of the non-balancing strategy. When 20 nodes go offline, the access rate
of the non-balancing strategy and the balancing strategy is 0.8254 and 0.0193. The access
rate of the balancing strategy is 42 times higher than that of the non-balancing strategy.
However, in the second experiment, in which we limit the storage size to between 2000 KB
and 4000 KB, the access rate of the balancing strategy is lower than the non-balancing
strategy. Figure 9 presents the results of the second experiment.



FinTech 2022, 1 272

Version August 27, 2022 submitted to Journal Not Specified 22 of 26

5.3. Full node access rate 548

Although the full node is provided to decrease the risk of missing blocks, the frequency 549

of requesting blocks from the full node is as lower as possible with the efficiency pricing 550

strategy. These experiments are conducted to show the frequency of retrieving the blocks 551

from full nodes. The experiments were conducted 100 times and randomly chose the offline 552

IPFS nodes. The blockchain height is 10,000 and the number of IPFS nodes is 100. The 553

average size of the blocks is 223.8345 bytes. To distinguish the effect of storage size on access 554

rate, two experiments were carried out with different storage sizes. In the first experiment, 555

we limited the storage size of IPFS nodes between 50KB and 100KB and randomly assigned 556

different sizes. The result of this experiment is shown in Figure 8. 557

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Offline nodes

A
cc

es
s

ra
te

Balancing pricing strategy
Non-balancing pricing strategy

Figure 8. The access rate of different pricing strategies when the storage size is limited between 50KB
and 200KB.

The experimental results show that the access rate of the balancing strategy is lower 558

than the access rate of the non-balancing strategy. When 20 nodes get offline, the access rate 559

of the non-balancing strategy and the balancing strategy is 0.8254 and 0.0193. The access 560

rate of the balancing strategy is 42 times higher than that of the non-balancing strategy. 561

However, in the second experiment, in which we limit the storage size to between 2000KB 562

and 4000KB, the access rate of the balancing strategy is lower than the non-balancing 563

strategy. Figure 9 presents the results of the second experiment. 564

Figure 8. The access rate of different pricing strategies when the storage size is limited between 50 KB
and 200 KB.

Version August 27, 2022 submitted to Journal Not Specified 23 of 26

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Offline nodes

A
cc

es
s

ra
te

Balancing pricing strategy
Non-balancing pricing strategy

Figure 9. The access rate of different pricing strategies when the storage size is limited between
2,000KB and 4,000KB.

In the second experiment, the storage size is sufficient for the nodes to store more 565

blocks. In our assumption, the nodes store as many blocks as possible. This behavior 566

improves the replicas in the network and decreases the access rate. However, the storage 567

size of each node is fulfilled with the non-balancing strategy in the future, which is the 568

situation of the first experiment. The blocks are able to be stored in the network and get lost 569

at last. The balancing strategy guarantees the availability at least. Furthermore, the overall 570

storage consumption is much greater for the non-balancing strategy. Table 6 presents the 571

different storage consumptions of the two strategies. The load-balancing pricing strategy 572

reduce 97% of the storage size, compared to the non-load-balancing pricing strategy. 573

The overall storage consumption of the non-balancing strategy is 33 times higher 574

than the balancing strategy. Storage consumption is very important for IPFS nodes, as 575

it affects the cost of keeping them and reduces the credit drop due to failure to provide 576

blocks. To determine the effect of different storage sizes in the non-balancing strategy, 577

our experiments were conducted in four conditions: 50KB-100KB, 100KB-200KB, 1,000KB- 578

2,000KB and 2,000KB-4,000KB, which is shown as Figure 10. The access rate is significantly 579

negatively related to the storage size of the nodes. 580

Table 6. Storage consumptions

balancing strategy non-balancing strategy

Overall 6.305 MB 210.159 MB
Average per node 66.122 KB 2269.804 KB

Figure 9. The access rate of different pricing strategies when the storage size is limited between
2000 KB and 4000 KB.

In the second experiment, the storage size is sufficient for the nodes to store more
blocks. In our assumption, the nodes store as many blocks as possible. This behavior im-
proves the replicas in the network and decreases the access rate. However, the storage size
of each node is fulfilled with the non-balancing strategy in the future, which is the situation
of the first experiment. The blocks are able to be stored in the network and become lost at
last. The balancing strategy guarantees the availability at least. Furthermore, the overall
storage consumption is much greater for the non-balancing strategy. Table 6 presents the
different storage consumptions of the two strategies. The load-balancing pricing strategy
reduce 97% of the storage size, compared to the non-load-balancing pricing strategy.



FinTech 2022, 1 273

The overall storage consumption of the non-balancing strategy is 33 times higher
than the balancing strategy. Storage consumption is very important for IPFS nodes, as
it affects the cost of keeping them and reduces the credit drop due to failure to provide
blocks. To determine the effect of different storage sizes in the non-balancing strategy, our
experiments were conducted in four conditions: 50–100 KB, 100–200 KB, 1000–2000 KB
and 2000–4000 KB, which is shown as Figure 10. The access rate is significantly negatively
related to the storage size of the nodes.

Table 6. Storage consumptions.

Balancing Strategy Non-Balancing Strategy

Overall 6.305 MB 210.159 MB
Average per node 66.122 KB 2269.804 KB

Version August 27, 2022 submitted to Journal Not Specified 24 of 26

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Offline nodes

A
cc

es
s

ra
te

50KB - 100KB 100KB - 200KB 1000KB - 2000KB 2000KB - 4000KB

Figure 10. The access rate of non-balancing pricing strategy when storage size limited in different
sizes.

6. Conclusions and Future Work 581

In this paper, we propose a framework to reduce the storage size of the IPFS-based 582

blockchain nodes using the smart contract. Based on the contract with the proof of the 583

retrievability scheme and the pricing strategy, IPFS nodes are rewarded and regulated so 584

that the risk of losing blocks is decreased. Although our framework has the latency and 585

additional throughput incurring from broadcasting and mining blocks, the latency of our 586

framework takes only 6.67% of the mining time of the Bitcoin mainnet, and the increased 587

throughput in our framework takes only 0.167% of that produced by the original Bitcoin. As 588

a result, the design of the proposed framework is efficient, scalable, and durable. In future 589

work, we will attempt to research the source of the reward which is paid to the contract. 590

This research may improve the sustainability of providing the rewards and decrease the 591

inflation effect of the contract. In addition, the pricing strategy of full nodes needs to be 592

proposed to improve their durability. 593

References 594

1. Nakamoto, S. Bitcoin: a Peer-to-Peer Electronic Cash System, 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 595

June 20, 2022). 596

2. WOOD, G. Ethereum: A secure decentralised generalised transaction ledger, 2022. Available online: https://ethereum.github.io/ 597

yellowpaper/paper.pdf (accessed on June 20, 2022). 598

3. Androulaki, E.; Manevich, Y.; Muralidharan, S.; Murthy, C.; Nguyen, B.; Sethi, M.; Singh, G.; Smith, K.; Sorniotti, A.; 599

Stathakopoulou, C.; et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceed- 600

ings of the Thirteenth EuroSys Conference, 2018, pp. 1–15. https://doi.org/10.1145/3190508.3190538. 601

4. Kshetri, N.; Voas, J. Blockchain-Enabled E-Voting. IEEE Software 2018, 35, 95–99. https://doi.org/10.1109/ms.2018.2801546. 602

5. Hjalmarsson, F.P.; Hreioarsson, G.K.; Hamdaqa, M.; Hjalmtysson, G. Blockchain-Based E-Voting System. In Proceedings of the 603

2018 IEEE 11th International Conference on Cloud Computing (CLOUD), 2018, pp. 983–986. https://doi.org/10.1109/cloud.2018 604

.00151. 605

6. Lu, X.; Guan, Z.; Zhou, X.; Du, X.; Wu, L.; Guizani, M. A Secure and Efficient Renewable Energy Trading Scheme Based on 606

Blockchain in Smart Grid. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and 607

Communications, 2019, pp. 1839–1844. https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00253. 608

7. Wang, N.; Chau, S.C.K.; Zhou, Y. Privacy-Preserving Energy Storage Sharing with Blockchain. In Proceedings of the Twelfth 609

ACM International Conference on Future Energy Systems, 2021, pp. 185–198. https://doi.org/10.1145/3447555.3464869. 610

Figure 10. The access rate of non-balancing pricing strategy when storage size limited in differ-
ent sizes.

6. Conclusions and Future Work

In this paper, we propose a framework to reduce the storage size of the IPFS-based
blockchain nodes using the smart contract. Based on the contract with the proof of the
retrievability scheme and the pricing strategy, IPFS nodes are rewarded and regulated so
that the risk of losing blocks is decreased. Although our framework has the latency and
additional throughput incurring from broadcasting and mining blocks, the latency of our
framework takes only 6.67% of the mining time of the Bitcoin Mainnet, and the increased
throughput in our framework takes only 0.167% of that produced by the original Bitcoin. As
a result, the design of the proposed framework is efficient, scalable, and durable. In future
work, we will attempt to research the source of the reward which is paid to the contract.
This research may improve the sustainability of providing the rewards and decrease the
inflation effect of the contract. In addition, the pricing strategy of full nodes needs to be
proposed to improve their durability.



FinTech 2022, 1 274

Author Contributions: Conceptualization, P.-H.K., Y.-L.H. and C.-W.H.; methodology, P.-H.K., Y.-
L.H. and C.-W.H.; software, P.-H.K.; validation, P.-H.K., Y.-L.H. and C.-W.H.; formal analysis, P.-H.K.,
Y.-L.H. and C.-W.H.; investigation, P.-H.K., Y.-L.H. and C.-W.H.; writing—original draft preparation,
P.-H.K. and Y.-L.H.; writing—review and editing, P.-H.K. and Y.-L.H.; visualization, P.-H.K., Y.-L.H.
and C.-W.H.; supervision, Y.-L.H. and C.-W.H.; project administration, Y.-L.H. and C.-W.H.; funding
acquisition, Y.-L.H. and C.-W.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded in part by the National Science and Technology Council under
the grant 110-2221-E-002-006 and 111-2221-E-194-045.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Advanced Institute of Manufacturing with
High-tech Innovations (AIM-HI) and the Center for Innovative Research on Aging Society (CIRAS)
from The Featured Areas Research Center Program within the framework of the Higher Education
Sprout Project by Ministry of Education (MOE) in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 20 June 2022).
2. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. 2022. Available online: https://ethereum.github.

io/yellowpaper/paper.pdf (accessed on 20 June 2022).
3. Androulaki, E.; Manevich, Y.; Muralidharan, S.; Murthy, C.; Nguyen, B.; Sethi, M.; Singh, G.; Smith, K.; Sorniotti, A.;

Stathakopoulou, C.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceed-
ings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15. [CrossRef]

4. Kshetri, N.; Voas, J. Blockchain-Enabled E-Voting. IEEE Softw. 2018, 35, 95–99. [CrossRef]
5. Hjalmarsson, F.P.; Hreioarsson, G.K.; Hamdaqa, M.; Hjalmtysson, G. Blockchain-Based E-Voting System. In Proceedings of the

2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 983–986.
[CrossRef]

6. Lu, X.; Guan, Z.; Zhou, X.; Du, X.; Wu, L.; Guizani, M. A Secure and Efficient Renewable Energy Trading Scheme Based on
Blockchain in Smart Grid. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and
Communications, Zhangjiajie, China, 10–12 August 2019; pp. 1839–1844. [CrossRef]

7. Wang, N.; Chau, S.C.K.; Zhou, Y. Privacy-Preserving Energy Storage Sharing with Blockchain. In Proceedings of the Twelfth
ACM International Conference on Future Energy Systems, Virtual Event, Italy, 28 June–2 July 2021; pp. 185–198. [CrossRef]

8. Treleaven, P.; Gendal Brown, R.; Yang, D. Blockchain Technology in Finance. Computer 2017, 50, 14–17. [CrossRef]
9. Guerar, M.; Merlo, A.; Migliardi, M.; Palmieri, F.; Verderame, L. A Fraud-Resilient Blockchain-Based Solution for Invoice

Financing. IEEE Trans. Eng. Manag. 2020, 67, 1086–1098. [CrossRef]
10. Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. ChainSplitter: Towards Blockchain-based Industrial IoT Architecture for Supporting

Hierarchical Storage. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA,
14–17 July 2019; pp. 166–175. [CrossRef]

11. Niya, S.R.; Schiller, E.; Cepilov, I.; Maddaloni, F.; Aydinli, K.; Surbeck, T.; Bocek, T.; Stiller, B. Adaptation of Proof-of-Stake-based
Blockchains for IoT Data Streams. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), Seoul, Korea, 14–17 May 2019; pp. 15–16. [CrossRef]

12. Malik, S.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R. TrustChain: Trust Management in Blockchain and IoT Supported Supply
Chains. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019;
pp. 184–193. [CrossRef]

13. Musigmann, B.; von der Gracht, H.; Hartmann, E. Blockchain Technology in Logistics and Supply Chain Management—A
Bibliometric Literature Review From 2016 to January 2020. IEEE Trans. Eng. Manag. 2020, 67, 988–1007. [CrossRef]

14. Juma, H.; Shaalan, K.; Kamel, I. A Survey on Using Blockchain in Trade Supply Chain Solutions. IEEE Access 2019, 7, 184115–
184132. [CrossRef]

15. Chang, A.J.; El-Rayes, N.; Shi, J. Blockchain Technology for Supply Chain Management: A Comprehensive Review. FinTech 2022,
1, 191–205. [CrossRef]

16. Chang, J.; Katehakis, M.; Shi, J.; Yan, Z. Blockchain-Empowered Newsvendor Optimization. Int. J. Prod. Econ. 2021, 238, 108144.
[CrossRef]

https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1109/MS.2018.2801546
http://dx.doi.org/10.1109/cloud.2018.00151
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00253
http://dx.doi.org/10.1145/3447555.3464869
http://dx.doi.org/10.1109/MC.2017.3571047
http://dx.doi.org/10.1109/TEM.2020.2971865
http://dx.doi.org/10.1109/Blockchain.2019.00030
http://dx.doi.org/10.1109/BLOC.2019.8751260
http://dx.doi.org/10.1109/blockchain.2019.00032
http://dx.doi.org/10.1109/TEM.2020.2980733
http://dx.doi.org/10.1109/ACCESS.2019.2960542
http://dx.doi.org/10.3390/fintech1020015
http://dx.doi.org/10.1016/j.ijpe.2021.108144


FinTech 2022, 1 275

17. Chang, J.; Katehakis, M.; Melamed, B.; Shi, J. Blockchain Design for Supply Chain Management. SSRN Electron. J. 2018.
[CrossRef]

18. Blockchain.com. The Total Size of the Blockchain Minus Database Indexes in Megabytes. Available online: https://www.
blockchain.com/charts/blocks-size (accessed on 20 June 2022).

19. Qi, X.; Zhang, Z.; Jin, C.; Zhou, A. BFT-Store: Storage Partition for Permissioned Blockchain via Erasure Coding. In Proceedings
of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1926–1929.
[CrossRef]

20. Du, Z.; Qian, H.f.; Pang, X. PartitionChain: A Scalable and Reliable Data Storage Strategy for Permissioned Blockchain. IEEE
Trans. Knowl. Data Eng. 2021. [CrossRef]

21. Chou, I.T.; Su, H.H.; Hsueh, Y.L.; Hsueh, C.W. BC-Store. In Proceedings of the 2020 2nd International Electronics Communication
Conference, Singapore, 8–10 July 2020; pp. 33–38. [CrossRef]

22. Zheng, Q.; Li, Y.; Chen, P.; Dong, X. An Innovative IPFS-Based Storage Model for Blockchain. In Proceedings of the 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, Chile, 3–6 December 2018; pp. 704–708. [CrossRef]

23. Dai, M.; Zhang, S.; Wang, H.; Jin, S. A Low Storage Room Requirement Framework for Distributed Ledger in Blockchain. IEEE
Access 2018, 6, 22970–22975. [CrossRef]

24. Rupasena, J.; Rewa, T.; Hemachandra, K.T.; Liyanage, M. Scalable Storage Scheme for Blockchain-Enabled IoT Equipped Food
Supply Chains. In Proceedings of the 2021 Joint European Conference on Networks and Communications & 6G Summit
(EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 300–305. [CrossRef]

25. Sohan, M.S.H.; Mahmud, M.; Sikder, M.A.B.; Hossain, F.S.; Hasan, M.R. Increasing Throughput and Reducing Storage Bloating
Problem Using IPFS and Dual-Blockchain Method. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical
and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021; pp. 732–736. [CrossRef]

26. Yin, H.; Zhang, Z.; Zhu, L.; Li, M.; Du, X.; Guizani, M.; Khoussainov, B. A Blockchain-Based Storage System With Financial
Incentives for Load-balancing. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1178–1188. [CrossRef]

27. Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L.; Peterson, Z.; Song, D. Provable data possession at untrusted stores.
In Proceedings of the 14th ACM Conference on Computer and Communications Security—CCS ’07, Alexandria, VA, USA, 2
November–31 October 2007; pp. 598–609. [CrossRef]

28. Renner, T.; Muller, J.; Kao, O. Endolith: A Blockchain-Based Framework to Enhance Data Retention in Cloud Storages. In
Proceedings of the 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP),
Cambridge, UK, 21–23 March 2018; pp. 21–23. [CrossRef]

29. Li, Y.; Yu, Y.; Chen, R.; Du, X.; Guizani, M. IntegrityChain: Provable Data Possession for Decentralized Storage. IEEE J. Sel. Areas
Commun. 2020, 38, 1205–1217. [CrossRef]

30. Xu, Y.; Ren, J.; Zhang, Y.; Zhang, C.; Shen, B.; Zhang, Y. Blockchain Empowered Arbitrable Data Auditing Scheme for Network
Storage as a Service. IEEE Trans. Serv. Comput. 2019, 13, 289–300. [CrossRef]

31. Xu, Y.; Zhang, C.; Wang, G.; Qin, Z.; Zeng, Q. A Blockchain-enabled Deduplicatable Data Auditing Mechanism for Network
Storage Services. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1421–1432. [CrossRef]

32. Swarm. SWARM: Storage and Communication Infrastructure for a Self-Sovereign Digital Society. 2021. Available online:
https://www.ethswarm.org/swarm-whitepaper.pdf (accessed on 20 June 2022).

33. Trón, V.; Fischer, A.; Nagy, D.A.; Felföldi, Z.; Johnson, N. Swap, Swear and Swindle: Incentive System for Swarm. 2016. Available
online: https://ethersphere.github.io/swarm-home/ethersphere/orange-papers/1/sw%5E3.pdf (accessed on 20 June 2022).

34. Labs, P. Filecoin: A Decentralized Storage Network. 2017. Available online: https://filecoin.io/filecoin.pdf (accessed on 20
June 2022).

35. Yu, H.; Hu, Q.; Yang, Z.; Liu, H. Efficient Continuous Big Data Integrity Checking for Decentralized Storage. IEEE Trans. Netw.
Sci. Eng. 2021, 8, 1658–1673. [CrossRef]

36. Shen, M.; Duan, J.; Zhu, L.; Zhang, J.; Du, X.; Guizani, M. Blockchain-Based Incentives for Secure and Collaborative Data Sharing
in Multiple Clouds. IEEE J. Sel. Areas Commun. 2020, 38, 1229–1241. [CrossRef]

37. Storj Labs, I. Storj: A Decentralized Cloud Storage Network Framework. 2018. Available online: https://storj.io/storjv3.pdf
(accessed on 20 June 2022).

38. Liang, W.; Fan, Y.; Li, K.C.; Zhang, D.; Gaudiot, J.L. Secure Data Storage and Recovery in Industrial Blockchain Network
Environments. IEEE Trans. Ind. Inform. 2020, 16, 6543–6552. [CrossRef]

39. Shacham, H.; Waters, B. Compact Proofs of Retrievability. J. Cryptol. 2013, 26, 442–483. [CrossRef]
40. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. In Communications

of the ACM; Association for Computing Machinery: New York, NY, USA, 1978; Volume 21, pp. 120–126. [CrossRef]
41. Vogelsteller, F.; Buterin, V. EIP 20: ERC-20 Token Standard. 2015. Available online: https://eips.ethereum.org/EIPS/eip-20

(accessed on 20 June 2022).

http://dx.doi.org/10.2139/ssrn.3295440
https://www.blockchain.com/charts/blocks-size
https://www.blockchain.com/charts/blocks-size
http://dx.doi.org/10.1109/icde48307.2020.00205
http://dx.doi.org/10.1109/TKDE.2021.3136556
http://dx.doi.org/10.1145/3409934.3409940
http://dx.doi.org/10.1109/wi.2018.000-8
http://dx.doi.org/10.1109/ACCESS.2018.2814624
http://dx.doi.org/10.1109/eucnc/6gsummit51104.2021.9482449
http://dx.doi.org/10.1109/icrest51555.2021.9331254
http://dx.doi.org/10.1109/TNSE.2020.3034803
http://dx.doi.org/10.1145/1315245.1315318
http://dx.doi.org/10.1109/pdp2018.2018.00105
http://dx.doi.org/10.1109/JSAC.2020.2986664
http://dx.doi.org/10.1109/TSC.2019.2953033
http://dx.doi.org/10.1109/TETC.2020.3005610
https://www.ethswarm.org/swarm-whitepaper.pdf
https://ethersphere.github.io/swarm-home/ethersphere/orange-papers/1/sw%5E3.pdf
https://filecoin.io/filecoin.pdf
http://dx.doi.org/10.1109/TNSE.2021.3068261
http://dx.doi.org/10.1109/JSAC.2020.2986619
https://storj.io/storjv3.pdf
http://dx.doi.org/10.1109/TII.2020.2966069
http://dx.doi.org/10.1007/s00145-012-9129-2
http://dx.doi.org/10.1145/359340.359342
https://eips.ethereum.org/EIPS/eip-20

	Introduction
	Related Work
	Scalable Blockchains
	Data Integrity
	Data Redundancy

	Preliminary
	Assumptions and Notations
	Proof of Retrievability
	Role Definitions
	Hot and Cold Classifiers

	System Framework
	Smart Contract
	Setup Phase
	Upload Phase
	Challenge Phase
	Retrieval Phase

	Pricing Strategy, Redundancy and Reputation
	Pricing Strategy and Redundancy
	Reputation


	Experimental Results
	Latency
	Throughput
	Full Node Access Rate

	Conclusions and Future Work
	References

