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Abstract: This study introduces a novel framework, “Comprehensive Optimization and Refinement
through Ensemble Fusion in Domain Adaptation for Person Re‑identification (CORE‑ReID)”, to ad‑
dress an Unsupervised Domain Adaptation (UDA) for Person Re‑identification (ReID). The frame‑
work utilizes CycleGAN to generate diverse data that harmonize differences in image characteristics
from different camera sources in the pre‑training stage. In the fine‑tuning stage, based on a pair of
teacher–student networks, the framework integratesmulti‑view features formulti‑level clustering to
derive diverse pseudo‑labels. A learnable Ensemble Fusion component that focuses on fine‑grained
local information within global features is introduced to enhance learning comprehensiveness and
avoid ambiguity associated with multiple pseudo‑labels. Experimental results on three common
UDAs in Person ReID demonstrated significant performance gains over state‑of‑the‑art approaches.
Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature
Normalization mitigate deviation effects and the adaptive fusion of global and local features using
the ResNet‑based model, further strengthening the framework. The proposed framework ensures
clarity in fusion features, avoids ambiguity, and achieves high accuracy in terms of Mean Average
Precision, Top‑1, Top‑5, and Top‑10, positioning it as an advanced and effective solution for UDA in
Person ReID.

Keywords: person re‑identification; unsupervised learning; visual surveillance; domain adaptation;
deep learning

1. Introduction
In the context of PersonRe‑identification (ReID) [1], where the objective is tomatch im‑

ages of individuals (e.g., pedestrian, suspect, etc.) across non‑overlapping camera views,
the importance of efficient and accurate identification holds significant implications for
applications in smart cities and large‑scale surveillance systems [2–4]. Recent advance‑
ments in deep learning techniques have shown promising improvements in ReID perfor‑
mance [5,6]. However, these techniques often require a substantial amount of labeled data
for effective training, which limits their applicability in real‑world settings. The reliance on
labeled data for training poses constraints, particularly in scenarios wheremanual labeling
is resource‑intensive and expensive.

The inherent limitations of supervised strategies stem from the need for manually
labeled cross‑view training data, a resource‑intensive process that incurs significant ex‑
penses [7,8]. In Person ReID, these limitations become particularly marked due to two pri‑
mary reasons: (1) the reliability of manual labeling diminishes when dealing with a large
number of images across multiple camera views, and (2) the exorbitant cost in terms of
both time and money poses a formidable barrier to labeling the vast amount of data span‑
ning disjoint camera views [9,10]. Consequently, in practical scenarios, the applicability of
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supervised methods is limited, especially when confronted with a substantial amount of
unlabeled data in a new context.

A viable solution can be considered by addressing the challenge of adapting a model
trained on a labeled source domain to an unlabeled target domain, known as the Unsu‑
pervised Domain Adaptation (UDA) in Person ReID. However, it remains a formidable
task due to the existing data distribution gap and the presence of non‑overlapping identi‑
ties between the source and target domains. Notably, methods of prevalent UDA Person
ReID [10–13], often referred to as “fine‑tuning”, first pre‑train the model on the labeled
source domain, then perform clustering algorithms and similarity measurements to gen‑
erate pseudo‑labels on the unlabeled target domain to further refine the model. Despite
their effectiveness in improving performance in the target domain, these methods tend to
overlook the influence of camera variations in the source domain, which significantly af‑
fect the performance of the pre‑trained model before entering the fine‑tuning stage. Our
approach is consistent with the concept of the “fine‑tuning” approach, but we emphasize
increasing camera awareness in the initial stage when training the model using the labeled
data. Ourmotivation stems primarily from the necessity for a large amount of data in deep
learning‑based Person ReID. Annotating large‑scale datasets to develop reliable features
that can handle camera variations is beneficial. However, it is also prohibitively expensive.

This study introduces a Comprehensive Optimization and Refinement through En‑
semble Fusion in Domain Adaptation for Person Re‑identification (CORE‑ReID) frame‑
work to refine the model on the target domain dataset during the fine‑tuning stage. While
Self‑Similarity Grouping (SSG) [14] and Learning Feature Fusion (LF2) [15] explore the use
of both local and global features of the UDA in Person ReID, they have certain challenges.
First, SSG uses a single network for feature extraction in clustering, which is susceptible
to the generation of numerous noisy pseudo‑labels. In addition, it performs clustering
based on global and local features independently, resulting in unlabeled samples acquir‑
ing multiple different pseudo‑labels, leading to ambiguity in identity classification during
training. Second, LF2 adopts a similar approach to the channel attention module of the
Convolutional Block Attention Module (CBAM) [16] in its fusion module. However, the
simplicity of the CBAM’s designmay not be optimal. Moreover, LF2 does not optimize the
final features using horizontally flipped images, which may result in suboptimal attention
maps for distinguishing identity‑related features from background features. In contrast,
the CORE‑ReID addresses these limitations by incorporating horizontally flipped images
and employing an Efficient Channel Attention Block (ECAB). The advantage of ECAB is
that it enhances feature representation through attention mechanisms that emphasize im‑
portant and deterministic features when performing re‑identification. Our model utilizes
a channel attention map by exploiting inter‑channel relationships within features, which
will serve as a feature detector. In addition, Bidirectional Mean Feature Normalization
(BMFN) is used to fuse features from both original and flipped images. These enhance‑
ments make CORE‑ReID a promising approach to bridging the gap between supervised
and unsupervised methods in Person ReID and provide valuable insights into UDA for
this domain, potentially paving the way for future advancements.

Experimental results conducted on three widely used UDA Person ReID datasets
demonstrate that our method outperforms state‑of‑the‑art approaches in terms of perfor‑
mance. To summarize, our study makes the following major contributions:
• Novel Dynamic Fine‑Tuning Approach with Camera‑Aware Style Transfer: We in‑

troduce a pioneering fine‑tuning strategy that employs a camera‑aware style transfer
model for Re‑ID data augmentation. This novel approach not only addresses dispar‑
ities in images captured by different cameras but also mitigates the impact of Convo‑
lutional Neural Network (CNN) overfitting on the source domain;

• Innovative EfficientChannelAttentionBlock (ECAB):Wedevelop a groundbreaking
ECAB that leverages the inter‑channel relationships of features to guide the model’s
attention to meaningful structures within the input image. This innovation enhances
feature extraction and focuses the model on critical identity‑related features;
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• CORE Framework with Ensemble Fusion of Global and Local Features: We estab‑
lish the CORE (Comprehensive Optimization and Refinement through Ensemble Fu‑
sion) framework, which utilizes a novel pair of teacher–student networks to perform
an adaptive fusion of global and local (top and bottom) features formulti‑level cluster‑
ing with the objective of generating diverse pseudo‑labels. By proposing the Bidirec‑
tional Mean Feature Normalization (BMFN), the model can increase its discriminabil‑
ity at the feature level and address key limitations in existing methods.

2. Related Work
This chapter addresses related research work, including that in the field of Unsuper‑

vised Domain Adaptation (UDA) for Person ReID and the knowledge transfer through
methods like knowledge distillation, highlighting approaches that aim to transfer exper‑
tise from well‑trained models to enhance learning and adaptation in challenging domain
scenarios. We can categorize the UDA methods into three main groups: style‑transferred
source‑domain images, clustering‑based approaches, and feature alignmentmethods. Each
category presents unique strategies and challenges in adapting models to different do‑
mains, showcasing innovative techniques such as style transfer for domain‑invariant fea‑
tures, iterative clustering for refined representations, and attribute alignment for knowl‑
edge transfer. Despite their successes, these methods face obstacles like image quality
dependencies, noise in pseudo‑labels, and domain shift adaptability.

2.1. Unsupervised Domain Adaptation for Person ReID
UDA has attracted significant interest due to its ability to reduce the need for costly

manual annotation. This method can effectively leverage labeled data from a source do‑
main to improve performance on a target domain without requiring annotations specific
to the target domain. Generally, UDA falls into three main categories: style‑transferred
source‑domain images, clustering‑based, and feature alignment methods.

Style‑transferred source‑domain images: This category focuses on learning domain‑
invariant features using style‑transferred source‑domain images. Themain idea is to trans‑
fer low‑ and mid‑level target domain features, such as background, illumination, resolu‑
tion, and clothing, to the images in the source domain. Techniques such as SPGAN [17],
PTGAN [18], and PDA‑Net [19] operate by transferring source‑domain images to mimic
the visual style of the target domain while preserving the underlying person identities.
These style‑transferred images, along with their corresponding identity labels, are then
used to fine‑tune the model for improved performance on the target domain. Another no‑
table approach within this category is Hetero‑Homogeneous Learning (HHL) [20], which
focuses on learning camera‑invariant features through the use of camera style‑transferred
images. Bymitigating the influence of camera‑specific variations, HHL aims to increase the
model’s ability to handle domain shifts. However, despite their effectiveness in matching
visual styles across domains, these methods have limitations. The retrieval performance
of these methods is highly dependent on the quality of the generated images. Addition‑
ally, these approaches often overlook the intricate relationships between different samples
within the target domain, limiting their ability to capture the complex dynamics present
in real‑world scenarios.

Clustering‑based methods: The second category, clustering‑based approaches, con‑
tinues to maintain state‑of‑the‑art performance in the field. In particular, Fan et al. [12]
introduced a method that alternately assigns labels to unlabeled training samples and op‑
timizes the network using the generated targets. This iterative process facilitates effective
domain adaptation by iteratively refining the model’s representations to match with the
target domain. Building on this foundation, Lin et al. [21] proposed a bottom‑up cluster‑
ing framework supplemented by a repelled loss mechanism. This approach aims to im‑
prove the discriminative power of the learned representations while mitigating the effects
of intra‑cluster variation. Similarly, SSG [14] and LF2 [15] contributed to this category by
introducing a technique that assigns pseudo‑labels to both global and local features. Ge
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et al. [22] introduced the Mutual Mean‑Teaching (MMT) method, which uses off‑line re‑
fined hard pseudo‑labels and on‑line refined soft pseudo‑labels in an alternative training
approach to learn enhanced features from the target domain. This innovative method en‑
hances the model’s ability to adapt to domain shifts by iteratively refining pseudo‑labels
and feature representations during training. In addition, Zheng et al. [23] established the
Uncertainty‑Guided Noise‑Resilient Network (UNRN), which explores the credibility of
predicted pseudo‑labels of target domain samples. By considering uncertainty estimates
in the training process, the UNRN increases the model’s performance to noisy annotations
and improves its performance in domain adaptation scenarios. By using information from
both levels of abstraction, these methods achieve improved performance in capturing fine‑
grained distinctions within the target domain. However, despite their success, clustering‑
based methods face challenges related to the noise inherent in the hard pseudo‑labels gen‑
erated by clustering algorithms. This noise can significantly hinder the training of neural
networks and is often not addressed by existing methods.

Feature alignment: The third category of domain adaptation methods aims to align
common attributes in both source and target domains to facilitate knowledge transfer.
These attributesmay include clothing items and other soft‑biometric characteristics that are
common in both domains. By aligning mid‑level features associated with these attributes,
these methods enable the learning of higher‑level semantic features in the target domain.
For instance, works such as TJ‑AIDL [24] consider a fixed set of attributes for alignment.
To enhance generalization capabilities, Lin et al. [25] propose theMulti‑taskMid‑level Fea‑
ture Alignment (MMFA) technique. MMFA enables the method to learn attributes from
both domains and align them for improved generalization on the target domain. Further‑
more, UCDA [26] and CASCL [27] aim to align attributes by considering images from
different cameras within the target dataset. Wang et al. [24] proposed a model capable
of simultaneously learning an attribute‑semantic and identity‑discriminative feature rep‑
resentation space that is transferable to the target domain. This method contributes to
advancing domain adaptation by effectively aligning attribute‑level features and improv‑
ing the transferability of learned representations between domains. However, challenges
arise due to differences in pedestrian classes between the two domains, making it difficult
for the model to learn a common feature representation space.

2.2. Knowledge Transfer
Knowledge distillation, the process of transferring knowledge from a well‑trained

neural network (often referred to as the teacher model) to another model or network (re‑
ferred to as the student model), has received significant attention in recent years [28–30].
The fundamental concept involves creating consistent training supervisions for labeled
and unlabeled data through the predictions of different models. For instance, the mean‑
teachermodel introduced in [31] innovatively averagesmodelweights across various train‑
ing iterations to generate supervisions for unlabeled samples. In contrast, Deep Mutual
Learning, proposed by Zhang et al. [32], diverges from the traditional teacher–student
paradigm by employing a pool of student models. These student models are trained col‑
laboratively and provide supervision to each other, thus promoting mutual learning and
exploration of different representations. Ge et al. proposed MMT [22], which adopts an
alternative training approach utilizing both off‑line refined hard pseudo‑labels and on‑line
refined soft pseudo‑labels. MEB‑Net [33] utilizes three networks (six models) to perform
mutual mean teacher training to generate the pseudo‑labels. However, despite their effec‑
tiveness, these methods face challenges. They rely heavily on pseudo‑labels generated by
the teacher network, whichmay be inaccurate or noisy, leading to suboptimal performance.
Additionally, theymay struggle to adapt effectively to significant domain shifts, especially
when domains exhibit significant differences in lighting conditions, camera viewpoints, or
background clutter, resulting in degraded performance.
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3. Materials and Methods
We adopt the clustering‑based method by separating the process into two stages: pre‑

training the model on the source domain in a fully supervised manner and fine‑tuning
the model on the target domain using an unsupervised learning approach (Figure 1). Our
algorithm leverages a pair of teacher–student networks [34]. After training the model us‑
ing a customized source domain dataset, the parameters of this pre‑trained model will be
copied to student and teacher networks as an initialized step to prepare for the next stage.
At the fine‑tuning stage, we train the student model and then optimize the teacher model
using the Nesterov momentum. To reduce the computation cost, only the teacher model
will be used for inference.

Figure 1. The model proposed in this study. First, the model is trained on a customized source
domain dataset; subsequently, the parameters of this pre‑trained model are transferred to both the
student and teacher networks as an initialization step for the next stage. During fine‑tuning, we
train the student model and then update the teacher model using momentum updates. To optimize
computational resources, only the teacher model is used for inference purposes.

3.1. Camera‑Aware Image‑to‑Image Translation on Source Domain Dataset
For any two unordered image collections X and Y, comprised of training samples

{xi}N
i=1 where xi ∈ X and

{
yj
}M

j=1 where yj ∈ Y, their respective data distributions are
denoted as x ∼ pdata(x) and y ∼ pdata(y). When learning to translate images from a
source domain X to a target domain Y, the objective of CycleGAN [35] is to acquire a map‑
ping G : X → Y that renders the distribution of images by G indistinguishable from the
distribution Y, which is achieved through an adversarial loss. Due to the inherent under‑
constraint of this mapping, CycleGAN [35] introduces an inverse mapping F : Y → X , in‑
corporating a cycle consistency loss to enforce F(G(X)) ≈ X and vice versa. CycleGAN
further employs two adversarial discriminators, DX and DY, where DX discerns between
images {x} and translated images {F(y)}, and DY distinguishes {y} from {G(x)}. By
leveraging the GAN framework, CycleGAN jointly trains generative and discriminative
models. The comprehensive CycleGAN loss function is expressed as:

LCycleGAN(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F), (1)

where LGAN(G, DY, X, Y) and LGAN(F, DX , Y, X) are two loss functions, correspond‑
ing to the mapping functions G and F, as well as the discriminators DY and DX . Ad‑
ditionally, Lcyc(G, F) represents the cycle consistency loss, compelling the reconstructions
F(G(X)) ≈ X and G(F(Y)) ≈ Y for each image after a cycle mapping. The parameter
λ serves to penalize the significance attributed to LGAN compared to Lcyc. This ensures
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a balanced consideration of adversarial and cycle consistency aspects. The method aims
to solve:

G∗, F∗ = argmin
G,F

max
DX , DY

L(G, F, DX , DY). (2)

Further insights into the specifics of the CycleGAN framework can be found in [35].
Inspired by the CamStyle [36], we incorporate CycleGAN to generate new training

samples, treating styles across different cameras as different domains. This approach in‑
volves learning image‑image translation models using CycleGAN for images from differ‑
ent camera views C in the Person ReID dataset. To ensure color consistency between input
and output during style transfer, similar to the painting → photo application, we add an
identity mapping loss proposed in [37] to the CycleGAN loss function (Equation (1)). This
additional loss term compels the generator to approximate an identity mapping when real
images from the target domain are used as input, expressed as:

Lidentity(G, F) = Ey∼pdata(y)[||G(y)− y||1] +Ex∼pdata(x)[||F(x)− x||1]. (3)

The absence of Lidentity would grant the generator G and F the freedom to alter the
tint of input images unnecessarily. As the results, the total loss used for training is:

Ltotal(G, F, DX , DY) = LCycleGAN(G, F, DX , DY) + Lidentity(G, F). (4)

Our approach differs from CamStyle, which addresses Person ReID by utilizing and
generating more data on the training dataset and evaluating the model within the same
dataset (e.g., Market‑1501, CUHK03). We aim to train on a source domain S and evaluate
the algorithm during the fine‑tuning stage on a different target domain T. This approach
allows us to leverage the entirety of the data in S by incorporating test data into the training
set, similar to that of DGNet++ [38].

For a source domain dataset containing images from C different cameras, the number
of generative models used to produce data both X → Y and Y → X is C(C − 1). Conse‑
quently, the final training set comprises a blend of the original real images and the style‑
transferred images from both the training and test sets within the source domain dataset
(Figure 2). These style‑transferred images seamlessly adopt the labels from the original
real images.

Figure 2. Our pipeline of creating the full training set for the source domain. Initially, we combine
both the training set (green boxes) and the test set (dark green boxes) within the source dataset to
form the total training set consisting of real images. This combined set is then used to train the
camera‑aware style transfer model. For each real image, the trained transfer model is applied to
generate images (blue boxes for the training set and dark blue boxes for the test set) that align with
the stylistic characteristics of the target cameras. Subsequently, the real images (green anddark green
boxes) and the style‑transferred images (blue and dark blue boxes) are merged to produce the final
training set within the source domain.
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Figure 3 shows two examples each from the training and test data in the Market‑1501
dataset. The styles of these instances have been altered based on the camera view, classi‑
fying the method as a data augmentation scheme. This approach serves the dual purpose
of mitigating disparities in camera styles and diminishing the impact of overfitting in Con‑
volutional Neural Networks (CNNs). Moreover, the incorporation of camera information
aids the model in learning pedestrian features with a camera‑invariant property.

Figure 3. Some style‑transferred samples in Market‑1501 [39]. Each image, originally taken by a spe‑
cific camera, is transformed to align with the styles of the other five cameras, both within the train‑
ing and test data. The real images are shown on the left, while their corresponding style‑transferred
counterparts are shown on the right.

3.2. Source‑Domain Pre‑Training
3.2.1. Fully Supervised Pre‑Training

As many existing the UDA approaches are based on a model pre‑trained on a source
dataset, our pre‑training adopts a similar setup as described in [14,15,20,40]. We use
ResNet101 trained on ImageNet as the backbone network (Figure 4). The last fully con‑
nected (FC) layer is removed, and two additional layers are introduced. The first layer
is a batch normalization layer with 2048 features, and the second is an FC layer with MS
dimensions, where MS is the number of identities (classes) in the source dataset S. In our
case, when training:

MS, train = Moriginal
S,train + Moriginal

S,test , (5)

where Moriginal
S,train and Moriginal

S,test are the number of identities in the original training and test
sets of S. For each labeled image xS, i and its ground truth identity yS,i in the source domain
data DS = {(xS,i, yS,i)|

NS
i=1

}
with NS is the number of images, we train the model using the

identity classification (cross‑entropy) loss LS,ID and triplet loss LS,triplet. The identity clas‑
sification loss is applied to the last FC layer, treating the training process as a classification
problem. Subsequently, the triplet loss is employed using the output features after batch
normalization, treating the training process as a verification problem (refer to Figure 4).
The loss functions are defined as follows:

LS,ID =
1

Ns

NS

∑
i=1

Lce(CS( f (xS,i), yS,i), (6)
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LS,triplet =
1

Ns

NS

∑
i=1

max
(

0,
∣∣∣∣∣∣ f (xs,i)− f

(
x+S,i

)∣∣∣∣∣∣
2
−
∣∣∣∣∣∣ f (xs,i)− f

(
x−S,i

)∣∣∣∣∣∣
2
+ m

)
, (7)

where f (xS,i) is the feature of the source image xS,i , Lce is the cross‑entropy loss, CS is a
learnable source‑domain classifier: f (xS,i) → {1, 2, . . . , MS} . ||||2 indicates the L2‑norm
distance, x+S,i and x−S,i denote the hardest positive and hardest negative feature index in
each mini‑batch for the sample xS,i. The triplet distance margin is represented as m. With
the balance parameter κ, the total loss used in source‑domain pre‑training is:

LS, total = LS, ReID = LS,ID + κLS,triplet . (8)

Figure 4. The overall training process in the fully supervised pre‑training stage. ResNet101 is used
as the backbone in our training process.

The model demonstrates good performance when trained with fully labeled data in
the source domain. However, its direct application to the unlabeled target domain results
in a significant drop in performance.

Prior to inputting the image into the network, we perform preprocessing by resizing
the image to a specific size and applying various data augmentation techniques, including
random horizontal flipping, random cropping, and edge padding. Additionally, we incor‑
porate random color dropouts (random grayscale patch replacement) [41] tomitigate color
deviation while preserving information, thereby reducing overfitting, and enhancing the
model’s generalization capability.

3.2.2. Implementation Details
For the camera‑aware image‑to‑image translation to generate synthetic data, we train

30 and 2 generative models for Market‑1501 and CUHK03, respectively, using the formula
6 × (6 − 1) = 30 and 2 × (2 − 1) = 2. Throughout training, we resize all input images to
286 × 286 and then crop them to a size of 256 × 256. We employ the Adam optimizer [42]
to train the models from scratch for all experiments, setting the batch size to 8. The learn‑
ing rate is initialized at 0.0002 for the Generator and 0.0001 for the Discriminator for the
first 30 epochs and is linearly reduced to near zero over the remaining 20 epochs according
to the lambda learning schedule policy. In the camera‑aware style transfer step, we gen‑
erate C − 1 additional fake training images (5 for Market‑1501 and 1 for CUHK03) while
preserving their original identity, thus augmenting the training data.

As the backbone, ResNet101 is adopted, the initial learning rate is set to 0.00035 and
decreased by 0.1 at the 40th and 70th epochs. There are a total of 120 training epochs with
the number of warmup epochs is 10. We randomly sampled 32 identities and 4 images
per person to form a training batch. The final batch size equals 128. In the pre‑processing
step, we resize each image into 256 × 128 pixels and pad the resized image 10 pixels using
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edge‑padding, and then, randomly crop it into a 256 × 128 pixels rectangular image. The
augmentation methods are also applied, including random horizontal flipping of the im‑
age and random color dropouts [41] with a probability of 0.5 and 0.4, respectively. Each
image is decoded into 32‑bit floating point raw pixel values in [0; 1]. Then, we normalize
RGB channels by subtracting 0.485, 0.456, 0.406 and dividing by 0.229, 0.224, 0.225, respec‑
tively. The balance parameter κ is set to 1.

3.3. Target‑Domain Fine‑Tuning
In this phase, we use the pre‑trained model to perform comprehensive optimization.

We present our CORE‑ReID framework (Figure 5) along with Efficient Channel Atten‑
tion Block (ECAB) in the Ensemble Fusion and Bidirectional Mean Feature Normalization
(BMFN) modules.

Figure 5. An overview of our CORE‑ReID framework. We combined local features and global fea‑
tures using Ensemble Fusion. The ECAB in Ensemble Fusion promotes the enhancement of the fea‑
tures. By using BMFN, the framework can merge the feature from the original image xT,i and its
paired flipped image x′T,i, then produce the fusion feature φl , l ∈ {top, bottom}. The student net‑
work is optimized using pseudo‑labels in a supervisedmanner, while the teacher network is updated
by computing the temporal average of the student networks via the update momentum. The orange
rounded rectangles indicate the steps where the features of the flipped image are used in the same
way as the original image, up until the application of BMFN.

Inspired by the techniques of SSG [14] and LF2 [15], our aim is to enable the model
to dynamically fuse global and local (top and bottom) features, resulting in feature repre‑
sentations that capture both global and local information. Additionally, by constructing
multiple clusters based on global and fused features, we aim to generate more consistent
pseudo‑labels, thus preventing ambiguous learning. To refine the noisy pseudo‑labels, we
adopt a pair of teacher–student networks based on the mean‑teacher approach [34]. We
input the same unlabeled image from the target domain to both the teacher and student
networks. In the current iteration i, the parameters ρς of the student network are updated
using Nesterov momentum, in which, the parameters ρς will be adjusted through back‑
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propagation during training in the target domain. Meanwhile, the parameters ρτ of the
teacher network are computed as the temporal average of ρς, which can be expressed as:

ρτ,i = ηρτ,i−1 + (1 − η)ρς, (9)

where η denotes the temporal ensemble momentum, which ranges between 0 and less
than 1.

3.3.1. Ensemble Fusion Module and Overall Algorithm
To derive the fusion features, we horizontally split the last global feature map of the

student network into two parts (top and bottom), resulting in ςtop and ςbottom after global
average pooling. However, the last global feature map τglobal of the teacher network re‑
mains intact without any parting. These features, namely ςtop and ςbottom from the student
network and τglobal from the teacher network, are selected for adaptively Learning Feature
Fusion through the Ensemble Fusionmodule, which incorporates learnable parameters. In
line with the approach of LF2, we design the Ensemble Fusion module (Figure 6), wherein
we initially utilize ςtop and ςbottom along with the spatial information of the student net‑
work’s local features.

Figure 6. The Ensemble Fusion component. ςstop and ςbottom features are passed through the ECAB
to produce the channel attention maps by exploiting the inter‑channel relationship of features which
helps to enhance the features.

The inputs ςtop and ςbottom will be forwarded to ECAB for adaptive learning fusion.
Each enhanced attentionmap (ψtop and ψbottom) outputted from ECABwill bemergedwith
τglobal through element‑wise multiplication to generate the Ensemble Fusion feature maps:
τ

top
global and τbottom

global . Subsequently, after applying Global Average Pooling (GAP) and batch
normalization, we obtain the fusion features θtop and θbottom to input into BMFN for pre‑
dicting pseudo‑labels using clustering algorithms in subsequent steps. The overall process
in Ensemble Fusion can be expressed as:

τ
top
global = ψtop ⊗ τglobal = ECAB

(
ςtop

)
⊗ τglobal , (10)

τbot
global = ψbottom ⊗ τglobal = ECAB(ςbottom)⊗ τglobal, (11)

We apply the mini‑batch K‑means algorithm in clustering to predict the pseudo‑labels.
Consequently, each xT,i will have three pseudo‑labels (global, top, and bottom, respectively).
We denote the target domain data as DT =

{(
xT,i, ŷT,i,j

)∣∣NT
i=1

}
, with j ∈ {global, top, bottom}

and NT is the number of images in target dataset T. Where ŷT,i,j ∈
{

1, 2 . . . , MT,j
}
ex‑

presses that the pseudo‑label ŷT,i,j of the target‑domain image xT,i is from the cluster result
Ŷj =

{
ŷT,i,j

∣∣i = 1, 2, . . . , NT
}
of the combined feature with its flipped image x′T,i outputted

from BMFN: φl , l ∈ {top, bottom}. MT,j denotes the number of identities (classes) in Ŷj.
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Before calculating the loss function, we apply the BMFN to obtain each optimized fea‑
ture from networks f ς

j , f τ
j , j ∈ {global, top, bottom} and φl , l ∈ {top, bottom} from Ensem‑

ble Fusion. After acquiring multiple pseudo‑labels, we can get three new target‑domain
datasets for training the student network. We use the pseudo‑labels generated by local
fusion features φl , l ∈ {top, bottom} to calculate the soft‑max triplet loss for corresponding
local features f ς

l from student network:

Ll
T,triplet =

1
NT

NT

∑
i=1

log

(
e|| f ς

l (xT,i |ρς)− f ς
l (x−T,i |ρς) ||2

e|| f ς
l (xT,i |ρς)− f ς

l (x−T,i |ρς) ||2 + e|| f ς
l (xT,i |ρς)− f ς

l (x+T,i |ρς) ||2

)
, (12)

where ρτ and ρς are parameters in teacher and student networks. Optimized local feature
from student network is denoted as f ς

l , l ∈ {top, bottom}. x+T,i and x−T,i are the hardest
positive and negative samples of the anchor target‑domain image xT,i, respectively.

Similar to supervised learning approach, we use the cluster result Ŷglobal of the global
clustering feature f ς

global as pseudo‑labels to calculate the classification loss Lglobal
T,ReID and

global triplet loss Lglobal
T,triplet for global feature f ς

global . The formulas are expressed as:

Lglobal
T,ID =

1
NT

NT

∑
i=1

Lce

(
CT

(
f ς
global(xT,i), ŷT,i,global

)
, (13)

Lglobal
T,triplet =

1
NT

NT

∑
i=1

max
(

0, || f ς
global(xT,i)− f ς

global

(
x+T,i

)
||

2
−
∣∣∣∣∣∣ f ς

global(xT,i)− f ς
global

(
x−T,i

)∣∣∣∣∣∣
2
+ m

)
, (14)

whereCT is the fully connected layer of the student network for classification: f ς
global(xT,i) →{

1, 2, . . . , MT,global

}
. ||||2 indicates the L2‑norm distance.

With α, β, γ and δ are weighting parameters, the total loss can be calculated as:

LT, total = Lglobal
T, ReID + γLtop

T,triplet + δLbottom
T,triplet

= αLglobal
T, ID + βLglobal

T, triplet + γLtop
T,triplet + δLbottom

T,triplet .
(15)

During the inference phase, the Ensemble Fusion process is omitted, and we only use
the optimized teacher network to save the computation cost. In detail, the global feature
map from the teacher network is segmented into two parts, known as the top and bottom
(it also serves as a student network). Following global average pooling, the resulting two
local features and the global feature are concatenated. Subsequently, L2 normalization and
BMFN is applied to get the final optimal feature to facilitate inference.

3.3.2. Efficient Channel Attention Block (ECAB)
The importance of attention has been extensively explored in previous literature [43].

Attention not only guides where to focus but also enhances the representation of relevant
features. Inspired by theCBAM,we introduce an ECAB, a straightforward yet impactful at‑
tention module for feed‑forward Convolutional Neural Networks. This module enhances
representation power through attentionmechanisms that emphasize crucial featureswhile
suppressing unnecessary ones. We generate a channel attention map by leveraging inter‑
channel relationships within features. Each channel of a feature map serves as a feature
detector, and channel attention directs focus towards the most meaningful aspects of an
input image. To efficiently compute channel attention, we compress the spatial dimension
of the input feature map.

While average‑pooling has been commonly used to aggregate spatial information,
Zhou et al. [44] suggest its effectiveness in learning object extents. Therefore, we utilize
both average‑pooling and max‑pooling features simultaneously. Figure 7 shows the de‑
sign of ECAB. Given an intermediate input feature map ς ∈ RC×W×H , where C, W, H de‑
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note the number channel, width, and height respectively. After performing max‑pooling
and average‑pooling, then fit the outputs ςmax, ςavg into a Shared Multilayer Perceptron,
we can obtain refined feature as ςmax

SMLP and ς
avg
SMLP. The Shared Multilayer Perceptron has

multiple hidden layers with reduction rate r and the same expansion rate, activation func‑
tion ReLU. The enhanced attention map ψ ∈ RC×1×1 is calculated as:

ψ = (ςmax + ςavg)⊗ ςσ = (ςmax + ςavg)⊗ σ
(

ςmax
SMLP + ς

avg
SMLP

)
, (16)

where ςσ is the output of ςmax
SMLP + ς

avg
SMLP after the sigmoid function.

Figure 7. The structure of our ECAB. The Shared Multilayer Perceptron has odd h hidden layers,
where the first h−1

2 layers are reduced in size with the reduction rate r, and the last h−1
2 layers will

be expanded with the same rate r.

3.3.3. Bidirectional Mean Feature Normalization (BMFN)
The use of horizontally flipped images has been studied in [45–47]. We assume that

the image can be captured in the opposite direction (left and right). By using the flipped im‑
age in training, the model can focus on the id‑related features and ignore the
background features.

Given an image xT,i in target domain dataset, and its flipped image x′T,i.After getting
the featuremap Fm

j and its pairedflipped image’s featuremap F′mj , j∈ {global, top bottom},
m ∈ {ς, τ} . The outputs from BMFN can be calculated as:

f m
j =

Fm
j +F′mj

2∣∣∣∣∣∣∣∣ Fm
j +F′mj

2

∣∣∣∣∣∣∣∣
2

. (17)

The optimal feature maps on the branch of Ensemble Fusion θl , l ∈ {top, bottom} can
be intended after applying the BMFN are:

φm
l =

θm
l +θ′ml

2∣∣∣∣∣∣ θm
l +θ′ml

2

∣∣∣∣∣∣
2

, (18)

3.3.4. Detailed Implementation
Our training regimen spans 80 epochs, with each epoch consisting of 400 iterations.

Throughout training, the learning rate remains fixed at 0.00035, and we employ the Adam
optimizer with a weight decay of 0.0005 to facilitate stable convergence. The utilization of
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the K‑means algorithm aids in initializing cluster centers effectively. For temporal ensem‑
ble regularization, we set the momentum parameter (η) to 0.999. To balance the various
components of our loss function, we assign the following weights: α: 1; λ: 1; γ: 0.5; δ:
0.5. In our Ensemble Fusion block, we maintain a reduction ratio and expand rate (r) of 4
and the number of hidden layers h is set to 5. Like pre‑training stage, the processing step
is also applied. In addition, randomly erasing with the probability of 0.5 is conducted in
fine‑tuning stage.

4. Results
In this section, we will show the experimental results compared to state‑of‑the‑art

(SOTA) methods on popular datasets for the task of UDA for Person ReID.

4.1. Dataset Description
We evaluated the effectiveness of our proposal by conducting evaluations on three

benchmark datasets: Market‑1501 [39], CUHK03 [48], and MSMT17 [49].
Market‑1501 comprises 32,668 photos featuring 1501 individuals captured from 6 dif‑

ferent camera views. The training set encompasses 12,936 images representing 751 identi‑
ties. The testing set includes 3368 query images and 19,732 gallery images, encompassing
the remaining 750 identities.

CUHK03 consists of 14,097 images depicting 1467 unique identities, captured by six
campus cameras, with each identity being recorded by two cameras. This dataset offers
two types of annotations: manually labeled bounding boxes and those generated by an
automatic detector. We employed manually annotated bounding boxes for both training
and testing purposes. Additionally, we adopted a more rigorous testing protocol pro‑
posed in [40] for CUHK03. This protocol involves splitting the dataset into 767 identities
(7365 images) for training and 700 identities (5332 images and 1400 images in gallery and
query sets respectively) for testing.

MSMT17, a large‑scale dataset, consists of 126,441 bounding boxes representing 4101 iden‑
tities captured by 12 outdoor and 3 indoor cameras (a total of 15 cameras) in three periods
(morning, afternoon, and noon) throughout the day on four different days. The training
set incorporates 32,621 images showcasing 1041 identities, while the testing set consists of
93,820 images featuring 3060 identities used for evaluation. The testing set is divided into
11,659 images for the query set and 82,161 images for the gallery set. Notably, MSMT17
surpasses both Market‑1501 and CUHK03 in scale.

The comprehensive overview of the open datasets utilized in this document is pre‑
sented in Table 1. Experimental results can be found in Tables 2 and 3.

Table 1. Details of datasets used in this manuscript.

Dataset Cameras
Training Set
(ID/Image)

Test Set (ID/Image)

Gallery Query

Market‑1501 6 751/12,936 750/19,732 750/3368

CUHK03 2 767/7365 700/5332 700/1400

MSMT17 15 1401/32,621 3060/82,161 3060/11,659

Table 2. Experimental results of the proposed CORE‑ReID framework and SOTA methods (Acc %)
on Market‑1501 and CUHK03 datasets. Bold denotes the best while Underline indicates the second‑
best results. a indicates the method uses multiple source datasets.

Market→ CUHK CUHK→Market

Method Reference mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

SNR a [50] CVPR 2020 17.5 17.1 ‑ ‑ 52.4 77.8 ‑ ‑
UDAR [51] PR 2020 20.9 20.3 ‑ ‑ 56.6 77.1 ‑ ‑
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Table 2. Cont.

Market→ CUHK CUHK→Market

Method Reference mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

QAConv50 a [52] ECCV 2020 32.9 33.3 ‑ ‑ 66.5 85.0 ‑ ‑
M3L a [53] CVPR 2021 35.7 36.5 ‑ ‑ 62.4 82.7 ‑ ‑

MetaBIN a [54] CVPR 2021 43.0 43.1 ‑ ‑ 67.2 84.5 ‑ ‑
DFH‑Baseline

[55] CVPR 2022 10.2 11.2 ‑ ‑ 13.2 31.1 ‑ ‑

DFH a [55] CVPR 2022 27.2 30.5 ‑ ‑ 31.3 56.5 ‑ ‑
META a [56] ECCV 2022 47.1 46.2 ‑ ‑ 76.5 90.5 ‑ ‑
ACL a [57] ECCV 2022 49.4 50.1 ‑ ‑ 76.8 90.6 ‑ ‑
RCFA [58] Electronics 2023 17.7 18.5 33.6 43.4 34.5 63.3 78.8 83.9
CRS [59] JSJTU 2023 ‑ ‑ ‑ ‑ 65.3 82.5 93.0 95.9
MTI [60] JVCIR 2024 16.3 16.2 ‑ ‑ ‑ ‑ ‑ ‑

PAOA+ a [61] WACV 2024 50.3 50.9 ‑ ‑ 77.9 91.4 ‑ ‑

Baseline Ours 55.2 55.7 72.1 81.0 82.2 92.0 96.7 97.6

CORE‑ReID Ours 62.9 61.0 79.6 87.2 83.6 93.6 97.3 98.7

Table 3. Experimental results of the proposed CORE‑ReID framework and SOTA methods (Acc %)
fromMarket‑1501 andCUHK03 source datasets to target domainMSMT17 dataset. Bold denotes the
best while Underline indicates the second‑best results. a indicates the method uses multiple source
datasets, b denotes the implementation is based on the author’s code.

Market→MSMT CUHK→MSMT

Method Reference mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

NRMT [62] ECCV 2020 19.8 43.7 56.5 62.2 ‑ ‑ ‑ ‑
DG‑Net++ [38] ECCV 2020 22.1 48.4 ‑ ‑ ‑ ‑ ‑ ‑
MMT [22] ICLR 2020 22.9 52.5 ‑ ‑ 13.5 b 30.9 b 44.4 b 51.1 b

UDAR [51] PR 2020 12.0 30.5 ‑ ‑ 11.3 29.6 ‑ ‑
Dual‑Refinement

[63] arXiv 2020 25.1 53.3 66.1 71.5 ‑ ‑ ‑ ‑

SNR a [50] CVPR 2020 ‑ ‑ ‑ ‑ 7.7 22.0 ‑ ‑
QAConv50 a [52] ECCV 2020 ‑ ‑ ‑ ‑ 17.6 46.6 ‑ ‑

M3L a [53] CVPR 2021 ‑ ‑ ‑ ‑ 17.4 38.6 ‑ ‑
MetaBIN a [54] CVPR 2021 ‑ ‑ ‑ ‑ 18.8 41.2 ‑ ‑
RDSBN [64] CVPR 2021 30.9 61.2 73.1 77.4 ‑ ‑ ‑ ‑
ClonedPerson

[65] CVPR 2022 14.6 41.0 ‑ ‑ 13.4 42.3 ‑ ‑

META a [56] ECCV 2022 ‑ ‑ ‑ ‑ 24.4 52.1 ‑ ‑
ACL a [57] ECCV 2022 ‑ ‑ ‑ ‑ 21.7 47.3 ‑ ‑

CLM‑Net [66] NCA 2022 29.0 56.6 69.0 74.3 ‑ ‑ ‑ ‑
CRS [59] JSJTU 2023 22.9 43.6 56.3 62.7 22.2 42.5 55.7 62.4

HDNet [67] IJMLC 2023 25.9 53.4 66.4 72.1 ‑ ‑ ‑ ‑
DDNet [68] AI 2023 28.5 59.3 72.1 76.8 ‑ ‑ ‑ ‑
CaCL [69] ICCV 2023 36.5 66.6 75.3 80.1 ‑ ‑ ‑ ‑

PAOA+ a [61] WACV 2024 ‑ ‑ ‑ ‑ 26.0 52.8 ‑ ‑
OUDA [70] WACV 2024 20.2 46.1 ‑ ‑ ‑ ‑ ‑ ‑
M‑BDA [71] VCIR 2024 26.7 51.4 64.3 68.7 ‑ ‑ ‑ ‑
UMDA [72] VCIR 2024 32.7 62.4 72.7 78.4 ‑ ‑ ‑ ‑

Baseline Ours 40.1 67.3 79.4 83.1 37.2 65.5 77.2 81.0

CORE‑ReID Ours 41.9 69.5 80.3 84.4 40.4 67.3 79.0 83.1

4.2. Benchmark
Our study initially focused on comparing CORE‑ReID against SOTAmethods on two

domain adaptation tasks: Market→CUHK andCUHK→Market (Table 2). Subsequently,
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we then expanded our evaluation to include two additional tasks: Market → MSMT and
CUHK→MSMT (Table 3). “Baseline” denotes themethod inwhichwe only use the global
feature, without using ECAB and BMFN; CORE‑ReID denotes our framework. The evalu‑
ation metrics are mAP(%) and rank (R) at k accuracy (%).

The results demonstrate that our framework significantly outperforms existing SOTA
methods, validating the effectiveness of our method. Specifically, by integrating the En‑
semble Fusion component, ECAB and BMFN, our framework outperforms SOTAmethods.
In particular, we observed significant improvements over PAOA+, with margins of 12.6%
and 6.0%mAP on bothMarket→CUHK andCUHK→Market tasks, respectively, despite
PAOA+ incorporating additional training data.

4.3. Ablation Study
Feature Maps Visualization: To verify our method, we visualized the feature map

of Grad‑CAM [73] at the global feature level. Important features of each person are rep‑
resented as heatmaps, as shown in Figure 8. The rainbow color describes the level of less
important (blue) to most important (red) parts used for Person Re‑identification. In the
Market → CUHK and CUHK → Market scenarios (Figure 8a,b), important features are
observed in the target person’s body. The heatmaps show identical distributions in the
original and flipped images. This observation is considered to be consistent with the accu‑
racy of our method as shown in Table 2.

Figure 8. Feature maps visualization using Grad‑CAM [73]. (a), (b), (c), and (d) illustrate the feature
maps of those pairs on Market → CUHK, CUHK → Market, Market → MSMT, CUHK → MSMT,
respectively.

On the other hand, in the Market→MSMT and CUHK→MSMT scenarios, the Mar‑
ket → MSMT model shows a slightly better extraction of important features, where the
heatmap is distributed in the middle and lower body regions in both the original and
the flipped images. This fact could be considered as the reason for the higher accuracy
achieved by the Market → MSMT model over the CUHK→ MSMT model, as shown in
Table 3.

K‑means Clustering Settings: we used the K‑means approach for clustering to make
the pseudo‑labels on the target domain. The settings varied depending on the datasets.
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As shown in Table 4, our framework performs best on Market → CUHK, CUHK → Mar‑
ket, Market → MSMT and CUHK → MSMT with the settings of 900, 900, 2500, and 2500,
respectively.

Table 4. Experimental results on different settings of number of pseudo identities in K‑means clus‑
tering algorithm. Bold denotes the best results.

Market→ CUHK CUHK→Market

Method mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

Ours
(

MT, j = 500
)

52.4 51.4 70.6 79.1 77.4 91.0 96.5 97.6

Ours
(

MT, j = 700
)

57.3 57.1 74.5 83.0 82.1 92.6 97.5 98.2

Ours
(

MT, j = 900
)

62.9 61.0 79.6 87.2 83.6 93.6 97.3 98.7

Market→MSMT CUHK→MSMT

Method mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

Ours
(

MT, j = 2500
)

41.9 69.5 80.3 84.4 40.4 67.3 79.0 83.1

Ours
(

MT, j = 3000
)

39.8 66.8 78.9 83.0 37.2 64.7 76.6 80.9

Ours
(

MT, j = 3500
)

37.6 65.1 77.3 81.8 35.0 63.1 75.4 79.8

Figure 9 shows that the performance of our method varies depending on the dataset
pairs and the clustering parameter values (MT,j) used.

Figure 9. Impact of clustering parameter MT, j. Results on (a) Market → CUHK, (b) CUHK →
Market, (c) Market → MSMT, and (d) CUHK → MSMT. The evaluation metrics are mAP(%) and
rank (R) at k accuracy (%).
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ECABandBMFNSettings: ECAM improves representation power by using attention
mechanisms to highlight important features and suppress irrelevant ones. To validate the
effectiveness of ECAB,weperformed an experimentwhere it is removed fromour network,
as shown in Table 5.

Table 5. Experimental results to validate the effectiveness of utilizing ECAB and BMFN in our pro‑
posed framework. The clustering parameter values (MT,j) is carried out from the study of K‑means
clustering settings. Bold denotes the best results.

Market→ CUHK (MT,j=900) CUHK→Market (MT,j=900)

Method mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

Ours (without ECAB) 56.9 55.8 72.8 81.6 83.3 93.4 97.4 98.4

Ours (without BMFN) 62.3 60.3 79.2 87.0 83.0 92.7 97.3 98.3

Ours (with ECAB and
BMFN) 62.9 61.0 79.6 87.2 83.6 93.6 97.3 98.7

Market→MSMT (MT,j=2500) CUHK→MSMT (MT,j=2500)

Method mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

Ours (without ECAB) 41.2 68.5 80.1 83.8 38.0 65.8 77.5 81.8

Ours (without BMFN) 41.1 68.2 80.1 83.9 39.8 66.7 78.7 82.8

Ours (with ECAB and
BMFN) 41.9 69.5 80.3 84.4 40.4 67.3 79.0 83.1

Asmentionedearlier,weusedBMFNtomerge features fromtheoriginal imageand itsflipped
counterpart, allowing the model to concentrate on ID‑related features while disregarding back‑
ground features. Table 5 demonstrates that incorporating BMFN enhances accuracy.

Figure 10 shows the results that utilizing ECAB and BMFN in our framework led to
performance improvement.

Backbone Configurations: we also evaluated the performance of different backbone
architectures (ResNet50, ResNet101, andResNet152) inmodeling the network forUnsuper‑
vised Domain Adaptation in Person Re‑ID. By systematically comparing the performance
of these models, we aimed to identify the most effective backbone architecture for our task.
Through extensive experimentation and analysis, we gained valuable insights into the im‑
pact of the backbone architecture on the overall performance of the unsupervised domain
adaptation framework for Person Re‑ID as shown in Table 6. The ResNet101 setting gives
the best performance on both Market → CUHK and CUHK → Market scenarios. All of
these experiments were performed on two machines with dual Quadro RTX 8000 GPUs
(Nvidia Corporation, California, US) each.

Table 6. Experimental results on different settings of ResNet backbones in Market→ CUHK, CUHK
→Market scenarios. Bold denotes the best results.

Market→ CUHK (MT,j = 900) CUHK→Market (MT,j = 900)

Method mAP R‑1 R‑5 R‑10 mAP R‑1 R‑5 R‑10

Ours (ResNet50) 62.3 61.0 77.7 85.4 83.4 93.1 97.3 98.4

Ours (ResNet101) 62.9 61.0 79.6 87.2 83.6 93.6 97.3 98.7

Ours (ResNet152) 60.4 59.0 76.8 85.6 83.4 93.1 97.8 98.4
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Figure 10. Effect of using ECAB and BMFN in our proposed methods. Results on (a) Market →
CUHK, (b) CUHK→Market, (c) Market→MSMT, and (d) CUHK→MSMT. The evaluationmetrics
are mAP(%) and rank (R) at k accuracy (%).

Figure 11 shows that the performance does not vary much across different backbone
configurations, indicating the stability of our framework regardless of the settings used.

Figure 11. Impact of the backbone configurations. Results on (a) Market → CUHK, (b) CUHK →
Market show that ResNet101 backbone gives the best overall results. The evaluation metrics are
mAP(%) and rank (R) at k accuracy (%).
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5. Conclusions
In this paper, we present a multifaceted approach to solve the problem of the UDA.

Firstly, we propose a dynamic fine‑tuning strategy that employs a camera‑aware style
transfer model to augment Re‑ID data. This not only mitigates disparities in camera styles
but also combats CNN overfitting on the source domain. Additionally, we introduce an
Efficient Channel Attention Block (ECAB) that leverages inter‑channel relationships to pri‑
oritize meaningful structures in input images, improving feature extraction. Furthermore,
we establish a Comprehensive Optimization and Refinement through Ensemble fusion
(CORE‑ReID) framework. This framework utilizes a pair of teacher–student networks to
fuse global and local features adaptively, generating diverse pseudo‑labels for multi‑level
clustering. Finally, we incorporate a Bidirectional Mean Feature Normalization (BMFN)
module to enhance feature‑level discriminability.

In addition to achieving SOTA performance, our method notably narrows the gap
between supervised and unsupervised performance in Person Re‑ID. We expect that our
approach will offer valuable insights into the UDA for Person Re‑ID, potentially paving
the way for further advances in the field.

However, our approach has limitations. A major challenge is the dependence on the
quality of the camera‑aware style transfer model, which can affect the overall performance
if not properly optimized. Additionally, the complexity of our CORE‑ReID framework
may lead to increased computational cost and training time. Future work will focus on
optimizing the efficiency of the style transfer model and simplifying the CORE framework
without sacrificing performance. We also plan to explore more advanced techniques for
noise reduction in pseudo‑labels to further enhance the robustness of our model.
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HHL Hetero‑Homogeneous Learning
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