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Abstract: The collapse of Silicon Valley Bank (SVB) on 11 March 2023, and the subsequent depeg-
ging of the USDC stablecoin highlighted vulnerabilities in the interconnected financial ecosystem.
While prior research has explored the systemic risks of stablecoins and their reliance on traditional
banking, there has been limited focus on how banking sector shocks affect digital asset markets.
This study addresses this gap by analyzing the impact of SVB’s collapse on the stability of major
stablecoins—USDC, DAI, FRAX, and USDD—and their relationships with Bitcoin and Tether. Using
daily data from October 2022 to November 2023, we found that the SVB incident triggered a series
of depegging events, with varying effects across stablecoins. Our results indicate that USDC, often
viewed as one of the safer stablecoins, was particularly vulnerable due to its reliance on SVB reserves.
Other stablecoins experienced different impacts based on their collateral structures. These findings
challenge the notion of stablecoins as inherently safe assets and underscore the need for improved
risk management and regulatory oversight. Additionally, this study illustrates how machine learning
models, including gradient boosting and random forests, can enhance our understanding of financial
contagion and market stability.
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1. Introduction

On 11 March 2023, the collapse of Silicon Valley Bank (SVB) highlighted the critical
dependence of stablecoins, such as USD Coin (USDC), on traditional banking systems for
their reserves, thus intensifying systemic risks within the financial landscape. Concerns
about fractional reserves prompted investors to divest from USDC, resulting in a depegging
of the currency until the Federal Deposit Insurance Corporation (FDIC) provided assurances
for SVB deposits. To maintain stability and foster investor confidence, it is imperative
that stablecoins prioritize the acquisition of liquid, low-risk assets, such as short-term US
Treasury securities. During the depeg, investors demonstrated a preference for transferring
their holdings from USDC to Tether (USDT) or fiat currency. SVB’s downfall stemmed
from its significant exposure to long-term bonds in a rising interest rate environment,
which revealed inherent vulnerabilities in its reserve allocation strategies. In contrast to
the algorithmic failure of Terra-LUNA or the scrutiny faced by USDT, USDC’s crisis was
primarily driven by its partial reserve exposure to SVB. Additionally, Circle’s reliance on
the FDIC bailout has highlighted the need for stablecoins to adopt robust and transparent
crisis management frameworks. This approach is essential for enhancing resilience and
mitigating potential risks in the future.

On 9 March 2023, the California Department of Financial Protection and Innovation
closed Silicon Valley Bank due to a bank run triggered by concerns over its financial
stability. As pictured in Figure 1, this marked the second-largest bank failure in the USA
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since the collapse of Washington Mutual in 2008 [1]. The announcement caused panic
among investors, leading to a rush to swap their USDC tokens for more resilient options like
BTC and ETH. On 11 March 2023, this situation resulted in the depegging of USDC, DAI,
and FRAX [2], as illustrated by the price level-volume analysis of seven cryptocurrency
pairs in Figure 2. As shown in Table 1, a careful examination yielded the detection of
volume spikes for four stablecoins, particularly around the date of the SVB collapse: USDC,
USDD, FRAX, and DAI. The goal is to detect whether the maximum volume recorded
that day is significantly higher than the surrounding data, typically recorded as a spike in
trading when it exceeds twice the average volume. This situation resembled the significant
stablecoin run that occurred when Terra, the fourth-largest stablecoin at the time, faced a
run and eventual collapse in early May 2022 [3]. In both instances, there was a trend of
investors seeking safer options, leading to negative repercussions for other algorithmic
stablecoins and those backed by riskier assets, while stablecoins backed by relatively safer
assets experienced increased demand.

Figure 1. Triggering event: the SIVBQ collapsed in March 2023. Note: SIVBQ is the ticker of the
stock price for the SIVB Financial Group in USD. Source: Yahoo Finance.

Table 1. Detected volume spikes for cryptocurrencies around the SVB crash on 11 March 2023.

Cryptocurrency Date of Spike Volume

USDC 11 March 2023 26,682,206,827
USDD 11 March 2023 115,850,558
FRAX 11 March 2023 399,581,581
DAI 11 March 2023 4,642,451,631

Note: USDC is Circle’s USD Coin, USDD is Tron’s USDD, FRAX represents Frax Finance’s stablecoin, and DAI
is MakerDAO’s DAI. All cryptocurrency pairs are quoted against the USD.

The insolvency of Silicon Valley Bank in March 2023 resulted in a significant event
within the cryptocurrency sphere: the temporary depegging of USD Coin (USDC) [1].
USDC, a stablecoin designed to maintain a consistent value pegged to the US dollar, en-
countered exceptional volatility following the failure of SIVB, a crucial banking partner for
Circle, the issuer of USDC [4]. This event not only disrupted the stability of USDC but also
underscored the vulnerabilities and interdependencies between stablecoins and traditional
financial institutions [3]. Gaining an understanding of the causes and repercussions of
the USDC depeg offers crucial insights into the stability and resilience of digital assets
and their interactions with traditional banking sector crises [2]. Additionally, it has been
reported that, in China, there exists a positive correlation between bank profitability and
the advancement of fintechs [5].
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Figure 2. Time Series and Volumes for 7 cryptocurrency pairs. Note: From top to bottom and left
to right, USDC is Circle’s stablecoin in USD, BUSD is Binance’s stablecoin in USD, USDD is Tron’s
stablecoin in USD, USDT is Tether’s stablecoin in USD, FRAX is Frax Finance’s stablecoin USD
in USD, DAI is MakerDAO Foundation’s DAI in, and BTC is the Bitcoin price in USD. For each
cryptocurrency, VOL indicates the volumes traded. Source: Yahoo Finance.
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Stablecoins experienced increased instability following the collapse of Silicon Valley
Bank in March 2023 [6]. Similarly to the events of May 2022, cryptocurrency investors
promptly responded to the news by divesting or redeeming their USDC tokens [7]. In
contrast to the May 2022 incident, which involved riskier stablecoins, the turbulence
in March 2023 predominantly impacted USDC, previously considered one of the safest
stablecoins due to its backing by Treasury securities and bank deposits [8]. This instability
also affected DAI and FRAX, both of which relied partly on USDC as collateral [9]. It is
thus logical that investors transitioned from USDC to other stablecoins perceived as more
secure at the time, particularly those backed by traditional assets, notably Tether (USDT).
For a pioneering analysis of the inter-relationships between Tether and Bitcoin, interested
readers are referred to [10].

Stablecoins have gained significant traction in response to the price volatility of leading
cryptocurrencies like BTC and ETH [11], which undermines their capacity to function as
stable stores of value [12]. Stablecoins are digital assets engineered to maintain a consistent
value, often pegged at USD 1 [13], through various mechanisms such as asset reserves or
sophisticated algorithms [14]. The stablecoin market is anticipated to experience substantial
growth in trading volumes and attract heightened interest from market practitioners [15].
The market capitalization of stablecoins has witnessed a remarkable surge, escalating from
USD 5 billion in 2019 to approximately USD 180 billion in 2022 before moderating to nearly
USD 120 billion by 2023 [7]. There are four primary categories of stablecoins: algorithmic
stablecoins (FRAX, USTC, USDD), stablecoins backed by traditional financial assets (USDC,
USDT), stablecoins backed by crypto assets such as Bitcoin and Ethereum (DAI, LUSD), and
commodity-backed stablecoins (PAXG, SLVT) [8]. In just a decade since the introduction
of the first stablecoin, the count of “active” stablecoins—defined as those with a positive
market capitalization—has surged to over 60. Notably, Tether (USDT) and USD Coin
(USDC) stand out as the most prominent among them thus far [16]. USD Coin is an asset-
backed stablecoin designed to maintain a steady value of USD 1, and is fully supported by
reserves comprising cash and short-term treasuries. Investors favor stablecoins as a hedge
against the unpredictable fluctuations of the cryptocurrency market and for their potential
to generate passive earnings through staking or lending mechanisms [7]. Additionally,
stablecoins can offer funding opportunities to facilitate business credit flows [17].

Regrettably, stablecoins are encountering depegging challenges, resulting in unprece-
dented losses within the DeFi ecosystem [18]. Following the Luna crash, it has become
evident once again that stablecoins are not as resilient as previously assumed, exemplified
by the depegging of USDC. On Friday, 9 March 2023, Circle disclosed that USD 3.3 billion
of its approximately USD 40 billion reserve was deposited with Silicon Valley Bank (SIVB),
marking one of the most significant bank collapses in recent US history since Washington
Mutual in 2008 [12]. By the conclusion of 2022, SIVB had amassed a total of USD 110.4 bil-
lion in assets and collected deposits amounting to USD 88.6 billion. It is noteworthy that
cryptocurrency businesses accounted for 30% of their deposits as early as 2021 [4].

The term “stablecoins” has generated discussion regarding its appropriateness [19].
Are recent events indicative of a temporary setback, or do they reveal a fundamental
flaw in the cryptocurrency market? This study underscores the risks associated with
cryptocurrency trading and emphasizes the vital relationship between traditional finance
and DeFi. It leverages a machine learning model, building upon insights from [20], to
enhance forecasting dynamics. This study expands linear and model selection tests to a
multi-equation framework, exploring neural networks, regression trees, boosting, gradient
boosting, and random forests. It considers stablecoins as outputs and utilizes SIVB stock as
inputs, utilizing daily data from October 2022 to November 2023. Our findings significantly
contribute to the existing literature, particularly in studies that delve into the interdepen-
dence between cryptocurrencies and stablecoins, as well as the crucial connections between
the DeFi sector and the banking system.

In our assessment of SIVB’s default, the following findings were observed: (i) the
gradient boosting machine demonstrated superior performance compared to the linear
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benchmark, followed by stacked random forests. (ii) Particularly noteworthy is the high
impact on the stablecoins USDD and FRAX resulting from the cryptocurrency bank de-
fault, especially evident in the case of neural networks and random forests. In additional
robustness checks, we unveil that (i) BTC is the primary recipient of spillover effects from
SIVB, followed by USDC, USDD, and FRAX (in that order) according to a hierarchical tree
analysis, and (ii) SIVB primarily impacts Bitcoin, with USDC appearing on a lower branch,
in a subsequent Pythagorean forest analysis. Additionally, we conducted a 200-day event
study around the date of SVB’s bankruptcy, combining price levels and trading volumes,
which identifies USDC as a significant channel for financial contagion. These latter findings
indicate that advanced modeling techniques, particularly gradient boosting, demonstrate a
strong capability in capturing the dynamics of USDC, as well as other stablecoins such as
USDT and FRAX.

The remainder of this paper is structured as follows. Sections 2 and 3 contain the
descriptions of data and models, respectively. Section 4 outlines the machine learning
analysis. Section 5 contains sensitivity analyses. Section 6 concludes the paper.

2. Data

The database covers the time frame from 1 October 2022 to 30 November 2023, with
a daily frequency, corresponding to 426 observations. The data are procured from Yahoo
Finance and encompass eight variables:

1. USDC is Circle’s stablecoin USD Coin USD (USDC-USD) in USD.
2. SIVBQ is the ticker of the stock price of SIVB Financial Group (SIVBQ) in USD.
3. BUSD is Binance’s stablecoin BUSD USD (BUSD-USD) in USD.
4. USDD is Tron’s stablecoin USDD USD (USDD-USD) in USD.
5. USDT is Tether’s stablecoin USDT USD (USDT-USD) in USD.
6. FRAX is Frax Finance’s stablecoin USD (FRAX-USD) in USD.
7. DAI is MakerDAO Foundation’s DAI USD (DAI-USD) in USD.
8. BTC is the Bitcoin price (BTC-USD) in USD.

The descriptive statistics for the raw data are provided in Table 2. We note that the
minimum values of the stablecoins, which are USDC, FRAX, and DAI, respectively, equal
to USD 0.87, USD 0.88, and USD 0.89, are less than USD 1 of their value when they have
their peg on the US dollar. BTC and USDT keep their pegs (BTC is even higher than USD 1).

Table 2. Descriptive statistics for raw data from October 2022 to November 2023.

Variable Mean Median Minimum Maximum

USDC 0.9991 0.9996 0.8774 1.0000
SIVBQ 100.9900 0.5074 0.0100 361.3900
BUSD 0.9994 0.9994 0.9920 1.0014
USDD 0.9914 0.9952 0.9254 0.9994
USDT 0.9997 0.9998 0.9815 1.0059
FRAX 0.9934 0.9951 0.8853 1.0001
DAI 0.9979 0.9985 0.8970 0.9996
BTC 25,140 26,198 15,599 37,617

Variable St. Error C.V. Skewness Ex. kurtosis

USDC 0.0064 0.0064 −16.9230 302.2600
SIVBQ 125.3500 1.2412 0.5994 −1.3757
BUSD 0.0006 0.0006 −4.9217 43.9130
USDD 0.0084 0.0085 −2.1274 8.5206
USDT 0.0010 0.0010 −10.9020 189.1200
FRAX 0.0080 0.0080 −7.2053 81.8750
DAI 0.0055 0.0055 −15.6570 266.5800
BTC 5444 0.2165 0.0336 −0.5608
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Table 2. Cont.

Variable PC 5% PC 95% IQ Obs. missing

USDC 0.9990 0.9999 0.0002 0
SIVBQ 0.0100 315.7300 225.9200 0
BUSD 0.9985 1.0000 0.0004 0
USDD 0.9737 0.9987 0.0094 0
USDT 0.9986 1.0002 0.0004 0
FRAX 0.9849 0.9993 0.0053 0
DAI 0.9960 0.9992 0.0010 0
BTC 16,504 35,301 8225 0

Note: St. Error stands for the standard error, C.V. for the coefficient of variation, Ex. kurtosis for the excess
kurtosis, PC 5% and PC 95% for the 5th and 95th percentiles, respectively, of the data distribution, IQ for the
interquartile range, and Obs. missing for the number of missing observations. Source: Yahoo Finance.

In the analysis provided, the primary variable of interest pertains to the collapse
of Silicon Valley Bank’s stock price, denoted as the “input” or triggering event. The
main “output” variables under consideration are stablecoins and Bitcoin. Subsequent to
the announcement of SIVB’s bankruptcy, investors promptly divested their USDC tokens,
leading to the depegging of USDC from the US dollar. This, in turn, precipitated a contagion
effect that could have implications for the peg of other stablecoins such as DAI, FRAX,
and BUSD. Notwithstanding, ETH and BTC exhibited a degree of resilience to the shock,
serving as a haven for investors seeking to offload their USDC tokens regardless of the cost.

For log data, descriptive statistics and plots are given in Table A1 and Figure A1 of
Appendix A. In the next section, we detail the machine learning models used.

3. Models

This section outlines the various machine-learning categories that underpin our analy-
sis of the impact of the SIVB collapse on stablecoins.

3.1. Neural Networks

In this section, we elaborate on fully connected neural networks, which are constructed
recursively and can encompass an arbitrary number of hidden layers. As we introduce
additional hidden layers, the neural network’s capacity expands. Models with three or
more hidden layers are commonly referred to as “deep neural” networks.

To create an L-hidden-layer neural network unit, or L-layer unit for brevity, we
iteratively apply the process L − 1 times. The resulting L-layer unit takes as input a
quantity UL−1 of (L − 1)-layer units, as follows:

f (L)(x) = a

(
w(L)

0 +
UL−1

∑
i=1

w(L)
i f (L−1)

i (x)

)

We can create a model with B = UL units in total, where L represents the number of
layers in the model.

model(x, Θ) = w0 + f (L)
1 (x)w1 + · · ·+ f (L)

UL
(x)wUL

where

f (L)
j (x) = a

(
w(L)

0,j +
UL−1

∑
i=1

w(L)
i,j f (L−1)

i (x)

)
j = 1, 2, . . . , UL

and where the parameter set Θ contains both those weights internal to the neural network
units as well as the final linear combination weights. The activation function a(·) commonly
includes choices such as the logistic function and the rectified linear unit (ReLU).

Logistic: h(z) =
1

1 + e−z , ReLU : h(z) = max(0, z).
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The logistic (or sigmoid) function is commonly employed in the context of logistic
regression. It exhibits linear behavior around z = 0 and converges to values near 0 and 1
as z decreases or increases. In contrast, the ReLU function is more straightforward, taking
the value of z for positive inputs and zero for negative inputs. While the logistic function
was historically the standard choice of activation function in neural networks, ReLU has
since emerged as the predominant selection in most neural network models, owing to its
simplicity and efficacy. Although it is theoretically feasible to utilize different activation
functions across various hidden layers within an L−layer unit, for the sake of simplicity, a
uniform activation function is almost invariably employed.

3.2. Regression Trees

In this section, we examine the application of general tree-based universal approxima-
tors for regression, commonly referred to as regression trees. Tree-based models are often
favored for their interpretability relative to neural networks. However, this interpretability
diminishes as the depth of the tree increases, particularly when trees are combined or used
in an ensemble.

To determine the optimal leaf values for a stump with a fixed split point, we can apply
first-order optimality conditions. In the context of regression, the fixed split point s is
defined along the nth input dimension of a regression dataset denoted by

{(
xp, yp

)}P
p=1,

dividing the data into two sections. These two subsets of the data can be tracked using
index sets ΩL and ΩR, representing the input/output pairs of the dataset lying on either
side of the split, formally expressed as follows:

ΩL =
{

p | xp,n ≤ s
}

and ΩR =
{

p | xp,n > s
}

.

The general stump using this split point can be expressed as follows:

f (x) =

{
vL xn ≤ s
vR xn > s

Here, xn represents the nth dimension of the input x, while vL and vR denote the
values of the left and right leaves, respectively. To determine the optimal values for vL and
vR, we seek to minimize two one-dimensional least squares costs over the points in the
index sets ΩL and ΩR, as follows:

g(vL) =
1

|ΩL| ∑
p∈ΩL

(
vL − yp

)2 and g(vR) =
1

|ΩR| ∑
p∈ΩR

(
vR − yp

)2

where |ΩL| and |ΩR| represent the cardinality of the index sets ΩL and ΩR, respectively.
Each of these cost functions is straightforward. By setting the derivative of each to zero
with respect to its corresponding leaf value and solving, we obtain the optimal leaf values
v⋆L and v⋆R, respectively.

v⋆L =
1

|ΩL| ∑
p∈ΩL

yp and v⋆R =
1

|ΩR| ∑
p∈ΩR

yp

3.3. Boosting with Regression Trees

Boosting involves the learning of a series of weak classifiers, where each classifier aims
to rectify the errors made by its predecessors. This method shares similarities with bagging
as both are ensemble techniques that amalgamate the predictions of multiple models. Both
bagging and boosting can be seen as meta-algorithms, i.e., algorithms constructed on top
of other algorithms. Bagging is an ensemble method used to decrease the variance in
high-variance base models while boosting is another ensemble method primarily employed
to reduce bias in high-bias base models. Boosting operates on the premise that even a weak
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high-bias model can often capture some of the relationships between the inputs and the
output. By training multiple weak models, each representing a portion of the input-output
relationship, it may be possible to integrate the predictions of these models into an overall
improved prediction. The objective is to reduce bias by refining an ensemble of weak
models into a single robust model.

At the mth round of boosting, we initiate with a model comprising a fully tuned linear
combination of m − 1 units of a universal approximator. In the case of tree-based units, the
bias and weights of the linear combination are already embedded. We express our model
as follows:

modelm−1(x, Θm−1) = f ⋆s1
(x) + f ⋆s2

(x) + · · ·+ f ⋆sm−1
(x)

In the context of the boosted model, each function in this sum represents a tree-based
unit, such as a stump, which has been optimized with carefully chosen split points and
leaf values. During the mth round of boosting, an extensive search is conducted across
a range of suitable candidates, encompassing various trees with differing split points.
Subsequently, each candidate’s leaf values are meticulously optimized. The construction of
the next candidate model involves adding a prospective unit fsm(x) to modelm−1(x, Θm−1),
thereby forming the following:

modelm(x, Θm) = modelm−1(x, Θm−1) + fsm(x)

In order to optimize the leaf values of fsm(x), it is essential to employ a suitable cost
function, such as the least squares cost for regression or the Softmax cost for classification,
in relation to a training dataset.

Regarding the leaf-value optimization, consider a scenario where fsm represents a
stump; we address the regression case using the least squares cost, with a dataset containing
P points denoted by

{(
xp, yp

)}P
p=1. The objective is to minimize the following pair of least

squares costs:

g(vL) =
1

|ΩL| ∑
p∈ΩL

(
modelm−1

(
xp, Θm−1

)
+ vL − yp

)2

g(vR) =
1

|ΩR| ∑
p∈ΩR

(
modelm−1

(
xp, Θm−1

)
+ vR − yp

)2

In order to accurately determine our two leaf values vL and v̇R, where ΩL and ΩR
represent index sets and |ΩL| and |ΩR| denote their sizes, we follow a similar approach
to cost functions. These simple costs can each be minimized perfectly by verifying the
first-order condition for optimality.

Similarly, in the context of two-class classification employing a Softmax cost and label
values yp ∈ {−1,+1}, the leaf values of a stump are established by minimizing two costs
of the following form:

g(vL) =
1

|ΩL| ∑
p∈ΩL

log
(

1 + e−yp( model m−1(xprΘm−1)+vL)
)

g(vR) =
1

|ΩR| ∑
p∈ΩR

log
(

1 + e−yp(modelm−1(xp ,Θm−1)+vR)
)

The function in both cases cannot be minimized using a closed-form solution and
instead requires local optimization for resolution. This is commonly accomplished by
taking a single step using Newton’s method, as it offers a favorable balance between
accurately minimizing the function and requiring reasonable computational effort.
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3.3.1. Gradient Boosting

In this section, we elucidate the application of boosting with regression stumps, a
process often construed as successive rounds of fitting to the residual of a regression dataset.
This phenomenon is evident even in the case of a simple stump, as demonstrated by the
rearrangement of terms. For instance, the expression g(vL) can be rephrased as follows:

g(vL) =
1

|ΩL| ∑
p∈ΩL

(
vL − rp

)2

Here, rp denotes the residual of the p-th data point, defined as rp = yp−
modeln−1

(
xp, Θm−1

)
.

3.3.2. Random Forests

A single recursive classification tree is seldom utilized; instead, several trees are
aggregated into an ensemble. This process, known as bagging, entails combining multiple
cross-validated models to create a single, high-performing model. An alternative approach
involves training each tree on a random subset of the original training data and growing
them to a predetermined maximum depth before combining them. This method effectively
mitigates the overfitting tendencies of individual trees, resulting in highly effective models.
In practical terms, training a large number of fully grown tree-based learners often offers
advantages over employing a small number of cross-validated ones.

This ensemble of recursively defined trees is commonly referred to as a random forest.
The term “random” reflects the practice of using a random subset of the original data to
train each tree. Additionally, only a random subset of input feature dimensions is typically
sampled to identify viable split points at each node in the trees produced. Within such a
forest, approximately [

√
N] of N features are randomly selected to determine split points

in each tree.

3.3.3. Ada Boosting

Adaptive Boosting (AdaBoost) is another popular algorithm for binary classifica-
tion. Boosting classically attempts to construct a sequence of B (weak) binary classifiers
ŷ(1)(x), ŷ(2)(x), . . . , ŷ(B)(x). In this procedure, we only consider the final “hard” prediction
ŷ(x) from the base models and not their predicted class probabilities g(x). Any classifi-
cation model can, in principle, be used as a base classifier—shallow classification trees
are common in practice. The individual predictions of the B ensemble members are then
combined into a final prediction. Unlike bagging, all ensemble members are not treated

equally. Instead, we assign some positive coefficients
{

α(b)
}B

b=1
and construct the boosted

classifier using a weighted majority vote:

ŷ(B)
boost (x) = sign

{
B

∑
b=1

α(b)ŷ(b)(x)

}
.

Two critical design considerations for AdaBoost are the selection of the base classifier
and the determination of the number of iterations, denoted as B, to execute the boosting al-
gorithm. It is common practice to employ trees of depth one, characterized by two terminal
nodes (M = 2), as the base classifier. In contrast, the utilization of deep classification trees
is generally discouraged due to their potential to compromise performance. The escalation
of iterations B can lead to overfitting as an excessive number of base models are utilized,
distinguishing AdaBoost from bagging in this regard. It is advisable to methodically select
B, for instance, by incorporating early stopping during the training process. AdaBoost
demonstrates proficient performance in scenarios characterized by minimal data noise.
However, in instances where there is substantial uncertainty in the genuine input-output
relationship, the method’s efficacy may diminish. This phenomenon is attributed to the uti-
lization of an exponential loss function in AdaBoost’s formulation, which places significant
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penalties on substantial negative margins, rendering it sensitive to noise. Opting for more
resilient loss functions can enhance robustness but necessitates a more computationally
intensive training regimen.

4. Results

The results are presented in a sequential manner in both the raw and log data formats.

4.1. Raw Data

Over the course of our numerical experiments, we utilized the “input” variable to
represent the declining stock price of Silicon Valley Bank, and the “outputs” to denote
stablecoins and Bitcoin. Each algorithm yielded a solution after an approximate three-
minute computing process.

Drawing from the structural framework presented in Section 3, we endeavored to
derive multiple estimates, with some model trials proving unsuccessful. To conserve space,
we have opted to organize the results of the models in the paper as follows:

• Neural network (NN);
• Gradient boosting machine (GBM);
• Random forest (RF); and
• Generalized linear model (GLM) as the benchmark.

For each model, a comprehensive set of metrics is provided, including MSE, RMSE,
log loss, mean per-class error, and, where available, R-squared. Each model also comes
with unique specifications. For instance, NNs report neuron layers, GBM and RF report the
number of trees, and GLMs provide elastic net statistics. To streamline the presentation,
the confusion matrices have been stored but not printed.

After training a total of three models (in addition to the benchmark), the results of the
machine learning testing indicate that GBM is the preferred model, followed by stacked
models (including RF), while GLM ranks last. This is evident when examining the MSE
and RMSE statistics in Table 3, where GBM minimizes these values. Additionally, the mean
per-class error—which is the average of the errors of each class in our dataset—is lower for
GBM. For GLM, we also report the null and residual deviances, which provide insights
into the predictability of the general linear model for the targeted variable SIVBQ.

Table 3. Machine learning: results with raw data.

NN GBM RF GLM

MSE 0.8501 0.0640 0.7424 0.6482
RMSE 0.9220 0.2531 0.8616 0.8051
Log loss 3.5095 2.1928 3.6867 2.0509
Mean Per-Class Error 0.8977 0.0586 0.8647 0.6729
R-squared - 0.9998 0.9997 0.9998
Null Deviance - - - 4110.15
Residual Deviance - - - 1747.45

Regarding the neural network (NN), when predicting SIVBQ, we trained a four-layer
neural network with Softmax activation using 4260 training samples. The backpropagation
algorithm achieved a dropout rate of 0%. For GBM, the forest size consists of 50 trees,
with a mean number of leaves equal to 23 and a mean depth of 5. For RF, the forest size is
smaller, with a mean number of leaves equal to 5 and a mean depth of 3.25. For GLM, we
also report the following multinomial elastic net statistics: α = 0.5 indicates the relative
weight of the penalty, while λ = 0.001 indicates the strength of the regularization.

We ranked variables based on their relative importance, scaled importance, and
percentage. Some of the results aligned with our predictions, while others were unexpected.
In Table 4, we observe that for the NN, the most influential variable in the model is USDT.
Tables 5 and 6 indicate that Bitcoin has the highest impact variable. Finally, in Table 7,
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we found that the USDD variable provides better predictions. Overall, Circle’s stablecoin
USDC ranks 5th and 7th in terms of importance in our experimental designs.

Table 4. Neural network: variable importance ranking for raw data.

NN Variable Importances
Relative Importance Scaled Importance Percentage

1 USDT 1.0000 1.0000 0.1578
2 BTC 0.9386 0.9386 0.1481
3 USDD 0.9342 0.9342 0.1474
4 BUSD 0.9178 0.9178 0.1449
5 USDC 0.8839 0.8839 0.1395
6 FRAX 0.8704 0.8704 0.1374
7 DAI 0.7894 0.7894 0.1246

Table 5. Gradient boosting machine: variable importance ranking for raw data.

GBM Variable Importances
Relative Importance Scaled Importance Percentage

1 BTC 761.9681 1.0000 0.5010
2 USDD 488.0863 0.6405 0.3209
3 FRAX 147.0443 0.1929 0.0966
4 USDT 39.7943 0.0522 0.0261
5 USDC 36.8304 0.0483 0.0242
6 BUSD 32.9610 0.0432 0.0216
7 DAI 13.9559 0.0183 0.0091

Table 6. Random forest: variable importance ranking for raw data.

RF Variable Importances
Relative Importance Scaled Importance Percentage

1 BTC 3517.4062 0.5945 0.2572
2 BUSD 2091.3347 0.5858 0.1529
3 USDD 2060.6845 0.5579 0.1506
4 FRAX 1962.4714 0.4816 0.1435
5 USDT 1694.1772 0.3703 0,1238
6 DAI 1302.8190 0.0432 0.0952
7 USDC 1045.3087 0.2971 0.0764

Table 7. Generalized linear model: variable importance ranking for raw data.

GLM Variable Importances
Relative Importance Scaled Importance Percentage

1 USDD 421.5063 1.0000 0.2288
2 BTC 403.1773 0.9565 0.2188
3 FRAX 332.3864 0.7885 0.1804
4 USDT 276.5817 0.6561 0.1501
5 BUSD 266.7639 0.6328 0.1448
6 DAI 123.5459 0.2931 0.0670
7 USDC 18.0070 0.0427 0.0097

In Figure 3, we present the training classification errors for each model. We observed
that for the NN, the number of completed passes through the training data is satisfactory
after 8 epochs. For GBM and RF, any misclassification seems to be avoided after training
a number of trees equal to 10. Lastly, for GLM, the number of iterations to fit the linear
model is equal to 5.
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(a) (b)

(c) (d)

Figure 3. Machine learning training classification errors for raw data. Note: (from left to right and
top to bottom): (a) neural network; (b) GBM; (c) random forest; (d) GLM as the benchmark.

4.2. Log Data

Subsequently, we run the models using log data. To review the data, please refer to
Table A1 and Figure A1 in Appendix A.

In Tables 8–12, we re-estimate the machine learning models with log data. The overall
ranking of competing models remains consistent: GBM continues to emerge as the best-
performing model, as evidenced by the analysis of MSE, RMSE, log loss, and mean per-class
errors (Table 8).

In the remaining four tables presenting variable importances (Tables 9–12), there are
no notable changes in variable ranking for GBM and GLM. As for the primary changes,
it is noteworthy that in the case of NN in log form, USDD ranks first with 16.15%, and
FRAX ascends to the fourth rank. This suggests that the collapse of SIVB ultimately had an
impact on these two stablecoins. Furthermore, for RF in log form, the relative importance
of BTC decreases to 21.81%, and BUSD now ranks fifth. Regarding the evolution of BUSD,
it is essential to remember that Binance stablecoin was removed from the exchanges shortly
after our database ended (see https://www.binance.com/en/square/post/693476806441
(accessed on 12 April 2024)). FRAX ascends to third place (15.7%) in terms of variable
importance, with USDD in second place, which aligns with previous findings for NN.

https://www.binance.com/en/square/post/693476806441
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Table 8. Machine learning: results with log data.

NN GBM RF GLM

MSE 0.8368 0.0641 0.7692 0.6482
RMSE 0.9147 0.2531 0.8771 0.8052
Log loss 3.4271 2.1929 3.6139 2.051
Mean per-class error 0.9189 0.0557 0.8686 0.6729
R-squared - 0.9999 0.9998 0.9998
Null deviance - - - 4110.15
Residual deviance - - - 1747.45

Table 9. Neural network: variable importance ranking for log data.

NN Variable Importances
Relative Importance Scaled Importance Percentage

1 USDD 1.0000 1.0000 0.1615
2 BTC 0.9985 0.9985 0.1613
3 USDT 0.9361 0.9361 0.1512
4 FRAX 0.8603 0.8603 0.139
5 USDC 0.8188 0.8188 0.1323
6 BUSD 0.8104 0.8104 0.1309
7 DAI 0.7652 0.7652 0.1236

Table 10. Gradient boosting machine: variable importance ranking for log data.

GBM Variable Importances
Relative Importance Scaled Importance Percentage

1 BTC 761.9682 1.0000 0.5011
2 USDD 488.0864 0.6406 0.3209
3 FRAX 147.0443 0.193 0.0966
4 USDT 39.7944 0.0522 0.0261
5 USDC 36.8304 0.0483 0.0242
6 BUSD 32.9611 0.0432 0.0217
7 DAI 13.956 0.0183 0.0092

Table 11. Random forest: variable importance ranking for log data.

RF Variable Importances
Relative Importance Scaled Importance Percentage

1 BTC 2978.0828 1.0000 0.2181
2 USDD 2182.5 0.7328 0.1599
3 FRAX 2143.5813 0.7198 0.157
4 USDT 2092.3237 0.7026 0.1532
5 BUSD 1772.5676 0.5952 0.1298
6 DAI 1406.6959 0.4723 0.103
7 USDC 1076.8752 0.3616 0.0789

Table 12. Generalized linear model: variable importance ranking for log data.

GLM Variable Importances
Relative Importance Scaled Importance Percentage

1 USDD 421.5063 1.0000 0.2288
2 BTC 403.1773 0.9565 0.2188
3 FRAX 332.3864 0.7885 0.1804
4 USDT 276.5817 0.6561 0.1501
5 BUSD 266.7639 0.6328 0.1448
6 DAI 123.5459 0.2931 0.0670
7 USDC 18.0070 0.0427 0.0097
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In Figure 4, we account for the classification errors of machine learning training in
logarithmic form. The same comments apply.

(a) (b)

(c) (d)

Figure 4. Machine learning training classification errors for log data. Note: (from left to right and top
to bottom): (a) neural network; (b) GBM; (c) Random Forest; (d) GLM as the benchmark.

5. Robustness Tests

To gain a deeper understanding of the insights obtained from our database, encom-
passing the Silicon Valley Bank stock, the USDC depeg, and additional stablecoins (USDT,
USDD, FRAX, DAI), we conduct several visualization exercises in this section.

5.1. Hierarchical Tree

First, we consider the hierarchical decision tree, a fundamental algorithm that seg-
ments data into nodes based on class purity [21,22]. This algorithm serves as the foundation
for the random forest algorithm. Interested readers can click on the image to view a full-size
version of the tree.

The decision tree presented in Figure 5 (depicting the full tree) and Figure 6 (providing
a zoomed-in view) begins with an analysis of the impact of SIVB’s default on Bitcoin. The
tree then diverges into two paths: (i) USDT on the left, and (ii) USDC on the right. Our
primary focus lies on the USDC path to investigate the repercussions of SIVBQ on USDC’s
depeg. At the third sub-branch, the analysis reveals that USDC exerts spillover effects on
USDT, followed by USDD (at the fourth sub-branch), and subsequently FRAX at the fifth
sub-branch. Notably, BUSD and DAI stablecoins appear to be minimally impacted by any
spillover effects emanating from USDC.



FinTech 2024, 3 583

Figure 5. Decision tree learning algorithm for stablecoins using the SIVBQ-trained model. Note: The target is SIVBQ. Figure 6 provides the reader with a zoomed-in
picture on the right-hand side.

Figure 6. Zoomed-in picture of the decision tree on the right-hand side. Note: The target is SIVBQ. This Figure provides the reader with a zoomed-in picture of the
USDC path on the right-hand side of the hierarchical tree.
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5.2. Pythagorean Forest

Second, we explore a variant of the decision tree called the Pythagorean forest [23],
which aims to mitigate the tendency of the classification tree to overfit the data.

The Pythagorean forest encompasses all the decision tree models derived from the
Random Forest trained for SIVBQ. Within Figure 7, these trees are depicted as Pythagorean
trees, with each visualization corresponding to a randomly generated tree.

Figure 7. Pythagorean forest among stablecoins. Note: The target is SIVBQ. The color palette
corresponds to a split in “mean” values.

The tree with the shortest and most vividly colored branches is considered the optimal
tree. After considering various options, our focus narrowed down to trees number three
and ten.

In terms of the relationship between parent and child nodes, it is assumed that SIVBQ
predominantly assigns Bitcoin to the left split of the tree, while the remaining stablecoins
are allocated to the right split. Notably, USDD is represented in blue and USDC in green.
Upon visual observation, it is evident that the spillover effects of SIVB default on USDC
are considerably greater than those on USDD.

Overall, these additional plots have provided a wealth of insights into the impact of
Silicon Valley Bank’s decline on the stablecoin markets.

5.3. Event Study with Volumes Analysis

As a concluding sensitivity analysis, we implement an “event study” approach by
re-estimating Tables 3–7 over a defined window. This window begins 100 days prior to the
SVB collapse, starting on 1 December 2022, and extending to 100 days following the event,
concluding on 19 June 2023. The triggering event for this analysis is the SVB collapse that
occurred on 11 March 2023.

Table 13 presents a comprehensive summary of the performance metrics for the
various machine learning models utilized in this analysis. The gradient boosting machine
(GBM) demonstrated the highest level of effectiveness in evaluating the impact of the SVB
bankruptcy throughout this event study, achieving the lowest values for the mean squared
error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). These
results highlight its robust capability in analyzing non-linear relationships.

Additionally, this latter model, combining both price levels and traded volumes data,
yielded an impressive R-squared value of 0.9933, indicating its superior ability to account
for variability within the data and significantly surpassing the performance of alternative
models, such as random forest and neural networks. Conversely, the generalized linear
model (GLM) recorded the lowest R-squared value of 0.5681, illustrating the difficulties
encountered in capturing the intricate dynamics at work. This emphasizes the importance
of employing more sophisticated models to effectively analyze financial contagion.
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Table 13. Event study: performance metrics for machine learning models.

Model MSE RMSE MAE Mean Residual
Deviance R-Squared

Neural Network 3714.656 60.94798 51.19611 3714.656 0.7595
Gradient Boosting 104.1134 10.2036 6.466536 104.1134 0.9933
Random Forest 858.7121 29.30379 19.40733 858.7121 0.9444
Generalized Linear 6671.447 81.67893 70.31123 6671.447 0.5681

Note: The event study analyzed a 200-day period from 1 December 2022 to 19 June 2023. A significant milestone
that differentiates the sample into two equal segments is the bankruptcy of SVB, which took place on 11 March
2023. The statistics presented in this table encompass both price levels and trading volumes.

In Table 14, the neural network analysis highlights Bitcoin (BTC) as the most significant
variable, comprising 30.66% of the importance. This emphasizes its function as a safe-haven
asset during times of financial uncertainty. Following Bitcoin, USDC ranks second with
a share of 16.07%, indicating its sensitivity to the collapse of Silicon Valley Bank (SVB),
primarily due to its reliance on traditional banking reserves. Additionally, other stable-
coins, such as USDT at 13.35% and FRAX at 12.34%, demonstrate moderate importance,
suggesting they are partially affected by the spillover effects originating from USDC.

Table 14. Variable importance for the neural network (NN).

Variable Relative Importance Scaled Importance Percentage

BTC 1.0000 1.0000 0.3066
USDC 0.5241 0.5241 0.1607
USDT 0.4354 0.4354 0.1335
FRAX 0.4023 0.4023 0.1234
BUSD 0.3702 0.3702 0.1135
DAI 0.2957 0.2957 0.0907
USDD 0.2336 0.2336 0.0716

In Table 15, Bitcoin demonstrates a dominant position in the random forest analysis
with a significant contribution of 55.13%, underscoring its resilience during periods of
financial instability. Following Bitcoin, USDT and USDD account for 16.02% and 10.17%,
respectively, highlighting their relative significance within the contagion framework. No-
tably, USDC ranks lowest at 2.45%, which may suggest that the random forest analysis
prioritizes broader market dynamics over specific reserve impacts.

Table 15. Variable importance for random forest (RF).

Variable Relative Importance Scaled Importance Percentage

BTC 67,023,708 1.0000 0.5513
USDT 19,474,388 0.2906 0.1602
USDD 12,368,518 0.1845 0.1017
FRAX 9,449,935 0.1410 0.0777
DAI 6,082,494.5 0.0907 0.05
BUSD 4,191,192.75 0.0625 0.0345
USDC 2,976,298.25 0.0444 0.0245

In Table 16, the gradient boosting model (GBM) emphasizes the dominant role of
Bitcoin, which accounts for 92.34% of the overall importance, underscoring its significance
in the market. In comparison, USDC is positioned as a secondary variable at 2.12%, reflect-
ing its inherent vulnerabilities despite a lower level of relative importance. Additionally,
stablecoins such as DAI (2%) and BUSD (1.51%) exhibit minimal influence, consistent with
their nature as safer, asset-backed alternatives.
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Table 16. Variable importance for gradient boosting machines (GBMs).

Variable Relative Importance Scaled Importance Percentage

BTC 14,989,162 1.0000 0.9234
USDC 344,378.90625 0.0230 0.0212
DAI 324,389.25 0.0216 0.0200
BUSD 245,349.6875 0.0164 0.0151
USDT 141,211.71875 0.0094 0.0087
FRAX 94,800.9140625 0.0063 0.0060
USDD 93,014.15625 0.0062 0.0057

In Table 17, the analysis of the generalized linear modeling (GLM) underscores the
prominence of Bitcoin, which constitutes 47.32% of the total importance, thereby affirming
its resilience in times of crisis. Notably, the analysis attributes greater significance to
DAI (16.57%) and FRAX (13.78%) in comparison to USDC (6.49%). This finding prompts
a careful examination of potential biases inherent in the linear modeling methodology,
particularly concerning the assessment of non-major stablecoins.

Table 17. Variable importance for generalized linear modeling (GLM).

Variable Relative Importance Scaled Importance Percentage

BTC 80.0206 1.0000 0.4732
DAI 28.0221 0.3502 0.1657
FRAX 23.3003 0.2912 0.1378
USDT 22.1145 0.2764 0.1308
USDC 10.9733 0.1371 0.0649
USDD 3.2839 0.0410 0.0194
BUSD 1.3977 0.0175 0.0083

In conclusion, the findings from the machine learning models indicate that Bitcoin
functions consistently as a stabilizing force within the cryptocurrency market during
systemic shocks, such as the recent collapse of Silicon Valley Bank (SVB). The significance of
USDC is critical yet varies across the models, demonstrating its dual role as both a systemic
vulnerability and a channel for contagion. Furthermore, advanced modeling methodologies,
such as geometric Brownian motion (GBM), have shown superior performance compared
to traditional methods in capturing these complex dynamics. This underscores the necessity
for more sophisticated analytical tools to assess financial contagion and the resilience of
stablecoins effectively.

6. Conclusions

The stablecoin market experienced a notable impact when USD Coin deviated from
its peg to the US dollar [24] on 11 March 2023. This deviation occurred as a result of
a sell-off following the bankruptcy of Silicon Valley Bank, where Circle had deposited
funds to ensure the stability of its peg. As USDC plays a critical role in the collateral
system, other major stablecoins also began to lose their peg to the US dollar [25]. The
depegging of USD Coin and the subsequent contagion effect within the DeFi ecosystem
illustrate the profound interconnectedness and systemic risks within the cryptocurrency
market. Further, the collapse of Silicon Valley Bank revealed vulnerabilities in centralized
institutions, triggering a domino effect across various stablecoins and cryptocurrencies, as
well as in the banking environment. Indeed, the collapse of SIVB significantly destabilized
and endangered the banking sector, as evidenced by the takeovers of Credit Suisse and
First Republic Bank [26].
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In this paper, we present the findings of a series of machine learning experiments,
encompassing nonlinear regression, neural network analysis, gradient boosting machines,
and random forests. These experiments aimed to investigate the repercussions of SIVB’s
collapse on the stablecoins USDC, USDD, BUSD, DAI, and FRAX, in conjunction with
USDT and BTC as global benchmarks. The study utilized daily data spanning from October
2022 to November 2023. The key findings are as follows:

1. The gradient boosting machine (GBM) exhibited superior performance in terms of
loss scores compared to other machine learning models.

2. Notably, the impact of SIVB’s collapse on stablecoins USDD and FRAX was revealed,
particularly through neural networks and random forests.

3. Sensitivity analyses highlighted that USDC ranked second in importance after Bitcoin
in the hierarchical tree, indicating its vulnerability to the SIVB collapse.

4. Circle’s stablecoin emerged as the third most important variable according to the
Pythagorean forest, underscoring its significance as a primary variable of interest.

5. The event study, which integrates price levels and volume data, demonstrates that
USDC functions as both a systemic vulnerability and a potential contagion chan-
nel. Furthermore, it emphasizes the varying significance of other stablecoins within
this context.

Overall, our analysis highlights the necessity of employing advanced analytical tools
to effectively evaluate the resilience of stablecoins during times of crisis. The depegging
of USD Coin subsequent to the collapse of Silicon Valley Bank sheds light on the intricate
and sometimes precarious relationships between stablecoins and traditional financial
institutions. USDC, which is designed to maintain a 1:1 peg with the US dollar, experienced
significant volatility when SIVB, a major banking partner, failed. This event led to a
temporary loss of confidence among investors, causing USDC to trade below its intended
value. The incident underscores several key points. Firstly, the reliance of stablecoins
on banking institutions for liquidity and reserves makes them vulnerable to traditional
financial sector disruptions. Secondly, the rapid and transparent response from Circle, the
issuer of USDC, played a crucial role in restoring stability, emphasizing the importance
of robust crisis management and communication strategies in the crypto space. Finally,
this episode serves as a reminder of the need for regulatory clarity and stronger financial
safeguards to ensure the resilience of digital assets against unforeseen financial shocks.
In conclusion, the USDC depegging incident post-SIVB collapse underscores the delicate
balance stablecoins must maintain between digital innovation and traditional financial
dependencies. It calls for enhanced regulatory oversight and more resilient financial
infrastructures to support the growing integration of digital assets into the broader financial
ecosystem. In Europe, for instance, the Markets in Crypto-Assets (MiCa) directive aims to
protect retail holders from such turmoils in the cryptocurrency markets [27].

The recent occurrence underscores the significance of implementing robust risk man-
agement strategies and emphasizes the need for enhanced transparency and regulatory
oversight within the DeFi space. As the cryptocurrency market continues to evolve, it
is increasingly imperative for market participants to establish resilient frameworks and
collaborate toward fostering a more stable and sustainable ecosystem for digital assets.
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Appendix A

Table A1. Descriptive Statistics for Log Data from October 2022 to November 2023.

Variable Mean Median Minimum Maximum

USDC −0.0003 −0.0001 −0.0568 0.0001
SIVBQ 0.4874 −0.2946 −2.0000 2.5580
BUSD −0.0002 −0.0002 −0.0034 0.0005
USDD −0.0037 −0.0020 −0.0336 −0.0002
USDT −0.0001 −0.0005 −0.0080 0.0025
FRAX −0.0028 −0.0020 −0.0529 0.0002
DAI −0.0009 −0.0006 −0.0472 −0.0001
BTC 4.3897 4.4183 4.1931 4.5754

Variable St. error C.V. Skewness Ex. kurtosis

USDC 0.0029 7.8797 −17.1070 308.5600
SIVBQ 1.6611 3.4077 0.1057 −1.6846
BUSD 0.0002 1.0919 −4.9432 44.2220
USDD 0.0037 1.0011 −2.2086 9.4024
USDT 0.0004 3.9918 −11.0200 191.4200
FRAX 0.0036 1.2601 −7.6188 90.1630
DAI 0.0025 2.7854 −15.8610 272.8500
BTC 0.0980 0.0223 −0.3862 −0.7230

Variable PC 5% PC 95% IQ Obs. missing

USDC −0.0004 −0.0001 0.0001 0
SIVBQ −2.0000 2.4993 3.3999 0
BUSD −0.0006 0.0001 0.0002 0
USDD −0.0115 −0.0005 0.0041 0
USDT −0.0005 0.0001 0.0001 0
FRAX −0.0066 −0.0002 0.0023 0
DAI −0.0017 −0.0003 0.0001 0
BTC 4.2176 4.5478 0.1463 0

Note: St. Error stands for the Standard Error, C.V. for the Coefficient of Variation, Ex. kurtosis for the excess
kurtosis, PC 5% and PC 95% for the 5th and 95th percentile respectively of the data distribution, IQ for the
Interquartile Range, and Obs. missing for the number of missing observations. Source: Yahoo Finance.

https://finance.yahoo.com/
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Figure A1. Database in Log Data from October 2022 to November 2023. Note: From top to bottom
and left to right, USDC is Circle’s stablecoin in USD, SIVBQ is the ticker of the stock price for
SIVB Financial Group in USD, BUSD is Binance’s stablecoin in USD, USDD is Tron’s stablecoin in
USD, USDT is Tether’s stablecoin in USD, FRAX is Frax Finance’s stablecoin USD in USD, DAI is
MakerDAO Foundation’s DAI in, and BTC is the Bitcoin price in USD. Source: Yahoo Finance.
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