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Abstract: This paper describes the Pawns programming language, currently under development,
which uses several novel features to combine the functional and imperative programming paradigms.
It supports pure functional programming (including algebraic data types, higher-order programming
and parametric polymorphism), where the representation of values need not be considered. It also
supports lower-level C-like imperative programming with pointers and the destructive update of all
fields of the structs used to represent the algebraic data types. All destructive update of variables is
made obvious in Pawns code, via annotations on statements and in type signatures. Type signatures
must also declare sharing between any arguments and result that may be updated. For example,
if two arguments of a function are trees that share a subtree and the subtree is updated within the
function, both variables must be annotated at that point in the code, and the sharing and update
of both arguments must be declared in the type signature of the function. The compiler performs
extensive sharing analysis to check that the declarations and annotations are correct. This analysis
allows destructive update to be encapsulated: a function with no update annotations in its type
signature is guaranteed to behave as a pure function, even though the value returned may have been
constructed using destructive update within the function. Additionally, the sharing analysis helps
support a constrained form of global variables that also allows destructive update to be encapsulated
and safe update of variables with polymorphic types to be performed.

Keywords: programming language; functional programming; effects; destructive update; mutability;
sharing; aliasing

1. Introduction

This paper briefly describes the main features of the Pawns programming language
(https://lee-naish.github.io/src/pawns/ (accessed on 19 November 2024)). It is currently
being developed solely by the author and is intended as a “proof of concept” for various
new language features rather than a fully featured language ready for deployment. The aim
of this paper is to give an overview of the main new ideas (Ref. [1] does the same but
includes significantly more detail and discussion of the language design). Here, we attempt
to avoid becoming too bogged down with such issues, at least for the earlier parts of the
paper. We assume the reader is familiar with Haskell [2] and C [3]. Pawns supports pure
functional programming with strict evaluation, algebraic data types (ADTs), parametric
polymorphism and higher-order programming. It also supports “impure” code, such
as using state (including IO) and the destructive update of all compound data types via
pointers (references or “refs” for short) but all such code is highlighted by “!” annotations.
A call to a function that relies on state must be prefixed by “!”; the details of the state(s)
are declared in the type signature. Additionally, variables that are updated must be
prefixed with “!”. A function call with no “!” is guaranteed to behave as a pure function,
though Pawns allows impurity to be encapsulated (and checked by the compiler), so the
function may be implemented using impure features. The representations of different
variables can be shared, so updating one variable may also update other variables and the
Pawns compiler checks that all relevant variables are annotated with “!” at that point in the
source code: Pawns is an acronym for “Pointer assignment without nasty surprises” and
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its most important (and complex) innovation is the way update of shared data structures is
supported, and how pure and impure code can be mixed. Impure programming in Pawns
can be like programming in C, with the destructive update of fields of structs representing
ADT values and performance equal to or better than portable C. However, there are no
unsafe operations (such as dereferencing possibly NULL pointers, casts, accessing fields
of unions, etc.) and all interactions/dependencies due to sharing must be documented in
annotations/declarations.

The rest of this paper is structured as follows. Section 2 gives a little more detail
on the motivation for developing yet another programming language in this style and
clarifies our aim. Sections 3–10 present the main features of Pawns that are of interest.
Section 3 gives a simple example of pure functional programming supported in Pawns.
Section 4 describes data representation, how pointers (refs) can be created and how they
can be used for destructive update, with “!” annotations on statements. Section 5 gives
two examples of code using destructive update in Pawns, mentioning sharing of data
structures but deferring the details of how sharing is handled. Section 6 discusses the
distinction between data structures that can be simply viewed as abstract values (typical in
pure code) and those for which sharing must be understood (a necessity when destructive
update is used). Section 7 discusses how sharing and destructive update information
is incorporated into Pawns type signatures and the kind of sharing analysis performed
by the compiler. Section 8 presents how IO and other forms of “state” similar to global
variables can be used in Pawns. Section 9 discusses a Pawns feature that allows the
renaming of functions so different type signatures can be given, overcoming some of
the limitations of polymorphism, particularly for impure Pawns code. Section 10 briefly
discusses some of the additional complications surrounding safety in Pawns, including the
foreign function interface. Section 11 discusses further work. Section 12 compares Pawns
to some related programming languages. Section 13 summarises the main contributions of
Pawns. Section 14 discusses threats to validity of these contributions. Section 15 concludes.

2. Motivation and Aim

The design of pure functional programming languages helps us follow some of the
main lessons learned from software engineering: large problems are best decomposed into
relatively small problems and solved with small code units (functions) that are largely
independent of each other. Reducing dependencies between components and making all
dependencies obvious reduces system complexity, a difficult problem of software engi-
neering. Pure functions simply take values as arguments and return a value as a result,
with no other hidden dependencies or effects, and variables denote values rather than
memory locations whose contents may change. Program execution is simply evaluating
expressions by calling functions, and the type of a function gives a summary of what
calling the function does. The type system, including algebraic data types, parametric
polymorphism and higher-order functions, provides a very expressive domain for encoding
values, allows the compile time detection of many errors, and supports code re-use and
abstraction. However, for structured data there are disadvantages of the pure functional
approach. Instead of being able to destructively update part of a data structure with a new
value replacing an old value (such as assigning a new value to an array element, a field of a
struct or something more complex such as a node in a tree), a new version of the whole data
structure has to be constructed. All parts that contain the updated value must be copied
(conceptually at least); other parts can be shared between the old and new data structures
because the value of these parts has not changed. This can be more cumbersome to code
and difficult to implement efficiently. Incorporating IO into the functional programming
paradigm is also challenging.

In imperative programming languages, variables typically denote values and memory
locations that contain the values (known as r-values and l-values, respectively). Assigning
values to memory locations is one of the fundamental operations, so the destructive update
of data structures is easy, natural and efficient. IO is also natural. However, having a notion
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of a memory store can greatly increase subtle dependencies between different code units.
This is why “global variables” are best used sparingly. Also, different variables can use
the same memory locations to store (parts of) their values, particularly when pointers are
used. Two pointer variables may be aliased (that is, they both point to the same memory
location) and two variables whose values are compound data structures may share parts
of their representations (for example, pointers within the data structures may be aliased).
Assigning a new value to a memory location associated with one variable can change the
value of other variables as well. Thus, the sharing of mutable data structures introduces
additional subtle dependencies between code units. Programmers must be aware of the
memory layout of data structures (including any sharing), not simply the value represented.
There can also be classes of errors that do not exist in pure functional languages such as
dereferencing NULL pointers, buffer over-runs, reading from uninitialised memory and
errors associated with dynamic memory allocation.

Although the combination of pointers, sharing and destructive update can potentially
result in nightmarish complexity, it is also very useful. There are important algorithms
that rely on the destructive update of shared values. For example, graph reduction [4] is a
fundamental implementation technique for functional programs that uses a directed acyclic
graph to represent an expression. There can be multiple pointers to a node representing
an expression, and the node must be destructively updated to avoid the evaluation of the
expression multiple times. Similarly, in the logic programming language Prolog, variables
can be aliased and later instantiated, so implementations update shared structures [5,6].
Unification and finding the value of Prolog variables can be seen as an instance of the
ubiquitous union-find (or disjoint-set) problem, for which the best algorithms update shared
structures [7]. There are also situations where the destructive update of shared structures
can make code simpler. For example, consider a program that uses a representation of an
environment containing several objects with various attributes such as object identity, object
type, position and other state information that may vary over time. It may be convenient to
access them via an array (given the object identity), a priority queue (for the next object
to consider in a discrete event simulation), a quad tree (for object positions), et cetera .
Without a shared representation of objects, any change to the state of an object requires all
such indexing structures to be modifed. A longer discussion of these issues is contained
in [8].

If a function has some “effect”, such as updating a data structure, it is not simply a
mathematical function mapping its argument values to a result—it is “impure”. Eliminat-
ing impurity completely can make it difficult to implement some algorithms efficiently,
leading to frustration for programmers and cries such as “I love purity, but it’s killing me”
(https://www.haskell.org/pipermail/haskell-cafe/2008-February/039339.html (accessed
on 13 November 2024)).

Various languages have been designed to support both pure and impure code (we
defer most of our discussion on this to Section 12) but it is difficult to support impurity
without it “leaking out” into surrounding code. First, if a function is impure, any function
that directly or indirectly calls it is also potentially impure. It is desirable to be able to
encapsulate the impurity so that a function behaves in a pure way for any function calling
it, even though it may use effects internally. Second, in several languages, mutability is
a property of a data structure or a data type, and any function that uses a mutable data
structure is potentially impure. Adding destructive update to code may require changing
the types so the code is less efficient and potentially copying data structures.

The aim of Pawns is to develop a language with the advantages of pure functional
programming that also allows flexible low-level programming involving pointers and the
update of shared data structures. Even if a Pawns function call does not behave as a pure
function, simply mapping argument values to the result, any additional dependencies
and effects are made obvious in the source code; this is called “interface integrity” in [9].
The type signature of a function can be used to determine whether it behaves as a pure
function, but a pure function may encapsulate impurity in its implementation. Data types

https://www.haskell.org/pipermail/haskell-cafe/2008-February/039339.html
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do not need to be changed in order to support mutability. There is flexible support for
the update of all compound data types, with no unsafe operations such as NULL pointer
dereferencing (the one exception is the foreign language interface). A data structure can
be created using destructive update then passed to other code without the risk that the
other code will update it further, encapsulating the impurity. There is also a constrained
form of global variables that allows encapsulated destructive update and support for IO.
Even if Pawns is never fully developed into a practical language, we hope some of its novel
features will be influential.

3. Pure Functional Programming Example—BST Creation

Consider the task of converting a list of integers into a binary search tree. Pawns
supports typical pure functional programming solutions such as Figure 1, presented using
Haskell-like syntax (Pawns currently only supports a temporary syntax, to avoid decisions
on syntax and the need to write a parser). It uses the algebraic data type BST. Values of
this type are either the data constructor Empty, representing an empty tree, or the data
constructor Node with three arguments of type BST, Int and BST, respectively. The code
includes the polymorphic List type definition (pre-defined in Pawns), which is used to
defined type Ints (lists of integers). The code also shows how the standard library function
foldl can be defined. It is polymorphic (allowing lists of any type) and higher-order (the
first argument is a function). An advantage of this style of programming is that it is not
necessary to understand how values are represented in order to write and reason about the
code. However, bst_insert_pure builds a new node at each level of the tree visited. This
is less efficient and arguably more complicated than simply using destructive update when
a leaf is reached (see Section 5).

data BST = Empty | Node BST Int BST -- binary search tree of integers
data List t = Nil | Cons t (List t) -- polymorphic Lists (built in)
type Ints = List Int -- list of integers

-- convert list of integers to BST (pure code)
list_bst_pure:: Ints -> BST
list_bst_pure xs =

foldl bst_insert_pure Empty xs

-- insert integer into a BST to give new BST
-- (pure; re-builds a path from root to a leaf)
bst_insert_pure:: BST -> Int -> BST
bst_insert_pure t0 x =

case t0 of
Empty ->

Node Empty x Empty
(Node l n r) ->

if x <= n then
Node (bst_insert_pure l x) n r

else
Node l n (bst_insert_pure r x)

-- standard library foldl for lists
foldl:: (b -> a -> b) -> b -> List a -> b
foldl f y xs =

case xs of
Nil ->

y
(Cons x xs1) ->

foldl f (f y x) xs1

Figure 1. BST creation using pure code.
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4. Representation and Destructive Update of Values

The key thing to note about data representation and update in Pawns is that arguments
of data constructors are stored in main memory and these are the only things that can be
updated. A data constructor with one or more arguments is like a pointer (or a pointer
plus a “tag”) to a block of words containing the argument(s). One with no arguments
is represented as a small integer. The list (Cons 2 Nil) is represented as a pointer to
two memory cells, containing 2 and 0, respectively—identical to C. Similarly, a BST is
represented identically to C code using pointers to structs with three fields. In Section 5, we
show code that manipulates a Cord type that is either a Branch data constructor containing
two cords or a Leaf data constructor containing a list. The Pawns representation of cords
uses a one-bit tag on the pointers to distinguish the two different data constructors because
both have arguments so they must both be pointers. This is more efficient than portable C
code (which requires a union of structs); see [10] for details. There is also a special Ref type
that has a single data constructor with one argument.

Figure 2 gives an example of the memory layout. Boxes represent main memory
words, data constructors followed by a pointer represent tagged pointers (for Cons and
Ref, the tag is empty) and Nil is represented by zero. The variable xc is a cord of the form
Branch (Branch (Leaf l1) (Leaf l2)) (Leaf l34), where l1 is the list [1], l2 is the
list [2] and l34 is the list [3,4]. The variable xsp is a reference to a word containing Nil
(see below).

Pawns allows the kind of programming we can carry out in C with pointers to structs
and assignment to fields of structs. There is also additional flexibility because an ADT
can have any number of data constructors with arguments (which is like having a pointer
to any number of different struct types) and any number of data constructors with no
arguments (like have any number of different NULL values). Furthermore, there are no
unsafe operations such as dereferencing NULL pointers, casts, unions, et cetera.

xc = Branch Branch Leaf

ConsLeaf Leaf

Cons Cons

1 Nil 2 Nil

3 Cons 4 Nil

xsp = Ref

Nil

Figure 2. Data layout showing tagged pointers.

Pawns variables are not names for memory locations that can be updated—it is not
possible to assign to an existing variable or obtain a “pointer to a variable” as can be
performed in C. That is why the variables xc and xsp in Figure 2 are not in boxes. However,
the representation of the value of a variable may have mutable components. For example,
the variable xc will always be a Branch pointer to the same two memory cells but the
content of these cells and/or those they point to can potentially be updated, changing the
overall value of xc. All update is carried out via the (polymorphic) Ref type (similar to
STRef in Haskell and ref in ML [11]). A value of type Ref t is a pointer to a memory cell
containing a value of type t. You can think of the memory cell as the argument of the
data constructor for the Ref type; thus, it can be updated. Though Figure 2 shows the data
constructor as Ref, Pawns code never uses an explicit data constructor for refs but instead
simply uses a dereference operator, “*”, like C. If x is a Pawns expression of type Ref t
then *x is the value of type t that x points to. There are no NULL refs.

The simplest way to create a ref is by using a let binding with * prefixing the let-bound
variable. The “let” and “in” keywords of Haskell are not required in Pawns and “;” is
used for sequencing (like the “do” notation in Haskell); thus, x = 42; *xp = 42 creates
two variables, the first of which equals 42 and the second points to a newly allocated
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memory cell containing 42 (similar to the Haskell monadic code xp <- newSTRef 42, or an
ML let expression with xp = ref 42). Destructive update is performed by dereferencing a
pointer on the left of the “:=” (assignment) operator. A “!” prefix must be included for all
affected variables (more precisely, all affected live variables; those which are never used
again can generally be ignored). Typically, there will be a pointer variable on the left (so
*xp := ... is written *!xp := ...) but there may also be other variables that share its
representation; these can be annotated with “!” at the right of the statement. Figure 3 has a
simple example.

x = 42; -- let binding of x to 42
*xp = x; -- xp points to a new memory cell containing 42
yp = xp; -- yp points to the same memory cell (aliases xp)
y = *yp; -- y is the contents of the memory cell (42)
*!xp := 43 !yp; -- update what xp points to (also affects yp!)
z = *yp -- z is the contents of the memory cell (43)

Figure 3. Destructive update via a ref.

Without the “!y” annotation, we would have y = *yp and z = *yp with no interven-
ing occurrence of yp in the code; yet, y and z end up with different values. This is a small
example of the potentially confusing “surprises” encountered in languages that support
code for destructive update with pointer aliasing and shared data structures. Both the
sharing between xp and yp and the update of xp could have been performed by function
calls, further increasing the subtlety. Pawns supports such code but insists the programmer
documents sharing and effects, in a way that is checked by the compiler.

Just as prefixing a variable with * in a let binding creates a pointer variable, the same
can be performed with pattern bindings. These “reference patterns” are an important
innovation of Pawns. For example, the code for bst_insert_pure could be rewritten
as in Figure 4. Instead of the pattern matching with a Node creating variables of type
BST and Int, it creates variables of type Ref BST and Ref Int, which are pointers to the
arguments of the Node data constructor. Refs are created but no extra memory cells are
allocated and no monads or changes to the BST type are required. There is no equivalent
in languages such as Haskell and ML, but Disciple [8] (now called Discus) allows the
creation of references to arguments by using named fields rather than pattern matching.
The subsequent code simply dereferences the pointers to obtain the same values as before
and the code is pure—refs/pointers themselves do not introduce impurity. However, such
pointers could potentially be used to destructively update the Node arguments (which
is impure).

bst_insert_pure_p t0 x =
case t0 of
Empty ->

Node Empty x Empty
(Node *lp *np *rp) -> -- creates refs/pointers to Node arguments

if x <= *np then
Node (bst_insert_pure_p *lp x) *np *rp

else
Node *lp *np (bst_insert_pure_p *rp x)

Figure 4. BST insertion using pure code with pointers.

5. Destructive Update Examples

We now give two short examples of using destructive update in Pawns. The first is
an alternative way to construct a BST and the second is an example where the sharing of
data structures is more complex. Building a BST from a list of integers can be performed
very efficiently by first allocating a memory cell containing an empty BST then repeatedly
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traversing down the tree and destructively inserting the next integer as a new leaf—see
Figure 5. Both foldl_du and bst_insert_du update the tree and return void. For such
code, programmers must consider low-level details such as the representation of the tree
and any sharing present. Pawns reflects this by insisting more information is provided
in the type signatures (see Section 7). Note that bst_insert_du may not compute the
same tree as bst_insert_pure when there are shared subtrees (see function sharing_eg)
and thus no local compiler optimisation can convert the pure version to the destructive
update version. Importantly, although list_bst_du is defined in terms of impure functions,
its type and behaviour is that of a pure function, indistinguishable from list_bst_pure.
The BST returned is an abstract value and cannot be updated further (unless the type
signature is changed). We are not aware of other functional programming languages that
can encapsulate destructive update in this way.

list_bst_du:: Ints -> BST -- behaves as a pure function
list_bst_du xs =

*tp = Empty; -- allocate mem cell; init to Empty
foldl_du bst_insert_du !tp xs -- repeatedly insert element

bst_insert_du tp x = -- returns (), *tp updated
case *tp of
Empty ->

*!tp := Node Empty x Empty -- insert new node, return ()
(Node *lp n *rp) ->

if x <= n then
(bst_insert_du !lp x) !tp -- update lp (and tp!)

else
(bst_insert_du !rp x) !tp -- update rp (and tp!)

foldl_du f y xs = -- returns (), y updated
case xs of
Nil -> () -- return ()
(Cons x xs1) ->

f !y x; -- y updated by f
foldl_du f !y xs1 -- y updated further

sharing_eg:: () -> BST
subt = Node Empty 42 Empty;
*tp = Node subt 42 subt; -- *tp has 3 nodes, subtrees share
-- bst_insert_pure *tp 42 -- returns BST with 4 nodes
bst_insert_du !tp 42; -- inserts 42 into *both* subtrees
*tp -- returns BST with 5 nodes

Figure 5. BST creation using destructive update.

We have not performed any benchmarking on non-trivial programs but have writ-
ten code in various styles and languages (Pawns, C, ML and Haskell) to create a list of
30,000 identical integers and insert them all into a (very unbalanced) BST. Most of the work
is in the inner loop of the insert function. For the Pawns destructive update coding, it
took around 0.85 s real time on a Dell Latitude E6420 x86_64 (i7-2620M×4) laptop running
Ubuntu 24.04.1 LTS Linux. The pure Pawns coding took around 12.7 s. For some applica-
tions, such a slowdown may be a deal breaker. Surprisingly, the destructive update coding
in Pawns was the fastest of all the programs we tried. Each Pawns function is compiled to
a C function in a very straightforward way, with algebraic data type support provided by
the adtpp tool [10]. The result for bst_insert_du is shown in Figure 6. It becomes rather
more verbose and ugly after adtpp macros are expanded but gcc manages to optimise into
very efficient iterative code. Despite several attempts, our fastest hand-written iterative
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C code took 1.7 s. It is unwise to draw any strong conclusions from tiny benchmarks but
in [8] there is further discussion arguing that the style of destructive updates supported in
Pawns can be important for practical applications.

void
bst_insert_du(bst* tp, intptr_t x) { // bst pointer tp, unboxed int x

bst V0 = *tp;
switch_bst(V0) // extract + switch on constructor
case_Empty_ptr()

bst V2 = Empty();
bst V3 = Empty();
bst V1 = Node(V2, x, V3); // allocate and initialise Node
*tp=V1;

case_Node_ptr(lp, V4, rp) // assign pointers lp, V4, rp
intptr_t n = *V4;
PAWNS_bool V5 = leq(x, n); // leq gets inlined and optimised
switch_PAWNS_bool(V5)
case_PAWNS_true_ptr()

bst_insert_du(lp, x); // tail recursion, optimised by gcc
return;

case_PAWNS_false_ptr()
bst_insert_du(rp, x); // tail recursion, optimised by gcc
return;

end_switch()
end_switch()

}

Figure 6. Compilation to C, with adtpp macros (comments added).

In the second example we use another form of tree, for representing cords. Cords are
data types which support similar operations to lists, but concatenation can be performed in
constant time. A common use involves building a cord while traversing a data structure
then converting the cord into a list in O(N) time, after which the cord is no longer used.
Here, we use a simple cord design: a binary tree containing lists at the leaves and no data
in internal nodes. Creating a cord from a list plus append and prepend operations can all
be performed simply by applying data constructors.

To convert such a cord to a list, a purely functional program would typically copy
each cons cell in each list. A C programmer is likely to consider the following more efficient
algorithm, which destructively concatenates all the lists without allocating any cons cells
or copying their contents. Each NULL pointer (Nil in Pawns) other than the rightmost one is
replaced with a pointer to the first cell of the next list; the first list is then returned (note
this updates the cord). This algorithm can be coded in Pawns—see cord_list in Figure 7
for the code and Figure 8 for the state of the data structure after the top level call to the
auxiliary function cord_list_a. The cord_list function creates a pointer to an empty list
(see xsp in Figure 2) and calls cord_list_a, which traverses the cord, updating this list
(and the cord); then, the list is returned. cord_list_a is recursive and is always called with
a pointer to a Nil (initially xsp), which is updated with the concatenated lists from the cord,
and it returns a pointer to the Nil at the end of the updated list (see np in Figure 8). For now,
we assume there are only lists of Ints (we will briefly discuss impurity and polymorphism
in Section 10.3).

Compared to pure coding, this kind of coding is complicated and prone to subtle
bugs and assumptions (thus best avoided except where the added efficiency is important).
It may seem that there are several redundant “!” annotations but the Pawns compiler
will complain without them. For example, in the first recursive call to cord_list_a, with
xc1, the compiler insists that xc2 is annotated. Although the analysis performed by the
compiler is unavoidably conservative and sometimes results in false alarms, in this case it
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is correct. It is possible the lists in the two branches of the cord may share representations,
and if this is the case a cyclic list is created and the code does not work! The same can
occur if cord_list_a is called with xc and np sharing, instead of np pointing to an inde-
pendent Nil. The compiler insisting on extra annotations hopefully alerts the programmer
to these subtleties, leading to better documentation and defensive coding to avoid the
potential bug.

data Cord = Leaf Ints | Branch Cord Cord

-- convert list to cord
list_cord xs = Leaf xs

-- append two cords
cord_app xc1 xc2 = Branch xc1 xc2

-- append list to cord
cord_app_list xc xs = Branch xc (Leaf xs)

-- prepend list to cord
cord_prep_list xs xc = Branch (Leaf xs) xc

-- convert cord to list by efficiently smashing all the lists together -
-- what could possibly go wrong?...
cord_list xc =

*xsp = Nil; -- pointer to empty list of Ints
np = cord_list_a !xc !xsp; -- smash all the lists together
*xsp -- return (smashed) list

-- np points to Nil. We smash this list by appending all the lists in xc.
-- We return a ptr to the Nil at the end of the resulting list.
cord_list_a xc np =

case xc of
(Leaf xs) ->

*!np := xs !xc!xs; -- smash Nil with xs
lastp np -- return ptr to Nil of updated np

(Branch xc1 xc2) ->
np1 = (cord_list_a !xc1 !np) !xc!xc2; -- append left subtree
(cord_list_a !xc2 !np1) !xc!np -- append right subtree

-- returns pointer to the Nil of *xsp
lastp xsp =

case *xsp of
Nil -> xsp
(Cons _ *xsp1) -> lastp xsp1

Figure 7. Cord operations using destructive update.

xc = Branch Branch Leaf

ConsLeaf Leaf

Cons Cons

1 Cons 2 Cons

3 Cons 4 Nil

xsp = Ref

Cons

np = Ref

Figure 8. Data layout after calling cord_list_a, with *xsp now the list [1,2,3,4].
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6. Purity and Abstraction

The distinction between pure and impure code can be blurred. For example, some
“impure” code can be given “pure” semantics by introducing/renaming variables, adding
function arguments, et cetera. Pawns makes a different important distinction, between data
structures that are “abstract” (values for which the representation is not important and may
not be known by the programmer) versus “concrete” (where the representation, including
sharing, may be important and should be understood by the programmer). Only concrete
data structures can be updated. Abstract data structures are normally associated with pure
code and concrete data structures with impure code, but this is not always the case.

Consider the lastp function of Figure 7. It takes a pointer to a list, has no effects and
always returns a pointer to Nil, so in that sense it is pure (note that pointers themselves are
not impure). However, for the destructive update code that uses lastp, it matters which Nil
is pointed to in the result. If lastp allocated a new memory cell, initialised it to Nil and
returned a pointer to this Nil, the result would be identical from an abstract perspective but
the cord_list code would not work. Thus, although lastp can be considered pure, it must
work with concrete data structures. Similarly, impure functions can have abstract arguments
and/or results (they cannot update abstract arguments but may update other arguments).

When a data structure is created by applying a data constructor to concrete arguments,
the result is concrete. Concrete data structures can become abstract when they are returned
from a function (depending on the type signature of the function) or if they are blended
with abstract data structures. For example, if an Empty subtree of a concrete BST is up-
dated with an abstract BST, or Node is applied to one or more abstract BSTs, the result is
abstract. Pawns uses the sharing system to keep track of the distinction between abstract
and concrete (see Section 7). Pure code such as that in Figure 1 can be written without
considering data representation or sharing, but values returned from these functions will
be abstract and thus cannot be be updated. Although lastp of Figure 7 is pure, the type
signature must contain explicit sharing information because we need a concrete list pointer
to be returned—the representation is important and the data structure is intended to be
updated elsewhere.

7. Sharing Analysis

The Pawns compiler performs sharing analysis [12] to approximate how variables share
components of their representations and determine what variables may be updated at
each point during the evaluation of each function f. It relies on knowing what sharing
may exist between arguments in calls to f, what sharing may exist between arguments
and results of functions called by f, and what arguments of these functions may be up-
dated. Type signatures in Pawns code have additional information to help this analysis.
Specifically, they declare which arguments may be updated, plus a “precondition” stat-
ing what sharing between arguments may be present when the function is called and
a “postcondition” stating what additional sharing may be present between arguments
plus the result when the function returns. As well as the compiler checking there are
sufficient “!” annotations, it checks that whenever a function is called the precondition
must be satisfied and when a function returns the postcondition must be satisfied. Declar-
ing this additional information is a burden but it forces the programmer to think about
sharing in data structures that may be updated, documents sharing for others reading or
maintaining the code and helps the compiler conduct analysis to check when destructive
update can safely be encapsulated inside pure code and used in the presence of polymor-
phism. Preconditions can also be used to make code more robust. For example, they can
be used to declare that no sharing should exist between the arguments of cord_list_a
or the functions that build cords: cord_app, cord_app_list and cord_prep_list. Code
where such sharing exists will then result in a compiler error message instead of incorrect
runtime behavior.

Abstract data structures share with a special pseudo-variable named abstract (there are
different versions of this variable for different types, et cetera). For a function that contains
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no explicit information concerning sharing, the default precondition and postcondition
specify the maximal possible sharing, including sharing with abstract. There is no restriction
on calls to such functions (preconditions are always satisfied) but results share with abstract.
Code that attempts to update a variable that shares with abstract results in a compiler
error. Similarly, passing an abstract data structure to a function that expects a concrete data
structure result in an error because the sharing with abstract means the precondition is
not satisfied.

A function that has no sharing declared can return a data structure that is concrete
within the function because the implicit postcondition simply specifies possible (not def-
inite) sharing with abstract. This allows impurity to be encapsulated. For example,
within list_bst_du, destructive update is used to build a concrete tree but, for code
that calls list_bst_du, the returned tree will be treated as abstract due to the implicit post-
condition. As a general rule in programming, if a possibly shared data structure is updated,
the programmer should understand how it has been built and updated, all the way back
to the points where each component was created. In Pawns, this must be documented
in the code, by explicit declarations whenever it is passed to or returned from a function,
and these declarations are checked by the compiler. At some later point we are free to treat
it as an abstract value and not concern ourselves with how it is represented or what may
share with it, but if this is carried out the value should not be updated further. In Pawns,
this is achieved by explicitly or implicitly adding sharing with abstract.

Sharing is declared by augmenting a type signature with a pattern that matches
variables with the arguments and result of the function and pre- and postconditions that can
use these variables. The pattern can also prefix arguments by “!” to indicate the argument
may be updated. Preconditions can use the arguments of the function (and abstract) to
declare the maximal sharing allowed when the function is called. Postconditions can also
use the result and declare what additional sharing may be added during the evaluation of
the function. The keyword nosharing is used to indicate no sharing. Equations and other
Pawns code (but not function calls or assignments) can be used to indicate sharing between
variables or components of variables. The keyword inferred is used to indicate the
postcondition is to be inferred from the function definition. This is supported in Pawns for
definitions that are pure and contain no function calls (potentially, all postconditions could
be inferred but we feel this would detract from the philosophy of Pawns, which makes
sharing obvious in the source code wherever it must be understood by programmers). See
Figure 9.

The declaration for list_bst_du here is equivalent to the declaration in Figure 5 but
the sharing with abstract is made explicit. For the other BST construction code there is
no sharing. Integers are atomic; with a more complex data type for elements there would
generally be sharing between the list and tree elements and this would need to be declared.
Note that, even with no sharing, it needs to be declared, along with the fact that the BST
is updated, otherwise sharing with abstract would be assumed and no update allowed.
This applies equally to higher-order arguments such as that in foldl_du.

The declarations for the cord code illustrate sharing of variables and their compo-
nents. Components of variables are discussed further below. For lastp, the postcondition
states that the result, np, and the argument, xsp, may be equal (and hence share all com-
ponents). For list_cord, the postcondition states the result, xc, may be a Leaf whose
argument is xs, the argument of the function. This is exactly what the function returns
but, due to the imprecision discussed below, it means the argument of any Leaf data
constructor in xc may equal xs. This more general interpretation is required for cord_list.
Similarly, for cord_list_a, the precondition means a Leaf data constructor argument
of the cord may equal the list pointed to by the second argument. The precondition of
cord_app_list prevents it introducing sharing between different lists in a cord, allow-
ing the compiler to reject code that has the bug mentioned earlier (the same should be
carried out for other cord construction functions). The postcondition is inferred from the
function definition.
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list_bst_du:: Ints -> BST -- explicit version of previous code
sharing list_bst_du xs = t
pre xs = abstract
post t = abstract

bst_insert_du:: Ref BST -> Int -> ()
sharing bst_insert_du !tp x = v
pre nosharing
post nosharing

foldl_du::
(Ref BST -> Int -> ()

sharing f !xtp x = v
pre nosharing
post nosharing

) -> Ref BST -> Ints -> ()
sharing foldl_du f !xtp1 xs = v
pre nosharing
post nosharing

lastp:: Ref Ints -> Ref Ints
sharing lastp xsp = np
pre nosharing
post np = xsp

list_cord :: List -> Cord
sharing list_cord xs = xc
pre nosharing
post xc = Leaf xs

cord_list:: Cord -> Ints
sharing cord_list !xc = xs
pre nosharing
post xc = Leaf xs

cord_list_a:: Cord -> Ref Ints -> Ref Ints
sharing cord_list_a !xc !np0 = np
pre xc = Leaf *np0
post np = np0

cord_app_list :: Cord -> List -> Cord
sharing cord_app_list xc xs = xc1
pre nosharing -- If xs shares with lists in xc, list_cord breaks!
post inferred

Figure 9. Type signatures with sharing.

Sharing analysis is unavoidably imprecise but it is conservative, generally over-
estimating the amount of sharing. Potentially, code may need to have more sharing
declared than is actually the case and more variables annotated with “!”. For each type,
the sharing analysis uses a domain that represents the memory cells that can be used for
variables of that type in the running program. For recursive types, the actual number of
memory cells can be unbounded, but “type folding” [13] is used to reduce it to a finite
number. The domain distinguishes the different arguments of different data constructors
but, where there is recursion in the type, the potential nested components are all collapsed
into one. For example, for lists, there is a component for the head of the list and another for
the tail of the list but, because lists are defined recursively, the head component represents
all elements of the list (all memory cells that are the first argument of a Cons in the list
representation) and the tail represents all tails.

For cords, there are five components: the two arguments of Branch, the argument of
Leaf and the two arguments of Cons. Each left or right branch of a cord is a cord and type
folding makes the five components of the branches the same as the top level cord. Thus, for
cord_app_list, all five components of xc1 may share with the respective components of xc,
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along with the two components representing Cons arguments sharing with the respective
components of xs. Sharing analysis keeps track of what components may exist for each
variable. For example, if a list variable is known to be Nil it has no components at that point
in the sharing analysis. Also, note that, for two components to share, they must have the
same type and, unless they are pointers, the same enclosing data constructor and argument
number. For example, the argument of a Leaf cannot be the same memory location as
the second argument of a Cons and sharing analysis respects this distinction. However,
we can have a pointer that points to either of these locations, thus sharing analysis treats
pointers/refs differently from other data constructors.

8. IO and State Variables

Like destructive update, IO does not fit easily with pure functional programming.
Pawns models IO by using a value, representing the state of the world, which is conceptu-
ally passed in and returned from all computations that perform IO. Rather than explicitly
using an extra argument and a tuple for results, io is declared as “implicit” in the type
signature of functions (and nothing is actually passed around). Pawns allows other “state
variables” to be defined and (conceptually) passed around in the same way. They are like
global variables, but any use or update of them is clear from the source code, and their
use can be encapsulated inside a pure interface. In function type signatures, they can be
declared as “ro” (read only—as if they are passed in as an argument to the function), “wo”
(write only—as if they are initialised/bound by the function and returned) or “rw” (read
and written). The io state variable is bound before the main function of a Pawns program
is called and all the primitive IO functions have implicit rw io in their type signatures;
other state variables must be explicitly bound/initialised before being used. The state
variable feature of Pawns is designed with the intention that pure functional semantics
could be defined (though this has not been formalised). However, calls to functions with
implicit arguments/results must be prefixed by ! to highlight the fact than there is more
going on in the code than meets the eye, whether or not it is considered pure. State variables
are declared like type signatures of functions except they are prefixed with ! and must
have a Ref type. They can only be used in code after a wo function has been called or in
functions where they are declared implicit in the type signature.

Figure 10 gives a simple example of summing the elements in a BST using a state
variable nsum instead of passing additional arguments and results. Although bst_sum
behaves as a pure function, as the type signature implies, internally it uses init_nsum to
bind/initialise the state variable, which is updated as bst_sum_sv traverses the BST and
then its final value is returned. Although bst_sum_sv calls bst_sum (which zeros nsum
before traversing the right subtree), the impurity is encapsulated so this does not interfere
with the nsum value in the outer computation.

Functions can have multiple state variables declared as implicit arguments with no
additional complications. There is no ordering required for the state variables, making
some coding simpler compared to mechanisms other languages use for threading multiple
kinds of state in a pure way (such as nested monads in Haskell). A disadvantage of using
state variables is the code is harder to re-use because it is tied to specific state variables
rather than types. State variables and their components can share and be updated in the
same way as other Pawns variables. The only additional restriction is that a state variable
(or its alias) must not be passed to code where the state variable is undefined (for example,
be passed as an argument or returned as a result of a function where the state variable is
not declared as an implicit argument). Thus, bst_sum in Figure 10 can return *nsum but not
nsum itself, even if the return type and/or the type of nsum was changed. Each state variable
is implemented as the address of a static C variable (thus, implicitly passing it around and
dereferencing it costs nothing). The single memory location storing the C variable must be
protected from “surprise” updates (thus, the integrity of state variables relies on sharing
analysis). To allow encapsulated use, the static C variable is saved and restored using a
local “auto” variable (stored on the stack) at appropriate points. For example, bst_sum
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copies *nsum to a local variable at the start of the function and copies it back just before the
function returns.

bst_sum:: BST -> Int -- sum of integers in a BST (pure interface)
bst_sum t =

!init_nsum 0; -- like nsum = 0
!bst_sum_sv t; -- like nsum’ = bst_sum_sv t nsum
*nsum -- like nsum’

!nsum:: Ref Int -- declares state variable, nsum

init_nsum:: Int -> ()
implicit wo nsum -- binds/initialises/writes nsum

init_nsum n =
*nsum = n

bst_sum_sv:: BST -> () -- adds all integers in BST to nsum
implicit rw nsum -- reads and writes nsum

bst_sum_sv t =
case t of
Empty -> ()
(Node l n r) ->

*!nsum := *nsum + n; -- adds n to nsum
!bst_sum_sv l; -- adds ints in l (could do same for r)
*!nsum := *nsum + (bst_sum r) -- uses encapsulated impurity

Figure 10. Summing the nodes in a BST using a state variable.

Strictly speaking, state variables are not necessarily single-threaded because compo-
nents of state variables can be shared with other variables. However, the normal sharing
mechanisms of Pawns handles that. If a variable that shares with a state variable is up-
dated, the state variable must be annotated with “!” at that point. It may seem that
this flexibility destroys the declarative view of IO because we can have code such as
p = *io; !put_char(c); *!io := p that appears to save and restore the state of the
world. However, we can think of *io as being a pointer to the “real” state that changes;
the pointer remains the same. The type of *io is opaque, so there is no way that Pawns
code can arrive at the real state or construct a different value of the same type and assign it
to *io.

9. Polymorphism and Renaming

Sharing in Pawns is not polymorphic to the same extent as types. Similarly, code
that uses a state variable is specific to that state variable rather than something more
general such as the monad type class in Haskell. For a function such as foldl, the second
and third arguments do not have identical types declared and Pawns does not allow any
sharing to be declared between them. However, for some calls to foldl, the types may be
identical and we may want to declare sharing between them. In Pawns, this can only be
carried out by using a separate function definition that has a more specific type signature
with identical types and the sharing declared. Pawns provides a mechanism for renaming
groups of functions to simplify this. As an example, Figure 11 shows how the code of
Figure 1 code can be duplicated, making it possible to add different type signatures where
the sharing is declared and hence the resulting tree can be updated (there is little advantage
in having both abstract and concrete versions of these functions, but it does illustrate
renaming). The first renaming declaration creates definitions of list_bst_concrete and
bst_insert_concrete, by renaming the previous definitions and replacing the call to
foldl by a call to foldlBST. An explicit definition of foldlBST could be included but
we here simply use another renaming declaration. Type signatures are needed for all
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three functions (for brevity, we only include one). Renaming can also be used as a less
abstract alternative to higher-order code, and for producing code with the same structure
but with different state variables. For example, we can code a version of map that uses io
and rename it to use other state variables as needed (this is the Pawns equivalent of using
Haskell’s mapM).

renaming
list_bst_concrete = list_bst_pure
bst_insert_concrete = bst_insert_pure
with
foldlBST = foldl

-- same effect as just deleting the "with" above
renaming

foldlBST = foldl

-- also need type signatures for list_bst_concrete and foldlBST
bst_insert_concrete:: BST -> Int -> BST

sharing bst_insert_concrete xt x = xt1
pre nosharing
post xt1 = xt

Figure 11. Renaming of function definitions.

10. Complications

Combining pure functional programming with destructive update and other impurity
is not simple! The design of Pawns aims to support high-level pure functional programming
plus low-level imperative programming with as much flexibility as possible while avoiding
unsafe operations (such as dereferencing NULL pointers) and “surprises” (code with effects
that are obscure). Here, we briefly mention some of more complicated issues and how they
are dealt with in Pawns, without too much technical detail.

10.1. Foreign Language Interface

The one feature of Pawns where there is no attempt to guarantee safety is the foreign
language interface. Pawns compiles to C and provides a simple and flexible interface to C,
which has many unsafe features. Each Pawns function compiles to a C function and Pawns
allows the body of a function definition to be coded in C, but for such code there can be
no guarantees of safety or lack of “surprises”. It is up to the programmer to ensure the C
code is safe and compatible with the Pawns type signature. For example, Figure 12 gives
the implementation of put_char defined in terms of putchar in C. The use of the io state
variable in the type signature ensures that the code can only be used in a context where
the side-effect is clear and purely functional semantics could be defined. Similarly, it only
requires a few lines of code to interface Pawns to the C standard library pseudo-random
number package in a way that can be encapsulated and given purely functional semantics,
using a state variable—see Figure 12 for the type signatures. It is also very easy to support
arrays via the C interface. The current code has an option for omitting bound checks (thus
gaining C-like efficiency but sacrificing safety).

Most foreign language interfaces only allow basic unstructured types to be passed.
However, the Pawns compiler uses the adtpp tool [10], which generates C macros for
manipulating the algebraic data types defined in the program—see Figure 6. These macros
can also be used in hand-written C code to both operate on a BST that was created by Pawns
code, and create a BST that is passed back to Pawns code. Dynamic memory management
is often particularly difficult across language boundaries but is made very easy in Pawns
by using the Boehm–Demers–Weiser conservative garbage collector [14].
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put_char: Int -> ()
implicit rw io

put_char i = as_C "{putchar((int) i);}"

-- pseudo-random number sequence interface
init_random:: int -> () -- initialize sequence with a seed

implicit wo random_state
random_num:: () -> int -- return next number in sequence

implicit rw random_state

Figure 12. C interface.

10.2. Higher-Order Programming

There are two complications involving higher-order code: type checking and partially
applied functions (closures). Type checking is made more complicated because each “arrow”
type has additional information concerning sharing, destructive update and state variables.
Pawns allows some latitude when matching the type of arguments to higher-order functions
with the expected type that is declared. The arguments are allowed to have less destructive
update, less sharing in postconditions, more sharing in preconditions and some variations
in what state variable operations are declared (for example, ro is acceptable where rw is
declared). The intention is to allow as much flexibility as possible while guaranteeing safety.

Pawns allows functions to be applied to fewer than the declared number of arguments,
resulting in closures being constructed/returned. Closures can be passed around like other
data and later applied, leading to function evaluation. The arguments inside closures can
share with other data structures and, hence, they can potentially be updated—a source of
surprises in many programming languages. In Pawns, variables that are closures must
be annotated with “!” wherever they may be updated, just like other variables. Note
that certain equivalence laws that hold for pure functional programming (such as “eta-
equivalence”) do not hold when closures may be updated.

The patterns used for declaring sharing and destructive update can have additional
arguments, representing the arguments of closures, so they can be declared as updated
and appear in preconditions and postconditions. In most cases, declaring sharing and
update of closure arguments is not carried out explicitly as it is inferred by the compiler.
For example, with cord_list_a:: Cord -> Ref Ints -> Ref Ints, the explicit sharing
is associated with the rightmost (innermost) arrow of the type, where both arguments
have been supplied. The compiler infers sharing and destructive update for the other
arrow, including the sharing between the first argument of cord_list_a and the closure
that would be returned if only one argument is supplied. Because there is no computation
performed before returning the closure, there is no destructive update possible at this
point. State variable declarations are similarly inferred for non-rightmost arrows. Inferred
declarations can be overridden by explicit declarations in the code.

10.3. Polymorphism and Type Safety

Mixing polymorphic types with destructive update can result in unsafe operations if
it is not carried out carefully. Consider the code in Figure 13. The variable xsp is bound
to a pointer to Nil, a list of any type. Without destructive update, this can be safely used
where pointers to lists of integers and pointers to lists of binary search trees are expected
(the type can be instantiated to either of these without problems). However, if the variable
is updated to be a non-empty list of integers, the code is not type safe—an integer may
appear where a tree is expected. Other functional languages solve the type safety problem
by imposing restrictions on code that has refs (and thus may perform updates), such as
the “value restriction” in ML [11]. In Pawns, refs to arguments of data constructors can
be created anywhere but, because the source code explicitly notes where variables can be
updated, the problem can be solved in a more flexible way.
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Where a Pawns variable with a polymorphic type may be updated (by an assignment
statement or an impure function call), type variables may become more instantiated during
type checking. For example, at the point where xsp is passed to int_fn in Figure 13, its
previous polymorphic type (Ref (List t)) is instantiated to Ref (List Int). The type
of xsp1 is also similarly instantiated—the two variables share their representations and
their types shared the same type variable, t. The subsequent call to bst_fn then results in
a type error. Pawns treats all variables created with polymorphic types as live throughout
the whole function, so the ! annotation on xsp is required even if xsp is never used again,
alerting readers of the source code to a subtlety. The compiler also prints a warning when
types are further instantiated. Warnings can be avoided by adding explicit casts, as shown
in the second example of Figure 13.

*xsp = Nil; -- Nil is a list of any type
xsp1 = xsp; -- xsp1 has the same polymorphic type as xsp
ys = (int_fn !xsp) !xsp1; -- int_fn accepts a ref to a list of ints
-- Now *xsp (and *xsp1) may be a non-empty list of ints!
zs = bst_fn *xsp1; -- OOPS! bst_fn accepts a ref to a list of BSTs

cord_list xc =
*xsp = Nil::Ints; -- instantiate list type explicitly
np = cord_list_a !xc !xsp; -- xsp has a monomorphic type
*xsp

Figure 13. Potential violation of type safety.

10.4. A Formal Proof of Safety

Currently, there is no formal proof of safety for Pawns. Despite our confidence that the
overall approach of Pawns is sound, more formality would be beneficial but it is technically
quite challenging. First, some formalisation of the operational semantics of Pawns would
be necessary, including memory use. Second, the type checking algorithm would need to
be formalised more. For handling higher-order code, some simplification might make an
initial proof easier, such as omitting state variables and more complex matching of sharing
information. Third, there is mutual dependence between type checking and sharing
analysis. The way type checking instantiates type variables assumes the code includes
annotations where polymorphic variables may be updated. Annotations are checked
during liveness and sharing analysis, which is carried out after type analysis. The order
cannot be changed because the sharing abstract domain requires type information. For the
code in Figure 13, if either “!” annotation was omitted an error would be detected during
sharing analysis rather than type analysis. The (unproven) conjecture is code that passes
both type checking and sharing analysis is safe, but untangling this dependence adds to the
challenge of a fully formal proof. The sharing analysis algorithm itself is quite complicated.
It uses a simplified “core” language and seeks to establish a condition which could be used
in an inductive proof of correctness. The published version [12] is slightly outdated. It uses
a less expressive abstract domain than is currently used and a more restricted version of
type checking that did not instantiate the types of polymorphic variables where they could
be updated, so more type casts were required in Pawns code.

11. Further Work

As mentioned above, there is work to be carried out on formalising the type system
and proving safety, etc. There are three enhancements to Pawns we are particularly keen to
implement. The first is to the specification of destructive update. Both in statements and
type signatures, variables can be declared mutable or not. We are currently working on a
more refined approach where programmers can declare that only certain components are
mutable. For example, for BST insertion, it is very be desirable to express the fact that only
the tree nodes are updated, allowing a mutable BST containing abstract values in the nodes
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(this cannot be performed with imprecise mutability declared because abstract values must
not be updated). We have developed a small language to specify which data constructor
arguments in a term can be mutable. In the BST case, we use “...Node ! ? !”, where “!”
indicates mutability, “?” indicates no mutability (so an abstract value could be used) and
“...” indicates any number of outer data constructors (which must all be Node for a BST).
For function cord_list_a, the specification for references to cords is “Ref !(...Cons ?
!)”, indicating an outermost ref data constructor with a mutable argument and some path
down to a cons cell whose second argument is also mutable. The compiler now supports
more precise description of destructive update in type signatures and statements, using
this language.

The second enhancement is a new method of specifying sharing. Currently, sharing
declarations use Pawns code, without function calls or assignment, but allowing extra
flexibility such as defining a variable more than once. For example, x=y; x=z is allowed.
Function calls and assignment are disallowed because we felt they make the sharing too
subtle. A more direct approach would be to invent a small language for naming components
of data structures (similar to what we have carried out for more precise destructive update)
and use equality operators between them. Being able to express that a term is acyclic
and/or there is no sharing between different sub-terms would also lead to greater precision.
The current way of defining sharing is a practical one, allowing us to re-use the existing
sharing analysis code rather than invent a new language.

The third enhancement is to support the creation of pointers to arguments of data
constructors at the same time as the data constructors are created; for example, we could
use x = Cons (*headp=1) (*tailp=Nil) to make x the list Cons 1 Nil and at the same
time create variables headp and tailp that point to the two arguments of Cons, respectively.
Currently this requires a separate switch statement.

There are also several features of other functional programming languages such as
existential types and type classes that it would be good to consider for Pawns. Integrating
features that make types more abstract, such as type classes, with sharing would pose
a challenge because at least our current view of sharing is tied closely to the concrete
representation of values. Moving from the current proof of concept to a more practical
language may be worthwhile but it would take a significant amount of (not very interesting)
work. Some of the features of Pawns could also be incorporated into other languages.
For example, reference patterns could be incorporated into Discus easily. The way Pawns
supports mutable algebraic data types and state variables would also be beneficial for
imperative languages.

12. Related Programming Languages

We now briefly discuss some of the key language design issues surrounding Pawns
and relate them to some other languages. There are many imperative languages designed to
address various safety, security and performance issues. Some have features such as option
types (a very simple instance of an algebraic data type) instead of Hoare-style pointers
that can be NULL, data structures that are protected from being updated and the like.
The adtpp tool [10] supports safe and efficient algebraic data types for C, with the update
of data constructor arguments and a form of reference patterns; it was developed by us
in parallel with Pawns and is used in the Pawns compiler. However, to avoid this section
becoming large and/or superficial, we restrict the discussion to languages for which purity
(and related concepts) is an issue; mostly functional and logic programming languages.
A more detailed and extensive discussion is contained in [9], which describes the Mars
language, and [8], which describes the Disciple language (now called Discus). Mars is very
different from Pawns in many ways but both languages adhere to the principle that all
dependencies and effects should be obvious from the code.

We first discuss the update of data structures that are not shared. Many declarative
languages are designed and/or implemented so destructive update can be performed on
such data structures. This is particularly important for arrays, since destructively updating
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an element of an array of size N takes O(1) time whereas creating a new copy takes
O(N) time and space. Various language features and compiler analyses (discussed below)
have been used to ensure or check that data structures are “single-threaded” through
the computation so sharing is limited or avoided. That is, if a data structure is modified,
the new version of the data structure will typically be used but the old version will never
be used again, so it does not matter if it is destroyed. There may be variables whose value
is (conceptually) the old version but these variables/references are “dead”—they have no
further occurrences and can be ignored. This is particularly important for modelling IO in a
pure way, especially in non-strict functional languages where the evaluation order may be
hard to determine. Conceptually, a “state of the world” is passed through the computation
and after some IO operation has been performed the previous state no longer exists.

In Pawns, ignoring state variables for now, “!” is only required when “live” variables
are updated. Figure 14 gives a simple example showing how the update of a single-threaded
data structure raises no concern: where i2 is bound, i1 is no longer used so “!” is not
required. When i2a is bound to i2, the data structure is not single-threaded because i2 is
also used later (as is i2a). However, when the next update is performed, there are no live
references remaining so “!” is still not required. For both these increment operations the
code behaves as if the pure function inc_pure was used instead of inc_du. Annotations
are only needed when an updated variable, or something that shares with it, is used later
(the bindings of i4 and i5).

The type system of Clean (https://wiki.clean.cs.ru.nl/Clean, accessed on 13 Novem-
ber 2024) [15] enforces single threading by using uniqueness types, based on substantial
theoretical work on linear types and linear logic [16]. Variables with linear types can
be used only once; thus, the compiler is free to emit code that updates them rather that
reconstructing the data structure (replacing code like inc_pure with inc_du, at least for
arrays—even with linearity, updating other data structures safely has proved more chal-
lenging). Linear types have also been incorporated into an experimental extension to
Haskell [17]. A similar mechanism is used in the logic programming language Mercury
(http://mercurylang.org/, accessed on 13 November 2024) [18]. Program units are pred-
icates rather than functions and each argument has a type and (possibly more than one)
“mode”, specifying whether the argument is an input or an output. The modes “unique
output” and “destructive input” signal that an output variable should only be used once
(and may be destroyed/updated at that point).

Mars [9] is an imperative programming language but it is designed with “interface
integrity” in mind; that is, when an execution unit such as a function is invoked, all depen-
dencies and effects should be obvious from either the function call or the declaration of the
function. Arguably, if a language has interface integrity it has the main benefit of purity,
whether or not the code is considered pure. Wybe (https://github.com/pschachte/wybe/,
accessed on 13 November 2024) also follows this principle, but is influenced by the logic
programming paradigm in that many programming constructs define predicates/relations
between values and the distinction between inputs and outputs depends on where anno-
tations appear. A variable with no annotation is an input, a variable prefixed with “?” is
an output (it is assigned a value) and a variable prefixed with “!” is both an input and an
output. Both ?x = y and y = ?x assign the value of y to x whereas x = y tests whether the
two values are equal—three different modes for the equality relation.

Mars and Wybe support data constructors with named fields/arguments and syntax
that seems to allow the destructive update of fields, for example myVar.someField = newVal.
However, the semantics is that the structure is copied, with all fields the same as previously
except that someField is assigned newVal, and the new structure is assigned to myVar. This
copying semantics prevents the update of shared structures, so the assignment does not
affect any other variables that may have shared with the original structure. If compiler
analysis concludes there are no other live references to the structure, then destructive
update can be used instead of copying. Although Pawns, Mars and Wybe are designed
with interface integrity in mind, they take almost opposite approaches to update. Mars

https://wiki.clean.cs.ru.nl/Clean
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and Wybe allow the update of variables but not data structure arguments (semantically
at least); Pawns is the opposite. For code that seems to perform the update of structures,
Mars and Wybe actually use the pure (copying) alternative, unless the compiler determines
destructive update has the same result. In Pawns, destructive update is always carried out
but, if the compiler determines copying has the same result, no “!” is needed so the code
appears pure (see Figure 14). To detect when destructive update can be used instead of
copying, Mars and Wybe perform sharing analysis of the kind used in Pawns. It is also
used in Mercury [19] for compile time garbage collection and structure re-use, in Prolog [20]
for similar optimisations and in Koka (https://koka-lang.github.io/koka/, accessed on 13
November 2024) (see below).

...
*i1 = 1;
i2 = inc_du i1; -- single threaded (i1 is not used later)
i2a = i2; -- i2a aliases/shares with i2
i2b = i2a; -- i2b aliases/shares with i2 and i2a
i3 = inc_du i2; -- no ! (i2, i2a and i2b are not used later)
i4 = inc_du !i3; -- i3 is used later so ! is needed
i3a = i3; -- i3a aliases/shares with i3
i5 = (inc_du i3) !i3a; -- i3a is used later so ! is needed
i6 = inc_du i3a
...

-- increment int destructively; returns original ref
inc_du:: Ref Int -> Ref Int

sharing inc_du !prt = r
pre nosharing
post res = ptr

inc_du prt val =
*!prt := *ptr + 1;
ptr

-- returns the same value as inc_du but is pure
inc_pure:: Ref Int -> Ref Int
inc_pure(ptr) =

*newptr = *ptr + 1; -- allocates new memory cell
newptr -- returns pointer to new memory cell

Figure 14. Update of a (sometimes) single-threaded data structure.

Haskell uses monads [21] (from category theory) to thread IO through a computation.
There is no data structure or variable that represents the state of the world, simply a
“phantom” value that is conceptually passed around but cannot be accessed. Monads can
also be used to thread arrays and other values through a computation, allowing destructive
update primitives to have a pure semantics. For such code, Haskell provides the “do”
notation, an extensive syntactic sugar that necessitates major code modification when state
threading is added to a previously stateless computation. It is common for designers of
declarative languages to model IO by conceptually threading a state of the world through
the execution, then invent some syntactic sugar to make this threading less cumbersome
and ensure the compiler can optimise it away. The same mechanism can be used for
threading other states, though optimising non-IO state threading away so copying and/or
passing extra arguments and results may depend on the state not being shared. In Mercury,
the definite clause grammar notation of Prolog can be used to make the last two arguments
of predicates implicitly thread state and this syntactic sugar has been extended to allow
multiple states to be passed relatively easily. The Haskell “do” notation is particularly
cumbersome when access to and modification of multiple forms of state is required. Pawns
state variables give the convenience of global variables but their use can be encapsulated

https://koka-lang.github.io/koka/
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and is made more obvious in the code. They have the advantage of simplicity, particularly
when there are multiple forms of state, but make re-use of code (particularly higher-order
functions) more difficult than some other approaches. Wybe supports “resources”, which
are very similar to state variables: functions/procedures that use them must declare them
in the type signature, including whether they are read, written or both, and calls to such
functions must be prefixed by “!”.

Koka uses effect typing (based on category theory), where effects such as exceptions,
destructive update and IO are attached to types. For example, getchar has return type
console int, indicating it returns an integer but also may have an effect on the console,
by performing IO (similar to the monadic type IO int in Haskell). Koka has mutable
local variables (with some restrictions to avoid them escaping their scope) and uses a
combination of compile time analysis and runtime reference counting to enable the re-use
of structures that have a single reference (rather than allocating new structures). Thus,
single-threaded data structures can be destructively updated, with the minor overhead
of checking the reference count. One advantage of this approach is that the same code
can be used for both unique and shared structures. Also, the memory used by one data
constructor can be re-used by another, if it is the same size.

An important distinguishing feature of Pawns is how it allows the destructive update
of shared structures. Such code is inevitably subtle but there are important algorithms that
require this capability. Pawns stands alone in the way the destructive update of shared
structures is made obvious in the source code and can be encapsulated. ML introduced
“refs” to support it and some other functional languages have adopted similar constructs.
Incorporating such a feature into a non-strict language is more challenging, but Haskell
does so using monads (the STRef library) so the store state can conceptually be threaded
through the computation and the feature can be considered pure. Koka has a ref type and
uses effects of the form st<h>, where h represents a (mutable) heap that is associated with
the data type. Supporting a mutable ref or STRef type essentially allows the argument
of a single data constructor (that used in the ref type) to be updated, but that data type
must be explicitly included in user-defined high-level type definitions. This can lead to
multiple variants of data types, depending on which components need to be updated, and
less efficient data representation, since there is an extra level of indirection. Furthermore,
including refs in a data structure so one function can update it allows all functions to
update it—the impurity/mutability “leaks” into surrounding code and it is similar to the
situation in imperative languages. The only way of ensuring it will not be updated further
is to re-build the data structure using a different type that does not contain refs. The same
occurs with other mutable data structures in Haskell: if a mutable array is created (inside a
monad), all functions that the array is passed to can potentially update it.

Haskell does support unsafeFreeze and unsafeThaw functions that can convert be-
tween mutable and immutable array types without copying data, but it is up to the pro-
grammer to ensure they are used in a way that avoids surprises such as immutable arrays
actually being updated. Similarly, it has functions such as unsafePerformIO that can result
in code impurity. Mercury also allows code to have “promises” made by the programmer
concerning purity, which are not checked by the compiler. So far, we have not felt the
need to have such features in Pawns, though admittedly we have not written much Pawns
code so it is possible that for larger projects imprecision in the analysis may have worse
consequences than a few additional “!” annotations being needed.

Discus [8] is by far the most similar language to Pawns in terms of update capabilities.
It is a functional language that supports the update of the arguments of all data constructors
rather than a distinguished “ref” data constructor, so additional redirection and types are
not required. Discus allows the creation of refs to named fields of records (data constructor
arguments) using the syntax myVar#someField and the equivalent of Pawns *myRef = val
is written myRef #= val. Discus adds memory “region” information [22] to the type system.
For example, given a set of variables which are lists, the region information partitions the
set according to which region their cons cells occupy. There is a distinction between reading
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and updating data in each region, so the types can be used to determine that a function
does not update a data structure. However, there is “leakage” of mutability information
in a similar way to that with refs. In the Discus equivalent of list_bst_du, the region
containing the tree nodes must allow updates and that remains when the tree is passed
to other functions, so those functions may update the tree (similarly to the way the STRef
monad in Haskell and st effects in Koka propagate mutability beyond the function where
it is needed). Type information, including the update of regions, is rather daunting in its
complexity but it can be inferred. However, because the update of function arguments can
be inferred, it is not necessarily obvious from the source code as it is in Pawns.

Region information is less expressive than sharing information and must be transitive:
if x is in the same region as y and y is in the same regions as z, x also must be in the same
region as z. All arguments of the same data constructor must also be in the same region.
Non-transitive sharing information is important for preconditions and postconditions.
For example, in cord_app_list, we had the postcondition xc = Branch xc0 (Leaf xs),
meaning xc may share with xc0 and xs, but xc0 and xs do not share. The fact that
xc0 and xs do not share is the precondition of the function, which is important for the
correctness of the cord code. This precondition cannot be expressed with region information.
The distinction between different arguments of data constructors can be important also.
In Pawns, it is possible to have two pointers to different arguments of the same data
constructor, only one of which is updated and annotated as such. Similarly, they may have
quite distinct sharing (they may not even have the same type).

13. Summary of Contributions

Pawns supports many of the attractive features of pure functional programming while
also supporting encapsulated impure operations such as the destructive update of shared
data structures. The main novel features it contributes are as follows:

• Consideration of sharing is part of the language, not simply the implementation.
• All effects, including effects due to sharing, are obvious from the source code.
• Reference patterns create references to data constructor arguments.
• There is a distinction made between concrete and abstract data structures.
• Destructive update can be encapsulated by returning abstract data structures.
• State variables implement another form of encapsulated effects.
• Renaming of functions can be used instead of polymorphism and higher-order code.

14. Threats to Validity

Essentially, our claim is the novel features of Pawns make it a valuable contribution to
the programming language landscape. The value of a programming language is largely
dependent on how many people use it, and this is driven by a range of factors extrinsic
to the language. There is also positive feedback—a language with a larger user base
will generally be supported better, have more libraries developed, be taught more to
students and be chosen for more projects, increasing the user base further. Pawns will
never be in this category. However, a language can also have intrinsic value and have
features that are influential. For example, although nobody uses Simula [23] today, it is
generally considered to be the first language with object-oriented features, which are now
widespread. Similarly, the original version of Lisp [24] is not used today but it spawned
many variants, including Common Lisp, Scheme, Racket and Clojure. Furthermore, it was
the first language to introduce both anonymous functions and garbage collection, which
now contribute greatly to the productivity of many programmers using many very different
languages. There are also language features such as algebraic data types, introduce by
Hope [25], which are used in many functional programming languages but are (arguably
(https://lee-naish.github.io/papers/adtpp/adtrant.html, accessed on 13 November 2024))
underutilised and far more widespread use would be very beneficial.

The main threats to the validity of our claim are external. It is possible (quite likely
in fact) that nobody will use or be influenced by Pawns or any of its features. This is a
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major threat to all programming language development that is not backed by significant
resources. Publishing this paper reduces the threat somewhat. Declaring sharing could also
turn out to be considered too much of a burden for most programmers. This could possibly
be alleviated by devising different ways of expressing sharing and/or the compiler could
make suggestions for valid sharing declarations based on inferred sharing information.
The error messages currently provided by the compiler also provide guidance. To a lesser
extent, declaring destructive update could prove unpopular.

The main internal threat is a major flaw in the sharing and/or type analysis algorithms
that cannot easily be fixed. The sharing algorithm is very complex and there have been
numerous bugs detected during development but all have be relatively easy to fix. A version
of the sharing algorithm that used a slightly less precise abstract domain was peer-reviewed.
The type analysis is also complex and has been modified during development so fewer
type casts are required in code. Precise information about where data structures may be
updated allows for a degree of flexibility in type analysis. It would also be possible to have
two passes of type analysis in the compiler, the first to provide the domain for sharing
analysis and the second to address type safety in the presence of polymorphism.

The renaming of functions is not affected by the threats above but in itself is not a
big contribution. The motivation for adding it to Pawns was that both sharing and state
variables are not polymorphic to the same extent as types, so it was desirable to have
two separate declarations (and names) for essentially the same function. It may also be an
attractive alternative to higher-order functions for some people. State variables are also
less affected by these threats. A version of state variables could be used instead of global
variables in an imperative language as long as no aliases for a state variable can escape
from the context where it is defined. For example, taking the address of a state variable
could be disallowed to avoid aliasing (full sharing analysis is not required).

15. Conclusions

There are important algorithms which rely on the destructive update of shared data
structures, and these algorithms are relatively difficult to express in declarative languages
and are typically relatively inefficient. The design of Pawns attempts to overcome this
limitation while retaining many of the advantages of a typical functional programming
language, such as algebraic data types, parametric polymorphism and higher-order pro-
gramming. Pawns supports the creation of pointers to arguments of data constructors, and
these pointers can be used for the destructive update of shared data structures. There are
several features which restrict when these effects can occur and allow them to be encapsu-
lated, so the abstract declarative view of some functions can still be used, even when they
use destructive update internally.

Type signatures of functions declare which arguments are mutable and, for function
calls and other statements, variables are annotated if it is possible that they could be
updated at that point. In order to determine which variables could be updated, it is
necessary to know what sharing there is. Functions have pre- and postconditions which
describe the sharing of arguments and the result when the function is called and when it
returns. To avoid having to consider the sharing of data structures for all the code, some
function arguments and results can be declared abstract (this is the default). Reasoning
about code which only uses abstract data structures can be identical to reasoning about pure
functional code, as destructive update is prevented. Where data structures are not abstract,
lower-level reasoning must be used—the programmer must consider how values are
represented and what sharing exists. The compiler checks that declarations and definitions
are consistent, allowing low-level code to be safely encapsulated inside a pure interface.
Likewise, the state variable mechanism allows a pure view of what are essentially mutable
global variables, avoiding the need for source code to explicitly give arguments to and
extract results from function calls. Analysis of sharing is also used to ensure the use of state
variables can be encapsulated and to ensure the safety of code that uses destructive update
of polymorphic data types.
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Although Pawns is still essentially a prototype, and is unlikely to reach full maturity
as a “serious” programming language, we feel its novel features add to the programming
language landscape. They may influence other languages and help combine the declarative
and imperative paradigms, allowing both high-level reasoning for most code and the
efficiency benefits of the destructive update of shared data structures.
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