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Abstract: Open Science describes the movement of making any research artifact available to the
public, fostering sharing and collaboration. While sharing the source code is a popular Open Science
practice in software research and development, there is still a lot of work to be done to achieve
the openness of the whole research and development cycle from the conception to the preservation
phase. In this direction, the software engineering community faces significant challenges in adopting
open science practices due to the complexity of the data, the heterogeneity of the development
environments and the diversity of the application domains. In this paper, through the discussion of
the 5Ws+1H (Why, Who, What, When, Where, and How) questions that are referred to as the Kipling’s
framework, we aim to provide a structured guideline to motivate and assist the software engineering
community on the journey to data openness. Also, we demonstrate the practical application of these
guidelines through a use case on opening research data.
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1. Introduction

According to Russell [1], “openness” is a synthesis of technology and ideology, repre-
senting the combination of technology, democracy, and innovation. The openness spirit
is constantly gaining ground globally, motivating both the scientific and the industrial
communities to share whatever they consider relevant, from intangible artifacts such as
methodologies and “learned lessons” to tangible results such as data, code, and algorithms.
The culture of openness started from science, as expected, at the beginning of the 17th
century, with the advent of academic journals. At the beginning of the 90s, the first big
change occurred with the invention of arXiv, where scientists could freely share their re-
search papers prior to publication. Since then, several other initiatives have taken place to
“democratize” access to knowledge, such as Open Access to journals (2004), Open-Funded
Research (2013) and, of course, the Open Data movement (2008). The latter started by
sharing government data and in recent years has expanded to all data-intensive domains [2].
Open science is a movement aimed at making all artifacts resulting from scientific research
activities accessible to anyone, without any barriers [3]. As an umbrella term, open science
encompasses several facets of openness, including open access, open data, open source,
open government, open notebooks, and open standards [4] Open access refers to publica-
tions that are freely available on the public Internet without financial, legal or technical
barriers, allowing individuals to read, download, copy, distribute, print, search, or link to
the full texts of publications for any legal purpose [5] Open data is similar, but applies to
any data produced during research activities, such as raw data from controlled experiments.
The level of openness may also present various accessibility concerns, sometimes requiring
specific requests and consents to access the full dataset. Open source in open science
mirrors the concept well known in the computer science community: making source code
freely available for use and modification. Given the fact that research and practice have
become increasingly data-driven, data now, more than ever, play a critical role in enabling
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and accelerating open science. Both sharing and using open research data can contribute to
scientific advancement.

In software engineering, the opening movement centers around the importance of
software products to be distributed alongside the constructive data. While platforms
like GitHub are widely used by developers to manage and store software code, they are
not used for storing the full range of data produced during the software development
process. Such data include version control data, bug reports, technical and non-technical
requirements, architecture models, specifications along with test data. On the other hand,
there are also software metadata that can be useful, such as file creation dates, author
names, storage locations, wikis, reports, etc. The software metadata is heterogeneous,
disconnected and defined at different levels of detail [6] from different users, rendering
the process of opening software data highly challenging. Other issues that may hinder
software data disclosure include the origin of data (data from sensitive environments
e.g., highly confidential data), and the involvement of human participants that may pose
privacy constraints. Additionally, since software research applies horizontally to various
interdisciplinary domains (from mathematics to psychology and sociology) there are many
cases where both qualitative and quantitative data are produced depending on types and
theories emerging from backgrounds other than software engineering, a fact that also
creates significant challenges.

Therefore, given the aforementioned challenges, it is important to define a data open-
ness strategy that will guide the efforts of the software community towards sharing data.
While an extensive amount of work exists on the field of open data research, few approaches
have paid attention to the openness of software research data and none of them to the
software development process as whole.

As we move towards this future where research is widely accessible to a diverse audi-
ence—from academic experts to everyday users—the demand for transparent processes and
detailed documentation is increasing. The literature primarily focuses on specific artifacts
produced during the software development lifecycle, with one of the most recognizable
artifacts of open science being the software itself [7–9]. Scientific software is key for the
reproducibility of scientific results, as it helps others understand how a data product has
been created or modified as part of research and avoids replicating effort.

Many discussions on the topic emphasize the importance of making code findable,
accessible, interoperable, and reusable (FAIR principles) [10], encouraging scientists to
fairly describe and share the software metadata. While code is the most widely used aspect
of open data, there is also a growing demand for artifacts related to testing code [11–14],
and supporting documentation, including maintenance guides [11,15], technical specifica-
tions [16–18], and quality metrics [19], those methods are being used as part of research
replication processes or even for research implementation. Furthermore, an increasing
number of researchers are highlighting the significance of proper citation and the sharing of
data, underscoring the role of transparency and collaboration in advancing both software
engineering and open science practices [20,21]. The rising demand for transparency on
software process led scientific community, academic publishers, and public stakeholders to
start taking measures towards the complete opening of software research, making more
and more software artifacts available to public demand. Recently, the literature has shifted
focus toward lesser-discussed artifacts that play crucial roles in software research. At their
research Wnuk et al. [22] discuss how openly sharing requirements can alter the landscape
of Software research. Similarly, the studies by Ho-Quang et al. [23] and Hebig et al. [24]
they discovered that sharing artifacts such as UML diagrams UML diagrams, enhances un-
derstanding of software and increases the levels of possible adoptation. More researches on
the topic [25] has demonstrated that involving users in the development phases—through
open sharing of processes—leads to more accurate outcomes and higher-quality products,
while also increases trust and loyalty toward the researcher [9,19].



Software 2024, 3 413

Recent reports [26] note that the lack of guidelines for the opening of research data
makes the opening of data a rather time-consuming process that also contributes to the
lack of motivation associated with data sharing among researchers and practitioners [27].
The challenge extends beyond merely sharing research data; it encompasses the need for a
structured plan that enables engineers to share every step of their research process knowing
that data security is guaranteed through citation while ensuring ownership and accessibility
in an intelligible way for all stakeholders. This paper aims to address the gap by developing
a set of guidelines that could motivate and guide software engineering practitioners and
researchers towards contributing to Open Science. The proposed framework is formulated
around the 5Ws+1H management practices [28] and aims to capture all the factual elements
needed for a complete and objective understanding of a software openness project [29] by
answering the questions related to Why, Who, What, When, Where, and How. The 5W+1H
practice can be applied in different contexts [30] and is widely utilized to provide a delicate
analysis of a specific field or knowledge, such as production management, marketing,
engineering [31].

In the context of our study, the 5Ws+1H questions regarding Open Software Research
Data are being presented in Figure 1 and are formulated as following:

Figure 1. The 5Ws+1H of Open Software Research Data.

Why should Software Engineers share their Software Engineering Research Data?
Promoting an open and collaborative culture in software engineering research requires

awareness of the benefits of open research. The literature has focused extensively on
the broad benefits of open data, such as increased openness, explainability, reusability,
and resilience. However, most studies concentrate on individual artifacts created during
software development, rather than taking into account the full software development
life-cycle. With respect to each phase of software research development, our study aims to
integrate existing knowledge and emphasize the specific benefits of data sharing at each
step of software development. By doing so, we want to motivate engineers to step forward
and open more data to gain the maximum benefits.

Who should be considered during the process of opening Software Engineering
Research Data?

When sharing data, there are several types of stakeholders to consider: those who
participated/ contributed to the data creation during the development phase, those who
will use the product as a whole and those who will reuse and build upon the shared
artifacts. This question underscores the importance of selecting and sharing data based on
the unique requirements, understanding, and access points of each stakeholder group.
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What type of Software Engineering Research Data should become open?
Identifying the types of data that should be shared is essential to standardize open data

practices. Software development generates a diverse range of artifacts. Although source
code is the most common artifact, other outcomes include binary code, version control
system metadata, bug reports, developer conversations via several media, code reviews,
test data, and documentation. In this question, we will discuss effective data sharing
considering two key factors: (a) the data that researchers can share, considering the data’s
state and any disclosure constraints, and (b) the intended purpose or expected use of the
research data.

When is the right time to open Software Engineering Research Data?
Proper timing ensures that the data is available when it is most needed. We suggest

a three-phase opening process for each phase of the software development life cycle,
including sharing valuable artifacts from the initial requirements and business planning
stages through design, implementation, testing, deployment, and maintenance.

Where should Software Engineers deposit their Software Engineering Research Data?
To maximize the reach and impact of shared data, choosing the appropriate repositories

for depositing Software Engineering Research Data is important. Data archives can be used
for different purposes, for the discovery of data, and/or for publishing data. Depending on
the type of Data that the Software engineer intends to share, we explore the most suitable
venues for data storage. There are a plethora of options, ranging from informal peer-to-peer
exchanges and hosting on project or institutional websites to depositing in specialized data
centers and submitting to data journals for publication. The repository decision is based on
the level of support provided, the maturity of the research and the target audience.

How should Software Engineers share the Software Engineering Research Data?
Methods and practices for sharing data are critical to maintaining its quality, usability,

and compliance with legal and ethical standards. To effectively manage and share software
research data, it is important to develop a Data Management Plan (DMP) and a Software
Management Plan (SMP). These plans detail how data will be captured, managed, stored
and shared, as well as how the integrity, security, and confidentiality of data will be
maintained throughout and beyond the research project. We provide a list of requirements
for these processes, along with suggestions for open tools that can support effective data
management and sharing.

The application of our proposed framework to a previous work of ours, “Using Code
from ChatGPT: Finding Patterns in the Developers’ Interaction with ChatGPT” [32], is
presented herein. The goal of this use case is to demonstrate how the proposed framework
can be applied at any stage of the research cycle and how developers can take full advantage
of it. For the aforementioned example, the exact path following the 5Ws+1H questions
was tested, providing even deeper insights into the framework. That very example, is a
simplified overview of previous work, neglecting some challenges we had to face that are
out of scope of this research.

The rest of the paper is organized as follows. Sections 2–7 discuss in detail the pro-
posed 5W+1H framework for opening software engineering data, and Section 8 presents a
practical application of the framework in a real-world case study within empirical software
engineering research. Section 9 addresses the challenges, implications, and potential future
work related to the openness of software engineering data. Finally, Section 10 concludes
the paper.

2. Why Should Software Engineers Share Their Software Engineering Research Data?

The literature has extensively focused on the broad benefits of open data, such as
transparency, explainability, reusability, and the potential for maintenance and evolution.
Additionally, researchers argue that open access is capable of providing social benefits,
such as educational tools to train new scientists, shared common resources to promote
sustainable research, and the ability to promote scientific public outreach and engagement.
The literature also points to research-intrinsic motives connected with dissemination and



Software 2024, 3 415

recognition, as the personal desire to publish data [33]. In Figure 2, we have adapted the
context of “Benefits of Open Research Data Infographic” [34] to align more closely with
software engineering and the specific objectives of this study. The red color has been used
to highlight the attributes that remain unchanged from the original figure, signifying their
relevance and applicability to the domain of software engineering. The aforementioned
figure discusses mainly the academic benefits of open research data in terms of visibility,
citations, collaboration, and societal trust. Our contribution on the other hand tries to
bridge the aspects of technical and societal benefits towards a discussion on how open
research data impacts software development practices directly. To this end, we have
chosen to narrow down the stakeholder categories into: Researchers, Software Engineering
Community and End users and attempt to highlight not just the academic benefits but also
the technical aspects of open sharing.

Figure 2. Benefits of Sharing Software Engineer Data for different users.

One of the main concerns of software engineers is the opaque nature of Software
Research Data that raises questions about the intention of processes running in the back-
ground. The benefits of sharing identified by Research Creators relate mainly to the impact
of their work. Opening the Software Research Data will build confidence and trust among
practitioners, raising the software’s credibility. With more people trusting the developers,
the data undergoes tests by a diverse pool of developers and researchers, leading to the
identification and rectification of bugs. The community contribution through tests helps
with software evolution and improvement, increasing not only the security of data but also
the longevity of software.

Open data reduces duplication of effort by providing a shared resource on which
researchers can build. By utilizing openly shared existing datasets, the Software Engi-
neering Community can reduce costs and effort on individual projects while promoting
sustainable research practices. When artifacts are used by different users, security issues
and vulnerabilities are identified and addressed more promptly, leading to more secure
software solutions. Another advantage of sharing data openly is the promotion of best prac-
tices across the research community, facilitating the creation of proper guidelines that turn
complex processes into easily understandable ones. Extended documentation (metadata)
impacts the dissemination and adoption of findings. As researchers explore new ideas and
approaches using shared resources, innovative findings are highlighted.

Opening up research data is not only beneficial for researchers, but also for society
overall, as it provides a democratic scientific knowledge-sharing platform. For the End
Users, opening process increases their trust in scientific research by allowing them to
better understand the underlying processes. This transparency boosts public confidence
in science, while also encouraging the support of the Public in research projects. This
democratization of software engineering can build a community of educated individuals
capable of evaluating research findings and providing useful input. Policymakers may use
this information to make better decisions, resulting in a more effective and scientifically
grounded government.
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It is obvious that the opening processing creates a chain reaction of advantages for the
stakeholders, strengthening not only their capabilities but also building a strong dependent
network between them. This general view of the benefits of data sharing is raising the
question of why open data is not yet a reality for Software Engineers researchers [35].

Borgman [36] mentions four significant reasons for sharing research data: reproduction
of research, release of public assets, leveraging investment in research, and promotion of
research and innovation. Although there are numerous benefits and motivations associated
with open data sharing, research by Reilly et al. [37] indicates that while researchers are
generally willing to use others’ data if they can validate it, they are often hesitant to share
their own. Participants mentioned various barriers, whether real or perceived, as reasons
not to share or not to trust shared data. Those barriers are closely related to the opaque
nature of the Software Research Data, which might give uncertainty to a few processes
behind the data. Most of the studies done on OSR tend to focus on the sharing of unique
artifacts, with little consideration for the wide range of artifacts created throughout the
software development life-cycle. Their attention has resulted in increased concern over the
quality of data used in research; raising trust issues among practitioners.

To overcome this challenge by focusing on the seven phases procedure of software
development, we have built the following table (Table 1). This table highlights the signifi-
cance of openly sharing each artifact, which not only serves as part of the final software but
also is a complete, autonomous product.

Table 1. What is the benefit of open sharing software research artifacts?

Artifact (What) Benefits of Sharing (Why)

Phase 1: Project Initiation

Project Plan - Provides clarity on the research objectives, methodology, and expected outcomes in advance.
- Users are aware of upcoming milestones, which helps in coordinating efforts.
- Funders are aware of how their resources will be utilized, increasing the likelihood of future
support, ensuring confidence in the research.
- Prevents duplication of effort by informing others of ongoing work in the field [8,38,39].

Phase 2: Analysis and Detailed Planning

Business Requirement
Documentation (BRD)

- Sharing requirements ensures it cannot be used as a differentiator by competitors.
- Researchers can inject new requirements into the open source community by outsourcing the cost
of prototype development.
- Public sharing of documents facilitates automatic extraction of requirements based on evolving
needs [22,25].

User Requirement
Specifications
Software Requirement
Specifications (SRS)

Configuration Management
(CM) Plan

- Increases reliability over project’s longevity

Phase 3: Design

Detailed Design
Specifications (DDS)

- Provides better understanding of the software structure.
- Defines a set of constraints on subsequent implementation.
- Provides consistent between intention and implementation.
- Enables faster verification and increases user acceptance.
- Improves communication and reduces ambiguity regarding structure and use.
- Helps new contributors onboard effectively.
- Provides better understanding on costs and delivery time of system [23,24,40,41].
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Table 1. Cont.

Artifact (What) Benefits of Sharing (Why)

Phase 4: Software Construction

Unit Code
Software packages Artifacts

The research on Open Software has thoroughly analyzed the benefits of sharing source code,
including enhanced quality, improved security, flexibility of use, reduced costs for improvements,
increased collaboration, and better user support.
Additionally, we propose the following benefits:
- Reduces code redundancy, preventing duplicated efforts.
- Increases recognition and researchers’ reputation.
- Expands opportunities for reusability, allows users to replicate, validate, and build upon existing
work [7–9,19].

Phase 5: Testing

Code Inspection
Test Summary Report

- Clarifies the intended behavior of the software at the time it was last programmed.
- Helps ensure that proposed changes do not break other projects within the ecosystem.
- Distributes the labor of maintaining code quality, reducing the burden on code reviewers.
- Supports validation of submitted code and identification of errors by more contributors,
increasing the likelihood of detecting and resolving bugs.
- Enables test modifications and improvements without disrupting the main development
process, supporting continuous integration and quality assurance [8,11–14].

User Acceptance - Demonstrates a commitment to meeting users’ needs and addressing their concerns
- Highly involve users part on the development process
- Increases research reputation and discoverability [9,19]

Risk Management - Simplifies internal routines by providing external feedback.
- Facilitates the exchange of standards by aligning practices with widely accepted benchmarks.
- Allows researchers to compare their local routines with other implementations, leading to
adaptation and potential improvement [42].

Phase 6: Implementation

Production Environment - Provides users real time experience increasing trust on the system
- With more people putting system under stress , bugs and errors are being easily discovered and
faster addressed [7–9]

Live System

Phase 7: Maintenance

Dependencies
Tech Debt

- Informs users on necessary third-party components, supporting easier implementation.
- External feedback leads to updating outdated or risky dependencies.
- Increases code security by identifying unused or vulnerable dependencies.
- Supports learning and adaptation by helping users manage dependencies better.
- Reduces the cost of fixing vulnerabilities related to outdated dependencies [16–18].

Maintenance Guide - Helps new contributors easily adapt, aiding in long-term project sustainability.
- Gains users’ trust by providing clear maintenance practices.
- Distributes maintenance tasks, reducing the burden on individual maintainers as the project scales.
- Enhances the project’s longevity by ensuring consistent upkeep and adaptability within the
software ecosystem [8,11,15].

Customer’s Review
Software metrics
Development metrics
Usage metrics

- Raising awareness on the software’s quality.
- Product appears appealing due to transparency of metrics.
- Better evaluation and validation of the project.
- Increasing willingness to use the data.
- Builds reputation, leading to more views and increased discoverability.
- Increase loyalty [9,19]

3. Who Should Be Considered during the Process of Opening Software Engineering
Research Data?

When considering data openness, it is essential to identify key stakeholders who will
benefit from or be affected by this openness [43]. There are three main categories of subjects:

The Research Creators, Software Engineering (SE) Academic Researchers, are the
primary beneficiaries of open sharing data. They demonstrate a commitment to openness,
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reproducibility, and the skills of collaboration—all of which are highly appreciated in the
academic community. When their research artifacts are made publicly available, one of the
most immediate benefits is increased discoverability by a broader audience, including both
individuals and organizations. This improved visibility will help increase their reputation
and also create new opportunities for collaboration. As the number of citations received
for their work increases, the more likely they will be considered for more opportunities
to place their articles in prestigious academic journals. Publication leads to recognition,
and this means that one is offered consultation opportunities, thus having more influence
outside their academic parameters and into industry and beyond.

However, Research Creators should be careful when it comes to choosing which
data to release, especially when the study includes human subjects, such as in surveys or
empirical research.In these cases Research Participants should be notified about the plan
for sharing and preserving the research data with their approval being necessary. When
required, anonymization techniques should be used to safeguard privacy. Formal data-
sharing agreements between partners are necessary in collaborative research to maintain
quality while also respecting legal requirements, such as the GDPR. Data access for research
participants creates a sense of involvement and trust in the research process.

The Software Engineering Community is made up of highly qualified professionals
who demand unrestricted access to data in order to reuse or replicate artifacts in any
format, to expand their research and development operations [44]. Under this term, we
aim to include Software Engineers in the private sector, Data Scientists, Developers,
and Maintainers. For these users, access to open research data not only lowers the costs
and effort associated with software development it also provides exposure to innovative
tools and methodologies from academic research, fostering continuous learning and the
acquisition of new skills. With access to existing knowledge and products, developers
no longer need to build everything from scratch, leading to faster development cycles.
The open nature of research data also ensures that these artifacts are constantly tested by a
diverse user base, which helps maintain high-quality standards and facilitates the quicker
identification and rectification of bugs, reducing integration risks. Offering access to all
available resources leads to more efficient and reliable software development practices.

End users benefit from the research outputs, together with the necessary system
description, in an accessible and understandable format. The need to access extra software
artifacts, such as test cases or requirements documentation, is typically unnecessary and
might cause confusion. Examples in this category are Research Funders who, through
data openness, enjoy improved financial returns from their research investments and
improved networking. On the business end, transparency drives innovation by accessing
a wider pool of ideas and integrating new insights into operations, fostering a culture of
continuous improvement. The Publishers enjoy benefits such as independent verification
and qualification of research, increased reputation, and elevated impact. As their reputation
grows, they become more attractive to high-quality research submissions. Affiliations, such
as universities and research institutions, also benefit greatly from open data in much the
same way. Funders would be most likely to fund institutions known for their transparency
and quality research.

When considering the benefits of sharing research data for different audiences, it
is essential to understand both the advantages and the appropriate platforms for data
deposition, as presented in Table 2.
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Table 2. Why sharing Is beneficial for your Audience and Where is the right place to deposit your Data.

Audience (Who) Why Is Beneficial Where
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SE Academic Researchers - Additional publications.
- Greater citation rate.
- Wider recognition among peers.
- Invitations to collaborate.
- Invitations to provide consultancy [45].

✓ ✓ ✓

SE in private sector - Cost and effort reduction due to reuse.
- Ready made solutions requiring alterations to fit sector’s need.
- Increased availability of verified data.
- Acquiring new skills and knowledge [46].

✓ ✓

Data Scientists - Access to Extended Open Data Sets.
- Time and effort reduce.
- High quality multi format data.
- Reduced data redundancy.

✓ ✓

Developers - Acquiring new skills and knowledge.
- Reduced software redundancy.
- Easy access to innovative tools.
- Better understanding of code structure.
- Faster development.

✓ ✓

Maintainers - Acquiring new skills and knowledge.
- Data is undergoing tests by a diverse pool of users,
leading to faster identification and rectification of bugs.
- Reduced reliance on outdated sources.
- Greater pool of automated test cases.
- Reduction of vulnerable code

✓ ✓ ✓

Business owners - Businesses strengthen their innovative capabilities.
- Better informed employers.
- Greater pool of users [46].

✓

Research’s Funders - Better financial return from research investment.
- Increased reputation.
- Building network.
- Invitations to collaborate.
- Invitations to provide consultancy.
- New opportunities for funds.

✓ ✓

Publishers - Independent verification and qualification of research
- Increased reputation can elevate the publisher’s impact
- Related research is likely to gain attention

✓

Affiliations - Independent verification and qualification of research.
- Increased reputation.
- Higher impact.
- Attracting better funding opportunities.

✓ ✓

Research Participants - Access to data
- Better control over shared content.
- Increased Trust.

✓

Public - Access to knowledge.
- Greater Support.
- Easier access to resources.
- Better understanding.
- Reducing communication barrier.
- Increased Trust.

✓

A checkmark (✓) indicates the associated deposit option.
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4. What Type of Software Engineering Research Data Should Be Shared?

The golden rule of data sharing is that “data should be as open as possible and as
closed as necessary”. This principle guides engineers to balance openness with necessary
restrictions. As open science and FAIR principles gain more attention across all domains,
the existing literature thoroughly explains each principle, suggesting changes and improve-
ments. These discussions focus on the ways data is produced and the kinds of relationships
that are required across different domains [47–49]. In terms of Software Engineering Re-
search, the FAIR requirements can be described as follows:

• Findability: Software Research Data and its associated metadata are easy for both
humans and machines to find.

• Accessibility: Software Research Data should be understandable and retrievable
through standardized protocols, with the original research purpose clearly defined.

• Interoperability: Software Research Data should be executable and have the ability to
seamlessly be integrated into other software artifacts.

• Reusability: Software Research Data should be both executable and modifiable,
ensuring ongoing relevance.

According to the FAIR principles, to promote open science, engineers must ensure
that their data are classified into all four categories. In the case of software research,
the term “data” includes all the artifacts that are used, produced, or might be related to the
research process in one or more stages of the research life cycle. The life cycle of research
software comprises all essential development stages, from the idea and conception through
the development, use, and maintenance, to the archiving and decommissioning. As a result,
different types of artifacts (documents, code, test results, etc.) are produced at various stages.
In addition to artifacts, all the processing steps of the research data—as the basis of scientific
publications—must be available [48]. However, from our experience, sharing everything is
not possible throughout all development phases, and several times it is unnecessary.

Effective data sharing can be determined by two factors: (a) the information research
engineers are able to share due to either the state of data or disclosure constraints, and
(b) the reason or expected end use for the research data [50]. If researchers’ primary concern
is reputation and receiving academic credit for their software research, sharing citation
metadata becomes their focus. If they want part of their analysis to be replicated, they may
worry more about sharing efficient metadata regarding dependencies, Software metrics
(e.g., quality metrics like code coverage, etc.), and Development metrics (e.g., pertaining to
issues, pull requests, etc.) than authors and titles. If their main focus is for their research
to be recreated and their software to be reused, then they need to share the whole range
of software research data. Following this categorization, Software researchers need to not
only preprocess data into a universally readable format but also choose which metadata
needs to be shared for each case [51].

Unlike conventional data, which are static, software development data is unique in
that they are static during development and dynamic throughout their lifetime [20,47].
This dual nature of data presents significant challenges in the sharing of research data
in software engineering, with each type of artifact requiring specialized handling [52].
Inspired by the research of Druskat et al. [53] where they described metadata as software-
specific and general metadata, depending on the scope of use, we categorized the Software
research products as follows:

• Static metadata: Primarily includes data produced during the planning, designing,
and maintaining phases of software development. This type of metadata provides
general information necessary to recreate the described system, without including the
executables or runtime results.

• Dynamic-Runtime metadata: Includes metadata that can be executed to reproduce
either the entire system or the research outcomes. These data mostly come from
the development, implementation, and testing phases, where the system executes in
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real or simulated environments. These types may also include actions focused on
reproduction, replication, verification, validation, repeatability, and/or utility [48].

With this categorization in mind and the demand for FAIR data, we have divided the
software research artifacts into the corresponding categories in Table 3.

Table 3. Static and Dynamic Metadata, with associated Use Cases and Deposit options.
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Phase 1: Project Initiation

Project Plan F S ✓ ✓ ✓ ✓ ✓ ✓

Phase 2: Analysis and Detailed Planning

Business Requirement Documentation (BRD) I S ✓ ✓ ✓ ✓ ✓ ✓ ✓
Software Requirement Specifications (SRS) I S ✓ ✓ ✓ ✓ ✓ ✓ ✓
User Requirement Specifications I S ✓ ✓ ✓ ✓ ✓ ✓
Configuration Management (CM) Plan I S ✓ ✓ ✓ ✓ ✓ ✓

Phase 3: Design

Detailed Design Specifications (DDS) A DR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Phase 4: Software Construction

Unit Code R DR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Software packages Artifacts R DR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Phase 5: Testing

Code Inspection I DR ✓ ✓ ✓ ✓ ✓ ✓ ✓
Test Summary Report I S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
User Acceptance F S ✓ ✓ ✓ ✓ ✓ ✓
Risk Management I S ✓ ✓ ✓ ✓ ✓

Phase 6: Implementation

Production Environment F DR ✓ ✓ ✓ ✓
Live System R DR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Phase 7: Maintenance

Dependencies I S ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tech debt I S ✓ ✓ ✓
Maintenance Guide R S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Customer’s Review F S ✓ ✓ ✓ ✓
Software metrics A S ✓ ✓ ✓ ✓ ✓ ✓ ✓
Development metrics A S ✓ ✓ ✓ ✓ ✓ ✓
Usage metrics A S ✓ ✓ ✓ ✓ ✓ ✓ ✓

Explanation: F = Findability, A = Accessibility, I = Interoperability, R = Reusability. S = Static, DR = Dynamic
Runtime. A checkmark (✓) indicates that the specific artifact applies to the associated use case or deposit option.

While this representation provides a clear understanding of which artifacts should be
publicly available and under what circumstances, the question of what should be shared
within the landscape of the FAIR principles arises. In his research, Katz [20] provides a
summary of software as increasingly FAIR research objects. Based on Katz’s suggestion,
we tried to develop a roadmap for researchers.

It might seem straightforward to suggest that static data should always be accessible
and dynamic data reusable upon completion; however, this generalization can be mislead-
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ing. We have highlighted in Table 3 the artifacts as we consider they fall in the increasingly
FAIR principles.

The first step to software research data becoming findable is for the researchers to make
basic information available; this includes the name of the software, persistent identifiers,
funding plan descriptions, customer reviews, and usage metrics. Moreover, publishing the
project plan through many channels can increase awareness and lead to greater discover-
ability, boosting the researcher’s reputation.

The second step towards openness is ensuring that both the software and its metadata
are available without financial, legal, or technical barriers. To further improve accessibility,
artifacts such as Detailed Design Specifications (DDS) and measurements on software qual-
ity and usage must be published. These artifacts provide users with access to the research’s
key findings, which they may analyze or utilize as a foundation for their work. Licensing
of data by researchers at this stage needs to be done clearly so that users understand the
citation requirements for different artifacts. Properly given licensing increases trust in data,
facilitating its transparent use. Researchers should employ standardized access protocols,
such as RESTful APIs or FTP, in order to ensure that data retrieval can be done effectively
by users across systems and locations.

Integration with metadata should be seamless, and all information needed to execute
software provided to the other researchers. A list of dependencies and requirements on
software should be available in a formal, machine-readable format. Users at this stage of
development should be able to test the system with supplied test units along with expected
results to ensure that it conforms with the initial plan of the project. The opening of the
configuration and risk plan will increase trust in research.

The final step of reusability includes not only the open share of the source code and live
system, but also the maintenance plan to ensure the longevity of the system. By allowing
others to replicate the full software development process, building upon it, and adapting it
for diverse applications, the impact of research grows within the scientific community.

There are many compelling reasons for making all the Software Research Artifacts
publicly available, yet there are cases where artifacts are no longer available, or the data
may be subject to high privacy requirements that prevent public sharing. In such situations,
static metadata can serve as surrogates for the described objects. Researchers should
therefore ensure that the minimum metadata necessary for project preservation is publicly
accessible. Key metadata includes:

• Software name.
• Programming language.
• Version information.
• File system metadata (e.g., file sizes, number of files, etc.).
• All types of Licenses applied to any material (e.g., text, image, multimedia, software)

those licenses can be GPL, MIT, LGPL (GNU Lesser Public License), CC creative
etc. [54].

• Identifiers refers to unique, persistent, and machine-actionable identifiers (e.g., DOI,
ARK, or PURL).

• All Locations where metadata is stored.
• Categorization information (e.g., application category, keywords, etc.).
• Availability information (e.g., release dates, embargo, etc.).
• Relational metadata (e.g., software is part of another work).
• High-level description (e.g., abstract, README, or other text description).
• Dependency information.
• References to work the software is built on or relates to.
• Software metrics (e.g., quality metrics like code coverage, etc.).
• Development metrics (e.g., pertaining to issues, pull requests, etc.).
• Usage metrics (e.g., downloads, stars, citations, etc.).
• Funding information.
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These types of metadata will not provide an executable, but rather a general idea of
what and how to build a similar system. Cases with a low tolerance for sharing Software
research results highlight the need for proper metadata, which is crucial for detailing the
use and context of each artifact.

5. When Is the Right Time to Share Software Engineering Research Data?

One of the most complex questions related to open science is the timing of data
exchange and research output, as research creators need to balance the possible gain
(expressed by the value function) against the potential risks of delivering (too) early.
Typically, Software Engineers tend to share their results at the end of a project’s life-
cycle, risking alternatives approaches being published and accepted before theirs. Studies
indicate that the level of experience influence the decision of sharing, as more experienced
researchers tend to share their data more frequently [55], while non-experienced researcher
are waiting for the momentum to deliver discoveries.

Releasing data at the later stages of research offers advantages, particularly in terms
of the quality of the final product. However, there are also some serious disadvantages:
earlier stages of research remain untested and unreviewed by third-party practitioners.
From our experience, the risks of keeping a project completely private until its final stages
are greater than the risks of publishing a not-yet-perfect version. In the former scenario,
researchers risk having to completely restart development, if the result does not suit the
needs of the clients or falls short comparing state-of-the-art competing solutions. On the
other hand, sharing early a version allows developers to address issues and obtain market
feedback to further refine their solution.

Throughout our research careers, we have learned that a structured approach to data
sharing is the most effective strategy. It provides researchers with a sense of security by
not exposing the entirety of their work prematurely, while still allowing them to receive
valuable feedback and make iterative improvements.

To address the benefits of a scheduled opening process, following the instructions of
Katz et al. [10], we propose a minimum three-phase process. This approach, as presented
in Figure 3 ensures systematic data sharing, providing engineers with a structured detailed
plan to follow in each development phase.

Figure 3. Timeline of Opening Software Research Engineering Data.

Beginning of the Project: At the beginning of a project, the developers should declare
a project repository that will include all resources, intermediary files, supporting docu-
ments, and programming scripts used to process the data. This repository will ensure that
(a) no work is lost and (b) all materials are accessible from the onset. In this stage, engi-
neers should provide the audience with detailed documentation describing the objectives,
methodologies, and anticipated outcomes of the project. Besides general purpose data,
in this phase, Software Engineers should include all documents related to system require-
ments, system architecture, use case scenarios, and the detailed development plan, that way
more sophisticated users will have access to all details needed to follow the same procedure
and rebuild the system. Opening the data early on reassures users of the trustworthiness of
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the developer behind the project. Additionally, it offers a great opportunity for feedback
exchange between users and developers, ensuring that any change in the initial design will
directly affect the end product.

Midpoint of the Project: Engineers are ready to deliver the generated Software Research
Data alongside complementary documentation, including operating source code and the
instructions necessary for reusing it, at the halfway point of a project’s lifespan. At this stage,
the data should include complete documentation, extensive metadata, and a clear license
in accordance with the FAIR principles (Findable, Accessible, Interoperable, and Reusable).
Following best practices in software engineering, researchers must also utilize licenses,
version control, coding standards, code documentation, and testing. As an alternative,
research software engineers may offer domain scientists expert assistance, guaranteeing
compliance with recommended procedures and advancing the program’s sustainability.

Completion of the Project: Upon completion, all data created and produced during
the project’s life cycle should be thoroughly documented and shared. In this final stage,
the data should be mature, and detailed reasoning for the research results can be provided.
Comprehensive documentation should include final reports, detailed methodologies, full
datasets, analysis scripts, and any other relevant artifacts.

While this process may require more effort, it maximizes the research’s impact and
relevance, since results are immediately available to the audience and there is no delay or
potential risk of the data becoming no longer representative of the research context.

6. Where Should Software Engineers Deposit Their Software Engineering Research Data?

Digital preservation is an umbrella term for a variety of services with a single goal:
maintaining data so that it may be reused in the future. Beyond the duration of a grant
or research project, researchers must guarantee that their data is preserved for future
generations [56]. There are a plethora of options regarding sharing software research data,
from informal sharing among peers and hosting on project or institutional websites to
depositing in specialized data centers and submitting to data journals for publication.
The decision of where to place data highly relies on the means of support provided by
each repository. The completeness of metadata records and recommended formats vary
across repositories [57]. Depositing data in open archives is generally viewed as the gold
standard, as data becomes more discoverable, linkable, and citable [36]. However, as more
developers share their data in generalist repositories, discoverability decreases, with users
describing the process of finding the desired data as “going down a rabbit hole” [9].

To overcome this added discoverability challenge, when choosing the best option for
publishing data, researchers should consider five factors: (a) the availability of supple-
mentary data; (b) the format of the data, and (c) the desired audience, (d) the phase of the
project’s life cycle and (e) the maintenance plan. Those requirements can be translated
in terms of principles to TRUST (Transparency, Responsibility, User Focus, Sustainability,
and Technology).

TRUST principles referring to transparency, responsibility, user focus, sustainability,
and technology act complementary to FAIR. When considering options for sharing data,
researchers should choose the best option for the data to be trustworthy.

• Transparency: To be transparent about specific repository services and data holdings
that are verifiable by publicly accessible evidence. When choosing the method of
deposition, researchers need to make sure that there are no limitations or restrictions
regarding the use of the deposit data. Being able to easily assess whether a repository
can handle sensitive data responsibly would also inform their decision on whether to
utilize the available data services.

• Responsibility: To be responsible for ensuring the authenticity and integrity of data
holdings and for the reliability and persistence of its service. Before sharing your
data, you need to make sure that it aligns with the practice restrictions of the means
of sharing. In several cases, the verification of the data and metadata integrity might
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require time. Both depositors and users must have confidence that the data will remain
accessible over time and thus can be cited and referenced in scholarly publications.

• User Focus: To ensure that the data management norms and expectations of target user
communities are met. Before sharing data, researchers need to address the project’s
target group. It might need to monitor and identify the expectations of users before
deposing data. Moreover, it is important to remember that different types of users
reach data from different routes [9].

• Sustainability: To sustain services and preserve data holdings for the long term.
The software’s lifetime can be long for well-maintained projects, or end quickly if the
task it was supposed to do is not needed anymore or if another software does it in a
better way. While the software is easily replaceable, metadata, on the other hand, is an
important digital artifact that should be preserved [58] along with datasets in order
to properly verify or reproduce [59] published findings. Metadata might become less
interesting with time, but it cannot be replaced as it is connected to one particular
experiment at that particular time.

• Technology: To provide infrastructure and capabilities to support secure, persistent,
and reliable services. Without active maintenance, data deteriorates and disappears at
an alarming rate, making digital data far more disposable than traditional information
sources [56].

Generalist repositories such as GitHub, Dataverse, Dryad, and Zenodo, where re-
searchers from any field can store and share their data and metadata without the need for
extensive pre-editing or reconstruction, are the most popular among the options. One of the
main advantages of generalist repositories is that they enable a combination of discovery
of digital objects through their metadata and direct access to the object artifacts them-
selves [53]. GitHub is one of the largest code repositories to date [60], with a wide diversity
in documentation maturity, software purpose, and programming languages. Dryad is de-
signed to preserve the underlying data reported in a paper at the time of publication, when
there is the greatest incentive and the ability for authors to share their data, while Dataverse
is an example of an initiative offering data management support throughout the research
life cycle [37]. Zenodo was seen as an easy-to-use solution, open to all, and provided by
a recognized organization. However, it only serves as the final destination for the data,
as data cannot be removed, and it is always public, at least after an embargo period [61].
Commercial generalist repositories such as Figshare, on the other hand, provide immediate
access but not necessarily long-term sustainability.

While generalist repositories can adequately fulfill the needs of small to medium-
sized projects, projects without sensitive data, university projects, or projects that do not
require significant computational power, more advanced projects necessitate the use of
discipline- or subject-specific data repositories. For research software, it is crucial to ensure
that it is both archived for reproducibility and actively maintained for reusability [62].
Depositing scientific software in archives like Software Heritage or Research Software
Directory establishes long-lasting, resilient links between research data and the software.
Those repositories are specifically designed for software research, and so they store not only
a software artifact but also its full development history, requiring a structured workflow,
as those repositories have formatting standards [63].

Another option that has been gaining popularity over the past few years is the distri-
bution through data journals. Although the number of data journals has been increasing
over the past few years, many researchers are still unaware of them. Among the most
notable data journals in terms of volume are Data, Data in Brief, and Scientific Data [64].
Data journals primarily publish articles that describe the details surrounding datasets, such
as the reasoning behind their collection, the methodology used, and the timing involved.
These articles often highlight the potential future value of the data for analysis, rather than
presenting current findings or conclusions. From the developer’s point of view, writing
a software article can involve a great deal of extra work. The mindful software research
process includes documentation for both users and developers that is sufficient to make it
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understandable [20,51]. Different journals implement diverse approaches to the manage-
ment of data, causing great heterogeneity in the format of the metadata associated with the
components, each reflecting the strategies of the corresponding managing entity and the
technical solutions adopted.

Lastly, another possible yet not very common solution that combines static and dy-
namic metadata to provide a simplistic version of the software, is the use of a runnable
sample deposit (i.e., GitHub). Researchers after agreeing with peers can share a black box
demonstration of the system, alongside some sample data and their expected outcome.
A runnable deposit should allow another researcher to build, install, configure, and run
software on the sample data.

After conducting extensive research on open data organizations and reviewing studies
in which engineers were asked about their preferred platforms for data sharing, we created
the Table 4 This table provides a comprehensive overview of repositories that may be able
to meet the diverse needs of engineers, drawing on related work and our own experiences.

Table 4. Where, What and When to distribute Software Engineering Research Data.
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Generalist Data Repository
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Kaggle https://www.kaggle.com/ (accessed on 15
September 2024)

Datasets, Notebooks (Jupyter notebooks, R or
Python scripts), pre-trained ML models

✓ ✓ ✓

GitHub https://github.com/ (accessed on 15
September 2024)

Static and Dynamic Metadata, raw Source
code, test cases, and documents in any format

✓ ✓ ✓

EUDAT https://www.eudat.eu/ (accessed on 15
September 2024)

Dynamic Metadata, Software, workflows ✓ ✓

Zenodo https://zenodo.org/ (accessed on 15
September 2024)

Static and Dynamic Metadata, Software,
Pre-publications

✓ ✓

ISBSG https://www.isbsg.org/about-isbsg/
(accessed on 15 September 2024)

Software projects with documentation

OSF https://osf.io/ Files, research data, code, protocols ✓ ✓
OLOS https://access.olos.swiss/portal/#/home

(accessed on 15 September 2024)
Research data, Static Metadata, Source code ✓ ✓

SIR https://sir.csc.ncsu.edu/portal/index.php
(accessed on 15 September 2024)

Software systems, artifacts, test suites, scripts ✓ ✓

Dataverse https://dataverse.org/ (accessed on 15
September 2024)

Static and Dynamic Metadata, Software, Re-
search data, Publications

✓

SourceForge https://sourceforge.net/ (accessed on 15
September 2024)

Static Metadata, Open source and paid soft-
ware projects

✓

Pr
op

ri
et

ar
y Dryad https://datadryad.org/stash (accessed on 15

September 2024)
Any form of Research Files, including
compressed archives

✓ ✓

Figshare https://figshare.com/ (accessed on 15
September 2024)

Any form of Static or multimedia Research
Output, excluding the source code

✓ ✓

Discipline-/Subject-Specific Data Repository

O
pe

n

A
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es
s PROMISE http://promise.site.uottawa.ca/SERepository/
(accessed on 15 September 2024)

Datasets and tools to serve researchers in
building predictive software models

✓ ✓

Software
Heritage Dataset

https://docs.softwareheritage.org/index.html
(accessed on 15 September 2024)

Source code from software projects and devel-
opment forges

✓ ✓

https://www.kaggle.com/
https://github.com/
https://www.eudat.eu/
https://zenodo.org/
https://www.isbsg.org/about-isbsg/
https://osf.io/
https://access.olos.swiss/portal/#/home
https://sir.csc.ncsu.edu/portal/index.php
https://dataverse.org/
https://sourceforge.net/
https://datadryad.org/stash
https://figshare.com/
http://promise.site.uottawa.ca/SERepository/
https://docs.softwareheritage.org/index.html
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Table 4. Cont.
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Qualitas Corpus http://www.qualitascorpus.com/ (accessed
on 15 September 2024)

Collection of software systems intended for
empirical studies of code artifacts

✓ ✓ ✓

Bug Prediction Dataset https://bug.inf.usi.ch/index.php (accessed
on 15 September 2024)

Collection of models and metrics of software
systems and their histories

✓ ✓ ✓

Ultimate Debian
Database (UDD)

http://udd.debian.org/ (accessed on 15
September 2024)

Aspects of Debian in the same SQL database ✓ ✓ ✓

CiteSeerx https://csxstatic.ist.psu.edu/home (accessed
on 15 September 2024)

Digital library, includes scientific papers, algo-
rithms, data, metadata, services, techniques,
and software

✓ ✓ ✓

Software Engineering
Data Repository for
Research and Education

http://analytics.jpn.org/SEdata/ (accessed
on 15 September 2024)

Datasets and tools to serve researchers in
building predictive software models

✓ ✓ ✓

Data Journals

O
pe

n
A

cc
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s

Data in Brief https://www.sciencedirect.com/journal/data-
in-brief (accessed on 15 September 2024)

Short articles, Static and Dynamic
Metadata, Software

✓ ✓ ✓

SoftwareX https://www.sciencedirect.com/journal/
softwarex (accessed on 15 September 2024)

Scientific paper, Software ✓ ✓ ✓

Data https://www.mdpi.com/journal/data
(accessed on 15 September 2024)

Static and Dynamic Metadata, Scientific paper ✓ ✓ ✓

Journal of Open Research
Software (JORS)

https://openresearchsoftware.metajnl.com/
(accessed on 15 September 2024)

Software Metapapers, Research Software ✓ ✓

Journal of Open Source
Software (JOSS)

https://joss.theoj.org/ (accessed on 15
September 2024)

Scientific papers, research software packages ✓ ✓

Scientific Data https://www.nature.com/sdata/ (accessed
on 15 September 2024)

Short articles, Static Metadata ✓ ✓

Software Impacts https://www.sciencedirect.com/journal/
software-impacts (accessed on 15
September 2024)

Static and Dynamic Metadata, Software,
Short description
(Software research Impact, Use cases)

✓

SIAM Journal on Scien-
tific Computing (SISC)

https://epubs.siam.org/journal/sisc/
(accessed on 15 September 2024)

Scientific papers, documented Research Im-
pact and Use cases

✓

7. How Should Software Engineers Share the Software Engineering Research Data?

To effectively manage and share software research data, it is essential to develop a real-
istic Holistic Research Management Plan (HRMP) that integrates both a Data Management
Plan (DMP) and a Software Management Plan (SMP) [65]. The former outlines how data
will be captured, managed, stored, shared, and published, and how the integrity, security,
and confidentiality of data will be maintained, during and after the research project. On the
other hand, the SMP focuses on the software aspect of a research project, formalizing a set of
structures and objectives to ensure the software’s reproducibility, reusability, and publicity
in the short, medium, and long term [66,67]. Both DMP and SMP are evolving documents
that need updates; therefore, new versions of the HRMP should be created whenever impor-
tant changes to the project occur due to the inclusion of new data [65]. Ideally, the HRMP
should be drafted at the beginning of the Software research project. However, even for
existing projects, it is important to create an HRMP, as it is a valuable tool to summarize
established practices and stimulate reflection and evaluation in software research [50].
Good data management and stewardship is not a goal in itself, but rather a precondition
for supporting knowledge discovery and innovation. Research data management requires
effort related to navigating legal aspects, presenting data clearly, deciding where to up-
load, and making the data usable by adding metadata. Currently, a number of groups
and organizations, including ELIXIR, Australian Research Data Commons (ARDC), and

http://www.qualitascorpus.com/
https://bug.inf.usi.ch/index.php
http://udd.debian.org/
https://csxstatic.ist.psu.edu/home
http://analytics.jpn.org/SEdata/
https://www.sciencedirect.com/journal/data-in-brief
https://www.sciencedirect.com/journal/data-in-brief
https://www.sciencedirect.com/journal/softwarex
https://www.sciencedirect.com/journal/softwarex
https://www.mdpi.com/journal/data
https://openresearchsoftware.metajnl.com/
https://joss.theoj.org/
https://www.nature.com/sdata/
https://www.sciencedirect.com/journal/software-impacts
https://www.sciencedirect.com/journal/software-impacts
https://epubs.siam.org/journal/sisc/
https://elixir-europe.org/
https://ardc.edu.au/
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Netherlands eScience Center (NLeSC), are proposing structured management approaches
that adopt the FAIR4RS Principles. Still, many researchers do not consistently manage their
data [50], as they are getting overwhelmed by the number of different requirements they
have to fulfill depending on the funders, research domain, or institution. The following
list provides a clear understanding of the requirements that cover most of the aspects that
research software needs in order to fulfill its purpose:

• Purpose: Provide a concise description of the research and the produced software,
outlining its purpose and the intended audience. Specify the primary function it
serves and who would benefit most from using it.

• Types of Data Description: Clearly describe the types and formats of data collected
or generated in the project, including any existing data being reused and its origin.

• Contextual Details (Metadata): Provide the contextual details and metadata necessary
to make the data meaningful to others, ensuring documentation and data quality.

• Storage, Backup, and Security: Outline the storage infrastructure, backup procedures,
and security measures to protect data against loss, corruption, or unauthorized access.

• Provisions for Protection/Privacy, Legal, and Ethical Aspects: Address privacy and
legal considerations, including provisions for data protection, compliance with ethical
guidelines, and compliance with relevant laws and regulations. While choosing
licensing, Engineers need to keep in mind that data and software should be licensed
under different licenses [68]. For scientific data content, the most used licenses are
Creative Commons licenses. The CC licenses are a good option for works such articles,
books, working papers, and reports while a dedication to the public domain using
CC0 is recommended for datasets and databases. The list of possible choices CC
licenses, Open Data Commons Licenses, CC0 and CC Public Domain Mark. On the
software licensing side the licenses are divided into three groups: permissive licenses
(MIT License, Free BSD License, the New BSD License, Apache License 2.0 and
Artistic License 2.0), weak copyleft licenses (GNU LGPL, Mozilla Public License 2.0,
Eclipse Public License 1.0, Common Development and Distribution License 1.0), strong
copyleft licenses (GNU GPL) and an additional group of network copyleft licenses
(Affero GPL). The choice of licenses is therefore relatively broad [54]. Engineers need
to ensure that it is compatible with the licenses of any libraries or dependencies used.

• Policies for Reuse: Define policies for data reuse, including access requirements,
sharing agreements, and licensing terms to facilitate responsible data sharing.

• Policies for Access and Sharing: Establish policies and procedures for accessing
and sharing research data with collaborators, institutions, or the broader scientific
community. Explain how users can cite your research in their work. Provide links to
citation guidelines that users should follow.

• Plan for Archiving and Preservation: Define a plan for the long-term archiving and
preservation of data, specifying repositories or archives to deposit the data and ensuring
its accessibility over time. Special attention must be paid when a reusable software
component nears the end of its life. Discuss partnerships, sponsorships, or funding
sources that will help support the software over time. Describe the level of support that
will be provided to users of the software. This includes specifying the types of support
(e.g., bug fixes, updates, technical assistance) and how it will be organized.

Although we do not claim to be able to present an exhaustive list here, the following
provides some useful resources, as a starting point to help Software Engineers to form a
high-quality HMP:

• Argos: Developed by OpenAIRE to facilitate Research Data Management activities.
The service is an open platform designed to manage, validate, monitor, and maintain
data management plans (DMPs) and data sets. It allows users to view publicly released
DMPs and Datasets, and build DMPs that can be either private or publicly released
and traded between infrastructures.

https://www.esciencecenter.nl/
https://argos.openaire.eu
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• DMPRoadmap: The tool is jointly provided by the Digital Curation Center (DCC),
and the University of California Curation Center (UC3). DMPRoadmap assists the col-
laborative creation and maintenance of different versions of DMPs, provides guidance
on management issues, and supports various formats exportation. The service is free
at the point of use for researchers to develop DMPs.

• DMPonline: DMPonline is a web-based open tool that relies on the DMPRoadmap
code-base. The tool offers a number of templates that represent the requirements of
different funders and institutions. Users are asked three questions at the outset to
determine the appropriate template. Guidance by researcher funders, universities,
and disciplines is provided to help researchers interpret and answer the questions.

• DMPTool: DMP Tool provides a click-through wizard to create a DMP that complies
with the requirements of the funders, with direct links to the funder websites, help
text to answer questions and resources for best practices in data management.

• Data Stewardship Wizard: Developed by the Elixir is one of the recommended
tools for DMPs by the European Commission. Brings together data stewards and
researchers to compose DMPs efficiently. Researchers are guided through composing
the DMP, which can then be exported using a selected template and format, including
machine-actionable.

• easyDMP: EasyDMP has been developed by Sigma2 in collaboration with EU-
DAT2020. Simplifies the task of creating data management plans by guiding re-
searchers through a set of easy-to-answer questions. Provides guidelines into a series
of easy-to-answer questions containing canned answers.

• RDMO: Offering an API, the RDMO supports researchers with the systematic plan-
ning, organization, and implementation of data management throughout the course
of a research project.

• DAMAP: The tool supports managing both data and code along the research data
life-cycle by generating DMPs using a guided ten-step questionnaire.

All the aforementioned tools, even though they can support writing both DMPs and
SMPs, are focused mostly on DMPs. Besides Software Management Wizard, which ex-
tends the capabilities of Data Stewardship Wizard, in the field of life sciences, we are not
aware of any SMP-specialized tool. The eScience formulated a Practical Guide to Software
Management Plans while other organizations to cover the gap developed templates in-
cluding Research Data Management Organizer (RDMO) SMP, Practical guide to SMPs,
Template for SMPs and SOMEF. To further support the effort, the Research Data Manage-
ment Librarian Academy (RDMLA), in partnership with financial support from Elsevier, is
offering an RDMLA curriculum that focuses on the essential knowledge and skills needed
to collaborate effectively with researchers on data management.

8. Use Case Scenario: Opening Software Research

In this section, we are going to present a scenario of Software Research Data Opening
following our guidelines. Through this use case, our aim is to present the process of
opening an already completed software research project.

8.1. Use Case Description

The scenario is based on our previous work, “Using Code from ChatGPT: Finding
Patterns in the Developers’ Interaction with ChatGPT” [32]. The research identifies patterns
that describe the interaction of developers with ChatGPT, with respect to the characteristics
of the prompts and the actual use of the code provided by the developer. For the study,
we used the method “Adopt, adapt, develop”, which calls for the use and adaptation of
publicly available already existing resources.

https://github.com/DMPRoadmap/roadmap
http://www.dcc.ac.uk/
http://www.cdlib.org/services/uc3/
https://dmponline.dcc.ac.uk/
https://dmptool.org/
https://ds-wizard.org/
https://elixir-europe.org/
https://easydmp.eudat.eu/login/
https://www.sigma2.no/
https://eudat.eu/
https://eudat.eu/
https://rdmorganiser.github.io/
https://damap.org/
https://smw.dsw.elixir-europe.org/wizard/
https://zenodo.org/records/7248877
https://zenodo.org/records/7248877
https://rdmo.mpdl.mpg.de/ 
https://zenodo.org/records/7248877
https://documents.library.maastrichtuniversity.nl/open/6402486e-d88c-4ecb-9f2f-c257bf245f0cs
https://zenodo.org/records/8147418
https://www.canvas.net/browse/simmonsu/courses/research-data-management
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8.2. Description of Research Study

This study investigated how software developers advised ChatGPT for coding tasks,
such as bug fixing, feature addition, refactoring, code reuse, and security improvements.
Up till the point the research was undertaken, there was little knowledge on how the
developers use ChatGPT and whether the responses provided are relevant. The research
aimed to highlight the primary concerns developers raised in ChatGPT conversations,
with respect to code acquisition, and the context under which the code provided is actually
used. This involves analyzing the nature of concerns (programming language prompted,
tokens provided) and potential challenges (types of development tasks prompted), along
with the developers’ code base (GitHub repositories).

The first goal was to identify common concerns that developers presented to ChatGPT
through the perspective of the programming languages and development tasks. This
analysis uncovered patterns in the prompts, reflecting the community’s key needs and
areas where ChatGPT could provide assistance.

The second goal examined how developers interacted with ChatGPT and how these
interaction styles affected the use of generated code. By exploring whether the developer
is usually instructive or adopting a conversational approach to explore whether there is a
correlation between styles of interactions and utilization of code, offering recommenda-
tions on how developers should tailor their interactions to maximize the effectiveness of
ChatGPT’s contribution.

8.3. Description of Data

During the study, we have adopted the DevGPT [69] dataset from GitHub; it comprises all
conversations between developers and ChatGPT-both prompts and responses. The snapshot
studied, snapshot_202308311 [70], contains 2714 conversations between ChatGPT and users.
The DevGPT dataset is launched as a collection of six sets of JSON files. Each file includes the
URL to the ChatGPT conversation [71], associated HTTP response status codes, access date of
the URL, and the HTML response content and a link to the developer’s GitHub repository.
Additionally, each conversation contains a list of prompts/answers, inclusive of any code
snippets. The dataset provided details including the date of the conversation, the count of
prompts/answers, their token information, and the model version involved in the chat.

From the enclosed information adapted the prompts in an attempt to provide an
overview that includes their frequency, characteristics, and possible outcomes. Finally,
to extract our results, we had developed scripts to isolate repetitive keywords from the
titles, that are used to describe the prompts and identify patterns that are indicative of the
co-existence of certain tasks and the level of implementation based on this categorization.
The analysis provides six different categories of tasks, which are: BUG FIX, ENERGY, NEW
FEATURE, REFACTOR, SECURITY and OTHER tasks.

The outlined approach consists of four phases that are (i) data collection, (ii) data
preprocessing, (iii) discretization of variables with continuous values, (iv) data analysis,
and (v) extraction of results. The process accompanied by the data created in each phase is
presented in Figure 4.

Now that we have made a general outline, we aim to describe each step of the opening
process with respect to the 5Ws+1H. We revisited the questions to be more specific to the
use case.
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Figure 4. Artifacts created during Research, available for open sharing.

8.4. Why Should We Share Our Software Engineering Research Data?

With the rise of GenAI and the introduction of ChatGPT, more and more individual
researchers and organizations are turning their attention to the use of those models as
supplementary assistants for their organization units. Currently, ChatGPT has emerged as
a game changer in the developer landscape, leveraging the power of Natural Language
Processing to generate text that aids in multipurpose tasks. ChatGPT can advise developers
on how to fix bugs, add new features, improve already existing code, or even suggest tools
and libraries to be reused for a specific purpose [72]. However, there is little knowledge of
whether developers trust ChatGPT’s responses and actually utilize the provided solutions.
This research identifies the primary issues that developers present to ChatGPT and provides
an overall overview of the prompts fed to ChatGPT by the developers regarding their
frequency and characteristics and their possible consequences. Focusing on prompts,
questions, and inherent characteristics of the interaction process patterns that help towards
receiving a useful answer from ChatGPT, are noted.

By opening our data, we contribute not only to the broader discussion of AI use in
software engineering, we are providing a resource that others can build on. Our data allows
researchers to develop better prompt templates, and figure out what works and what does
not in AI-assisted coding. Prompt templates and good practices when prompting LLMs
could increase the percentages of code utilization. An important aspect highlighted in
our research was the originality and ownership related to AI-generated code. During the
research, we gathered numerous ChatGPT’s answers that were replicated or even copied
from the same resource as the user’s prompt. Sharing these findings means opening up
further ways the community can debate and discuss these ethical challenges to create an
innovative, yet responsible, role for AI in development.

8.5. Who Should Be Considered during OUR Process of Opening Software Engineering Research Data?

The discussions about the adoption of Generative AI models in software engineering
have focused mainly on potential security risks and the impact on code quality. In contrast,
our research highlighted the trends associated with AI-generated code usage and the
specific needs of engineers as they interact with models like GPT. The primary audience
for our findings includes software researchers interested in understanding the dynamics
and trends of human-AI collaboration that can be used to develop more effective strategies
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for interacting with AI so that better results are achieved. The findings from our study
could inspire businesses and the private sector to develop software that best meets the
specific needs expressed by engineers in interacting with GPT. Moreover, the research
highlights a gap in prompt engineering and human-AI collaboration that suggests the
need to rethink the way curriculums are delivered within educational institutions to
better prepare learners for new demands within the software industry. On an individual
level, learners can gain insight into the kind of competencies and knowledge that will be
increasingly demanding within the employment market. Finally, our findings act like a
stimulus for further research in this area, setting the stage for opportunities for financial
sponsors to support continuing investigation and for publishers to issue special editions
that focus on the interrelationship between artificial intelligence and software engineering.

8.6. What Type of Software Engineering Research Data Should WE Share?

The primary goal of this research was not only to conduct an experimental study,
but also to produce a scientific paper. To ensure the credibility and reproducibility of
our work, it’s crucial that our paper provides all the necessary information for others to
verify and replicate the study. Due to that, all data regarding the dataset, data analysis,
and methodology need to be publicly shared. As shown in Figure 4, our study has generated
a diverse set of artifacts that support the research process; however, all these artifacts are
not suited for publication in their raw form. In line with the categorization in Section 4, we
classified the data into two categories: Static Metadata and Dynamic Runtime Metadata.

Static metadata, crucial for understanding and verifying the study, are being shared as
complementary data to the publication. It includes a complex description of methodology,
procedures for data analysis, preprocessing actions, and the derivation of results. Those
artifacts are well explained and expressed in the different sections of our research paper,
acting as supporting data to the publication.

On the other hand, Dynamic Runtime Metadata includes assembled dataset, Python
scripts and files prepared for Weka and SPSS analyses are being publicly shared with the
community as-is in the repository, to support the research reproduction.

By publishing dynamic metadata in their original form, other researchers can easily
obtain the necessary resources to recreate the research, while the scientific manuscript,
including the static metadata, serves both as a specific how-to guide and source to cross
validate their findings.

8.7. When Is the Right Time to Share OUR Software Engineering Research Data?

For the sharing process, we did use the three-stage process described above.
Beginning of the Project:
At the beginning of the project, the first and second authors worked independently

on local machines for about one month. During that early period, the two preprocessed
raw data formed the methodologies and drafted some preliminary results. To guarantee
consistency in the approach, both often communicated by exchanging progress updates,
providing input on issues encountered, and sharing source code. The goal during this stage
was to establish a solid foundation, ensuring that the data was accurate and that the initial
results were good enough to justify the next stage.

Midpoint of the Project:
Once the preliminary results were satisfying, it was then time for team collaboration.

At this stage, a private repository was created allowing for structured and centralized data
management, making it easier for the entire team to access and contribute to the project.
Each member handled different activities within the same database, such as lemmatization,
code comparison, data combining, association rule extraction, and statistical analysis.
Working in the same instance of the database meant that interrelated tasks kept the updates
in real time and allowed for internal data sharing, showing the progress and changes.
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Completion of the Project:
Once everyone was happy with the data, we had to make a decision whether to make

the repository publicly accessible immediately or to wait until the associated research paper
was published. The team focused on writing the research paper with the inclusion of data
as proof of credibility. Once the paper was accepted for publication, the repository was
made openly available, accompanied by a preprint of the paper to provide context and
scientific backing for the data. Finally, following the publication of the final version, a link
to the publisher’s website was added to support citations.

8.8. Where Should WE Deposit Their Software Engineering Research Data?

As already described, during our project lifetime we decided to share our research
through two generalist repositories, in addition to the publisher’s website, where the data
complement the published scientific paper. Throughout the entire research, our data were
stored in GitHub [73] either in a private or in a public manner, Figure 5 both to keep track
of our changes and manage better the parts where collaborative work was required. This is
a common practice among researchers as it keeps the data in a safe place assuring there
will be no data loss and provides consistency in formatting, as researchers need to follow
standards. Later on, having data shared in that manner helps to easily transform the raw
information to scientific paper. Furthermore, this approach allows reviewers and readers to
validate the data and replicate the research. Although common, this practice plays a crucial
role in maintaining transparency and accessibility throughout the research process

Figure 5. GitHub Repository.

The second repository we have chosen to store our data is the Generalist repository
B2SHARE(EUDAT) [74]. Although B2SHARE is a generalist repository, it differs signifi-
cantly from GitHub in its requirements for metadata management. B2SHARE operates with
a structure and policies that are between those of a generalist repository and a discipline-
oriented one. This platform emphasizes the importance of including complementary data
alongside research results and provides step-by-step guidance on data sharing.

At the end of the project, we had uploaded in EUDAT the same artifacts as found on
GitHub. However, as can be seen in Figure 6, the requirements of this platform are strict,
and before the data could be made openly available, we had to first ensure that both the
quality and security of the research were provided through metadata. The system first
requires basic details such as the title, a short description, and the names of the creators of
the project. In addition, users can control access to the files, making them openly public or
restricting them to the record’s owner and community administrators. However, even in
these restricted access cases, the metadata remains open, which is useful when, as described
in Section 4, not all research data can be shared.
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Figure 6. EUDAT Repository.

B2SHARE also offers options on embargo policies, allowing researchers to delay open
access to their data. Depending on the type of data, for example, data sets or software,
the system offers various licensing options that ensure users interact with the data in
a respectful and legal manner. The discipline applicable to the data will determine the
appropriate persistent identifier for the project, making the citations accurate.

Once the metadata upload is complete, as shown in Figure 7, the record is ready to be
published, respecting all the necessary attributes to become FAIR.
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Figure 7. EUDAT Repository.

8.9. How Should WE Share the Software Engineering Research Data?

One of the requirements when writing a scientific paper is the structured research
framework, which includes detailed description of acts and methods led to resulting research.
Even if this plan is not meticulously detailed from the start, software researchers—the
authors in this case—should carefully document everything involved in the process to
ensures that the study is not only easy to understand but also reproducible by others.
Within this context, the paper has to include a Case Study Design section. This section
should include all the relevant details required in regard to a Data Management Plan (DMP).
Such documentation prevents the need for researchers to redundantly record actions and
procedures. While the common elements of this section are well understood, we will
highlight the minimum required information as included in our case.

This section through the research questions narrows down the objective of the study
and identify its intended audience. The data analysis plan states the various types and
formats of data that are being collected or generated during the project. Additionally, this
section, along with the results sections, outlines the storage structure, methods for backup,
and long-term preservation process for the data. For long-term access, specific repositories
or archives proposed for data deposition are specified.



Software 2024, 3 436

8.10. Use Case Conclusion

The following table (Table 5) gives an overview of the opening process followed in the
aforementioned use case, regarding the 5W+1H.

Table 5. Use Case Data Sharing Timeline: Stakeholders, Purposes, and Platforms.

W
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n

Who Why What Where

B
eg
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ni

ng

of
Pr

oj
ec

t Authors Collaboration, Disclosure,
Establishing a foundation for
data accuracy

Raw Data and Preprocessed Data
(original JSON files, Python scripts,
data analysis procedures,
preprocessing actions)

Natively on machines
and in a GitHub
private repository

M
id

po
in

t

of
Pr

oj
ec

t Research Team, Software
Researchers

Cross-Validation,
Reproducibility, Verification of
research, Proofreading, Ensuring
real-time collaboration

Processed Data (assembled dataset,
Python scripts, Weka files, SPSS files,
complete data analysis procedures
and methodologies)

GitHub
public repository

C
om

pl
et

io
n

of
Pr

oj
ec

t Software Researchers,
Businesses, Educational
Institutions, Learners, Financial
Sponsors, Publishers

Knowledge Dissemination,
Enhancing transparency,
Supporting future
research, Informing
curriculum development

Final Data (new dataset in CSV file,
Python scripts, ARFF file, SPSS file) and
Research Paper (tables, graphs, metrics,
and analytic research methodology)

Journal and
EUDAT repository

9. Discussion

Although data sharing seems to have a global benefit, cultural and national factors
pose a significant challenge to a one-size-fits-all approach. Regardless of the benefits,
deciding what data can be shared, how it should be shared, and making it usable by others
requires additional effort, training, and resources.

Open Software Research Data offers benefits highly related to transparency, repro-
ducibility, and greater trust in society. The availability of data increases their reuse by
researchers and practitioners, saving time and effort while enhancing the credibility and
generalizability of findings through the use of diverse data sets. Even though the idea of
open shared knowledge is seen as ideal, and we have already discussed the benefits of
openly sharing Software Engineering Research Data, significant challenges persist in fully
embracing data openness.

Despite growing demand within the community, guidelines and dedicated ICT tools
for data openness are still lacking. Engineers often spend valuable time developing custom
data-sharing methods or navigating multiple tools to automate processes and ensure
successful data release, both in uploading the data and in the requests for assistance that
may follow after the release of the data. Time may also be spent rebutting future re-
analysis of the data and defending the original research findings. Data must be presented
in an understandable and usable format to ensure maximum transferability between
projects, adding additional difficulty to engineers who should create suitable technological
infrastructure to support broad international interoperability and enforce robust data
quality controls for optimal utilization.

Another challenge that prevents researchers from employing openness in their re-
search is the area of conflict between anonymity and confidentiality on the one hand and
openness on the other. The lack of consistent guidelines around Software Research Data
sharing makes navigating privacy and ethical concerns difficult, leading practitioners to
keep their data within a trusted circle of colleagues, Borgman [36]. Researchers tend to stick
with the close culture because of their fear of losing control over their research, possibly
through unethical data use (including misinterpretation and misuse), data commercializa-
tion, and potential harm to themselves. There is also concern about the level of trust in
other researchers’ data and the knowledge about who is using the data, since standards for
citing another researcher’s data are not universally understood. Researchers may intend to
share their data, yet this intention often does not translate into actual data-sharing behavior.
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Practitioners periodically use open data principles and are not fully committed to the
practices due to their perceptions and the work environment [21,75]. This inconsistency
creates an environment of unreliability for the research community and the public. Not
only does this inconsistent behavior make users skeptical of engineers’ intentions but also
creates gaps in research data, as several practices remain private or only partially shared,
which makes it difficult to analyze and reuse the data.

To overcome all the aforementioned challenges, engineers need to prioritize improving
harmonization in interoperability and operational practices. Developing standardized
processes would allow engineers to focus on their core competencies, reducing time costs
associated with data sharing, and enhancing efficiency. By establishing a consistent practice,
it becomes easier to verify and replicate findings, promoting transparency and reliability in
scientific output.

By systematically addressing the 5Ws+1H (Why, Who, What, When, Where, and How)
framework, we provide a structured approach that aims to simplify the process of data
sharing, offering researchers and practitioners clear guidelines on navigating open science
blurred boundaries in software engineering. Timing, selection of the right repository, identi-
fication of stakeholders, and data management are some other important aspects ignored by
most of the current literature, which often addresses the opening process of single software
artifacts. Most existing research focuses on the sharing of deployable software artifacts
like source code [7–9], testing code [11–14], and supporting documentation, including
maintenance guides [11,15], technical specifications [16–18], and quality metrics [19]. These
efforts, while valuable, do not address the broader lifecycle of data sharing in software
development. Our work fills this gap by providing a clear step-by-step pathway on how
data can be shared during a software development life cycle. Unlike previous works that
primarily focus on the dissemination of knowledge, our paper indicates clear benefits prac-
tical for various stakeholders. This expanded scope makes our work of particular interest to
industry practitioners seeking to streamline development workflows, reduce duplication of
effort, and increase innovativeness. It also has societal impacts in that the public will better
understand, and participate in, software research by having open, usable data to guide
policy and drive citizen science. It covers the academic and practical issues, providing the
software engineering community with the tools to adopt open science practices in an away
that facilitates its needs.

9.1. Implications to Researchers And Practitioners

This chapter describes implications of our research. In this section, first we describe
the practical impact of our findings, and then we detail what are the implications of this
research to the different stakeholders in the field.

The main research impact is that we provide a guidance for practitioners on the
complete process of opening Software Research Data. The study is designed to guide
practitioners step-by-step, through the main research concerns, enabling them to achieve
the necessary goals for effectively sharing research data in a structured and impactful way.

Regarding the stakeholders, some take away messages are: :
For Research Creators, can use the guidelines reported in this work to structure their

ongoing software development research, ensuring data openness in all levels of the life
cycle of software development. The detailed breakdown of the framework into specific
stages—such as when, how, and where to share data—ensures that practitioners have a
clear, actionable plan tailored to different phases of software development.

The Software Engineering Community benefits from this research by gaining insights
into available resources and best practices related to open software data. This paper can act
as a guideline showing them where to find the relevant research outputs, when to look for
them, and what specific research data is most useful to meet their needs.

End users will be benefited from adoption of the research guidelines by the creators,
as they will have access to well-documented software accompanied by clear explanations
and a strong support system. Implementation of our guidelines ensures that end users



Software 2024, 3 438

receive the information needed in an accessible and understandable format improving their
overall experience with the software.

9.2. Future Work

As future work, we intend to first evaluate the implementation of these guidelines in
wide-ranging cases. We then aim to update our strategy to better fit the needs of researchers.
The updated guidelines will be after circulated within the community for feedback and
validation. The adoption strategy will include steps on engaging with key stakeholders,
such as those who will:

• Support and promote the guidelines: Identifying key organizations and institutions
that will actively endorse and promote the guidelines within their networks.

• Provide training on the guidelines: Providing resources for researchers, data managers,
and developers to put the principles into practice.

• Use the guidelines: Encouraging researchers and developers to apply these recom-
mendations into their research process.

10. Conclusions

In this paper, we analyzed the challenges and opportunities of open data in software
engineering using the 5Ws+1H framework. We pointed out that it is important to foster an
open, collaborative culture within the software engineering community by specifying clear
guidelines for data sharing throughout the entire software development cycle. By identify-
ing key stakeholders, relevant types of data, appropriate timing, and suitable repositories,
we aim to facilitate the process of opening Software Engineering Research Data. The study
underlines the need to create and share a Holistic Data Plan, which includes a Data Man-
agement Plan (DMP) and a Software Management Plan (SMP). The practical applicability
of these guidelines was demonstrated on a use case based on our past work by sharing all
data created, used, and published in that research highlighting the significant opportunities
for further innovation, transparency, and collaboration that open data practices bring. This
paper aims to encourage engineers and researchers to embrace open data practices fostering
innovation, transparency, and collaboration in the field. We hope these efforts increase the
use of open science principles in software engineering in order to build a more open and
interconnected research environment.

Author Contributions: All authors contributed to the conception and design of the study. Material
preparation, data collection, and analysis were performed by A.T. The first draft of the manuscript
was written by A.T. S.B. conceptualized the paper and commented on all versions of the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: No funding was obtained for this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors have no conflicts of interest to declare that are relevant to the
content of this article.

References
1. Russell, A.L. Open Standards and the Digital Age: History, Ideology, and Networks; Cambridge Studies in the Emergence of Global

Enterprise; Cambridge University Press: Cambridge, UK, 2014.
2. Critchlow, T.; Kleese, K. Data-Intensive Science; CRC Press: Boca Raton, FL, USA, 2016.
3. Woelfle, M.; Olliaro, P.; Todd, M. Open science is a research accelerator. Nat. Chem. 2011, 3, 745–748. [CrossRef] [PubMed]
4. Open Science Definition | FOSTER. Available online: https://www.fosteropenscience.eu/foster-taxonomy/open-science-

definition (accessed on 15 September 2024).
5. Budapest Open Access Initiative. Available online: https://www.budapestopenaccessinitiative.org/read/ (accessed on 15

September 2024).

http://doi.org/10.1038/nchem.1149
http://www.ncbi.nlm.nih.gov/pubmed/21941234
https://www.fosteropenscience.eu/foster-taxonomy/open-science-definition
https://www.fosteropenscience.eu/foster-taxonomy/open-science-definition
https://www.budapestopenaccessinitiative.org/read/


Software 2024, 3 439

6. Kelley, A.; Garijo, D. A framework for creating knowledge graphs of scientific software metadata. Quant. Sci. Stud. 2021,
2, 1423–1446. [CrossRef]

7. Anzt, H.; Kuehn, E.; Flegar, G. Crediting pull requests to open source research software as an academic contribution. J. Comput.
Sci. 2021, 49, 101278. [CrossRef]

8. Li, Z.; Yu, Y.; Zhou, M.; Wang, T.; Yin, G.; Lan, L.; Wang, H. Redundancy, context, and preference: An empirical study of duplicate
pull requests in OSS projects. IEEE Trans. Softw. Eng. 2020, 48, 1309–1335. [CrossRef]

9. Hucka, M.; Graham, M. Software search is not a science, even among scientists: A survey of how scientists and engineers find
software. J. Syst. Softw. 2018, 141, 171–191. [CrossRef]

10. Katz, D.S.; Gruenpeter, M.; Honeyman, T. Taking a fresh look at FAIR for research software. Patterns 2021, 2, 100222. [CrossRef]
11. Ojala, M.; Cohn, M.L. Software Maintenance as Materialization of Common Knowledge. Engag. Sci. Technol. Soc. 2023, 9, 165–185.

[CrossRef]
12. Zaragozí, B.M.; Trilles, S.; Navarro-Carrión, J.T. Leveraging Container Technologies in a GIScience Project: A Perspective from

Open Reproducible Research. ISPRS Int. J. Geo-Inf. 2020, 9, 138. [CrossRef]
13. Herala, A.; Kasurinen, J.; Vanhala, E. Views on Open Data Business from Software Development Companies. J. Theor. Appl.

Electron. Commer. Res. 2018, 13, 91–105. [CrossRef]
14. Krishnamurthy, S. A managerial overview of open source software. Bus. Horizons 2003, 45, 47–56. [CrossRef]
15. Geiger, R.S.; Howard, D.; Irani, L. The Labor of Maintaining and Scaling Free and Open-Source Software Projects. Proc. ACM

Hum.-Comput. Interact. 2021, 5, 175. [CrossRef]
16. Terzi, A.; Christou, O.; Bibi, S.; Angelidis, P. Software Reuse and Evolution in JavaScript Applications. In Proceedings of the 2022

48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Gran Canaria, Spain, 31 August–2
September 2022; pp. 263–269. [CrossRef]

17. Jackson, M. Software Deposit: What to Deposit. 2018. Available online: https://doi.org/10.5281/zenodo.1327325 (accessed on 15
September 2024).

18. Pashchenko, I.; Plate, H.; Ponta, S.E.; Sabetta, A.; Massacci, F. Vulnerable open source dependencies: Counting those that matter.
In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, New
York, NY, USA, 11–12 October 2018. [CrossRef]

19. Alarcon, G.M.; Gibson, A.M.; Walter, C.; Gamble, R.F.; Ryan, T.J.; Jessup, S.A.; Boyd, B.E.; Capiola, A. Trust Perceptions of
Metadata in Open-Source Software: The Role of Performance and Reputation. Systems 2020, 8, 28. [CrossRef]

20. Katz, D.; Niemeyer, K.; Smith, A.; Anderson, W.; Boettiger, C.; Hinsen, K.; Hooft, R.; Hucka, M.; Lee, A.; Löffler, F.; et al. Software
vs. data in the context of citation. PeerJ Prepr. 2016, 4, e2630v1.

21. Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M. Data Sharing by Scientists: Practices
and Perceptions. PLoS ONE 2011, 6, e21101. [CrossRef]

22. Wnuk, K.; Pfahl, D.; Callele, D.; Karlsson, E.A. How can open source software development help requirements management gain
the potential of open innovation: An exploratory study. In Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, New York, NY, USA, 19–20 September 2012; pp. 271–280. [CrossRef]

23. Ho-Quang, T.; Hebig, R.; Robles, G.; Chaudron, M.R.; Fernandez, M.A. Practices and Perceptions of UML Use in Open Source
Projects. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), Buenos Aires, Argentina, 20–28 May 2017; pp. 203–212. [CrossRef]

24. Hebig, R.; Quang, T.H.; Chaudron, M.R.V.; Robles, G.; Fernandez, M.A. The quest for open source projects that use UML: Mining
GitHub. In Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems,
New York, NY, USA, 2–7 October 2016; pp. 173–183. [CrossRef]

25. Di Gangi, P.M.; Wasko, M. Steal my idea! Organizational adoption of user innovations from a user innovation community: A case
study of Dell IdeaStorm. Decis. Support Syst. 2009, 48, 303–312. [CrossRef]

26. Open Data Report | Elsevier. Available online: https://www.elsevier.com/about/open-science/research-data/open-data-report
(accessed on 15 September 2024).

27. Runeson, P.; Soderberg, E.; Host, M. A conceptual framework and recommendations for open data and artifacts in empirical
software engineering. In Proceedings of the 1st IEEE/ACM International Workshop on Methodological Issues with Empirical
Studies in Software Engineering, Lisbon, Portugal, 16 August 2024; pp. 68–75.

28. Kipling, R. Just So Stories; Macmillan & Co.: London, UK, 1902.
29. Imarah, T.S.; Jaelani, R. ABC Analysis, Forecasting And Economic Order Quantity (Eoq) Implementation to Improve Smooth

Operation Process. Dinasti Int. J. Educ. Manag. Soc. Sci. 2020, 1, 319–325.
30. Hart, G. ‘The five W’s: An old tool for the new task of task analysis. Tech. Commun. 1996, 43, 139–145.
31. Abdulkadir, S.; Aliyu, H.O. ReQueclass: A Framework for Classifying Requirement Elicitation Questions Based on Kipling’s Technique

and Zachman’s Enterprise Framework—A Guide for Software Requirement Engineers; i-manager Publications: Tamil Nadu, India, 2018.
32. Terzi, A.; Bibi, S.; Tsitsimiklis, N.; Angelidis, P. Using Code from ChatGPT: Finding Patterns in the Developers’ Interaction

with ChatGPT. In Proceedings of the International Conference on Software and Software Reuse; Springer: Cham, Switzerland, 2024;
pp. 137–152.

33. Schmidt, B.; Gemeinholzer, B.; Treloar, A. Open Data in Global Environmental Research: The Belmont Forum’s Open Data Survey.
PLoS ONE 2016, 11, e0146695. [CrossRef]

http://dx.doi.org/10.1162/qss_a_00167
http://dx.doi.org/10.1016/j.jocs.2020.101278
http://dx.doi.org/10.1109/TSE.2020.3018726
http://dx.doi.org/10.1016/j.jss.2018.03.047
http://dx.doi.org/10.1016/j.patter.2021.100222
http://dx.doi.org/10.17351/ests2023.1325
http://dx.doi.org/10.3390/ijgi9030138
http://dx.doi.org/10.4067/S0718-18762018000100106
http://dx.doi.org/10.1016/S0007-6813(03)00071-5
http://dx.doi.org/10.1145/3449249
http://dx.doi.org/10.1109/SEAA56994.2022.00048
https://doi.org/10.5281/zenodo.1327325
http://dx.doi.org/10.1145/3239235.3268920
http://dx.doi.org/10.3390/systems8030028
http://dx.doi.org/10.1371/journal.pone.0021101
http://dx.doi.org/10.1145/2372251.2372301
http://dx.doi.org/10.1109/ICSE-SEIP.2017.28
http://dx.doi.org/10.1145/2976767.2976778
http://dx.doi.org/10.1016/j.dss.2009.04.004
https://www.elsevier.com/about/open-science/research-data/open-data-report
http://dx.doi.org/10.1371/journal.pone.0146695


Software 2024, 3 440

34. Data, S.; Astell, M. Benefits of Open Research Data Infographic. 2017. Available online: https://doi.org/10.6084/m9.figshare.51
79006.v3 (accessed on 15 September 2024).

35. Jackson, M. Software Deposit: Why Deposit Software. 2018. Available online: https://doi.org/10.5281/zenodo.1327333 (accessed
on 15 September 2024).

36. Pasquetto, I.V.; Sands, A.E.; Borgman, C.L. Exploring openness in data and science: What is “open”, to whom, when, and why?
Proc. Proc. Assoc. Inf. Sci. Technol. 2015, 52, 1–2. [CrossRef]

37. Reilly, S.; Schallier, W.; Schrimpf, S.; Smit, E.; Wilkinson, M. Report on Integration of Data and Publications. 2011. Available
online: https://doi.org/10.5281/zenodo.8307 (accessed on 15 September 2024).

38. Pasquetto, I.; Randles, B.; Borgman, C. On the Reuse of Scientific Data. Data Sci. J. 2017, 16, 8. [CrossRef]
39. Sitek, D.; Bertelmann, R. Open Access: A State of the Art. In Opening Science: The Evolving Guide on How the Internet is Changing

Research, Collaboration and Scholarly Publishing; Bartling, S., Friesike, S., Eds.; Springer International Publishing: Cham, Switzerland,
2014; pp. 139–153. [CrossRef]

40. Kazman, R.; Goldenson, D.; Monarch, I.; Nichols, W.; Valetto, G. Evaluating the Effects of Architectural Documentation: A Case
Study of a Large Scale Open Source Project. IEEE Trans. Softw. Eng. 2016, 42, 220–260. [CrossRef]

41. Ding, W.; Liang, P.; Tang, A.; Van Vliet, H.; Shahin, M. How Do Open Source Communities Document Software Architecture: An
Exploratory Survey. In Proceedings of the 2014 19th International Conference on Engineering of Complex Computer Systems,
Tianjin, China, 4–7 August 2014; pp. 136–145. [CrossRef]

42. Gandhi, R.; Germonprez, M.; Link, G.J. Open Data Standards for Open Source Software Risk Management Routines: An
Examination of SPDX. In Proceedings of the 2018 ACM International Conference on Supporting Group Work, New York, NY,
USA, 7–10 January 2018; pp. 219–229. [CrossRef]

43. Open Science: Purpose, Benefits, and What It Means for You. Available online: https://blog.theopenscholar.com/en/open-
science-purposebenefits (accessed on 15 September 2024).

44. McKiernan, E.; Bourne, P.; Brown, C.T.; Buck, S.; Kenall, A.; Lin, J.; McDougall, D.; Nosek, B.; Ram, K.; Soderberg, C.; et al. How
open science helps researchers succeed. eLife 2016, 5, e16800. [CrossRef] [PubMed]

45. Costello, M.J. Motivating Online Publication of Data. BioScience 2009, 59, 418–427. [CrossRef]
46. Enders, T.; Satzger, G.; Fassnacht, M.; Wolff, C. Why should I share? Exploring benefits of open data for private sector

organizations. In Proceedings of the Pacific Asia Conference on Information Systems, Taibei, Taiwan, 5–9 July 2022; Volume 1.
47. Barker, M.; Chue Hong, N.; Katz, D.; Lamprecht, A.; Martinez-Ortiz, C.; Psomopoulos, F.; Harrow, J.; Castro, L.; Gruenpeter, M.;

Martinez, P.; et al. Introducing the FAIR Principles for research software. Sci. Data 2022, 9, 622. [CrossRef]
48. Hasselbring, W.; Carr, L.; Hettrick, S.; Packer, H.; Tiropanis, T. From FAIR research data toward FAIR and open research software.

Inf. Technol. 2020, 62, 39–47. [CrossRef]
49. Gil, Y.; Ratnakar, V.; Garijo, D. OntoSoft: Capturing Scientific Software Metadata. In Proceedings of the 8th International

Conference on Knowledge Capture, New York, NY, USA, 7–10 October 2015. [CrossRef]
50. Martinez-Ortiz, C.; Martinez Lavanchy, P.; Sesink, L.; Olivier, B.G.; Meakin, J.; de Jong, M.; Cruz, M. Practical Guide to Software

Management Plans. 2023. Available online: https://doi.org/10.5281/zenodo.7589725 (accessed on 15 September 2024).
51. Smith, A.M.; Katz, D.S.; Niemeyer, K.E. Software citation principles. PeerJ Comput. Sci. 2016, 2, e86. [CrossRef]
52. Lamprecht, A.L.; Garcia, L.; Kuzak, M.; Martinez, C.; Arcila, R.; Martin Del Pico, E.; Dominguez Del Angel, V.; Sandt, S.; Ison, J.;

Martinez, P.; et al. Towards FAIR principles for research software. Data Sci. 2020, 3, 37–59. [CrossRef]
53. Druskat, S.; Bertuch, O.; Juckeland, G.; Knodel, O.; Schlauch, T. Software publications with rich metadata: State of the art,

automated workflows and HERMES concept. arXiv 2022, arXiv:2201.09015.
54. Kapitsaki, G.M.; Tselikas, N.D.; Foukarakis, I.E. An insight into license tools for open source software systems. J. Syst. Softw. 2015,

102, 72–87. [CrossRef]
55. Dorta-González, P.; González-Betancor, S.M.; Dorta-González, M.I. To what extent is researchers’ data-sharing motivated by

formal mechanisms of recognition and credit? Scientometrics 2021, 126, 2209–2225. [CrossRef]
56. Shah, U.A.; Hussain, M.; Saddiqa, M.; Yar, M.S. Problems and Challenges in the Preservation of Digital Contents: An Analytical

Study. Libr. Philos. Pract. 2021, 2021, 5628.
57. Strecker, D. Quantitative Assessment of Metadata Collections of Research Data Repositories. Master’s Thesis, Humboldt-

Universität zu Berlin, Philosophische Fakultät, Berlin, Germany, 2021. [CrossRef]
58. Rollins, N.D.; Barton, C.M.; Bergin, S.; Janssen, M.A.; Lee, A. A computational model library for publishing model documentation

and code. Environ. Model. Softw. 2014, 61, 59–64. [CrossRef]
59. Peng, R.D. Reproducible research in computational science. Science 2011, 334, 1226–1227. [CrossRef] [PubMed]
60. Gousios, G.; Vasilescu, B.; Serebrenik, A.; Zaidman, A. Lean GHTorrent: GitHub data on demand. In Proceedings of the 11th

Working Conference on Mining Software Repositories, Hyderabad, India, 31 May–1 June 2014; pp. 384–387.
61. Hyppölä, J.; Essen von, J.; Keskitalo, E.P. Beyond Open Access—Tools and methods for open research. In Proceedings of the

AcademicMindTrek’15, Tampere, Finland, 22–24 September 2015; pp. 206–209. [CrossRef]
62. Hasselbring, W.; Carr, L.; Hettrick, S.; Packer, H.; Tiropanis, T. Open source research software. Computer 2020, 53, 84–88. [CrossRef]
63. Di Cosmo, R. Archiving and referencing source code with Software Heritage. In Proceedings of the Mathematical Software–ICMS

2020: 7th International Conference, Braunschweig, Germany, 13–16 July 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 362–373.

https://doi.org/10.6084/m9.figshare.5179006.v3
https://doi.org/10.6084/m9.figshare.5179006.v3
https://doi.org/10.5281/zenodo.1327333
http://dx.doi.org/10.1002/pra2.2015.1450520100141
https://doi.org/10.5281/zenodo.8307
http://dx.doi.org/10.5334/dsj-2017-008
http://dx.doi.org/10.1007/978-3-319-00026-8_9
http://dx.doi.org/10.1109/TSE.2015.2465387
http://dx.doi.org/10.1109/ICECCS.2014.26
http://dx.doi.org/10.1145/3148330.3148333
https://blog.theopenscholar.com/en/open-science-purposebenefits
https://blog.theopenscholar.com/en/open-science-purposebenefits
http://dx.doi.org/10.7554/eLife.16800
http://www.ncbi.nlm.nih.gov/pubmed/27387362
http://dx.doi.org/10.1525/bio.2009.59.5.9
http://dx.doi.org/10.1038/s41597-022-01710-x
http://dx.doi.org/10.1515/itit-2019-0040
http://dx.doi.org/10.1145/2815833.2816955
https://doi.org/10.5281/zenodo.7589725
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.1016/j.jss.2014.12.050
http://dx.doi.org/10.1007/s11192-021-03869-3
http://dx.doi.org/10.18452/22916
http://dx.doi.org/10.1016/j.envsoft.2014.06.022
http://dx.doi.org/10.1126/science.1213847
http://www.ncbi.nlm.nih.gov/pubmed/22144613
http://dx.doi.org/10.1145/2818187.2818280
http://dx.doi.org/10.1109/MC.2020.2998235


Software 2024, 3 441

64. Walters, W.H. Data journals: Incentivizing data access and documentation within the scholarly communication system. Insights
2020, 33, 18. [CrossRef]

65. von Suchdoletz, D.; Brettschneider, P.; Axtmann, A.; Heber, M.; Oberländer, L.; Leendertse, J.; Schumm, I.; Brandt, O.; Schmidt,
K.; Gertis, L.; et al. Sicherstellung der Reproduzierbarkeit von Forschungsergebnissen durch Bewahrung des Zugriffs auf
Forschungssoftware. Bausteine Forschungsdatenmanagement 2023, 5, 1–13. [CrossRef]

66. Chue Hong, N.P.; Crouch, S. What Is a Software Management Plan and How Can It Help Your Project? 2021. Available online:
https://doi.org/10.5281/zenodo.5648418 (accessed on 15 September 2024).

67. Gomez-Diaz, T.; Romier, G. Research Software Management Plan Template, V3.2. Bilingual Document (FR/EN). Available online:
https://hal.science/hal-01802565/document (accessed on 15 September 2024).
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