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Abstract: Adipogenesis is a complex process influenced by various cellular interactions within adi-
pose tissue, which plays a critical role in metabolic homeostasis. This study aimed to develop
a novel in vitro three-dimensional (3D) co-culture model using murine 3T3-L1 pre-adipocytes,
J774 macrophages, and NIH-3T3 fibroblasts to investigate adipogenic differentiation and inflamma-
tory pathways. We first validated an adipogenic differentiation protocol in a two-dimensional (2D)
model, where 3T3-L1 pre-adipocytes were subjected to a hormonal medium containing 3-isobutyl-
1-methylxanthine, dexamethasone and insulin. After 7 days, differentiated cells were analyzed
using Oil Red O and Nile Red staining, confirming lipid accumulation. Subsequently, spheroids
were formed in 3D cultures, with monospheroids and heterospheroids maintained in either control
medium or MDI for 11 days. Size measurements indicated significant growth in heterospheroids,
particularly in the 3T3-L1:J774 combination, underscoring the importance of cellular interactions.
Confocal microscopy and flow cytometry analyses demonstrated that even in the absence of hormonal
stimuli, control spheroids exhibited adipogenic differentiation, evidenced by a notable proportion of
Nile Red-positive cells (75.7 ± 1.7%). Inflammatory profiling revealed that the heterospheroid 3:J
produced the highest levels of nitric oxide (NO), with no significant differences observed between
control and MDI conditions. This study highlights the potential of 3D co-culture systems for eluci-
dating the intricate interactions among adipocytes, macrophages, and fibroblasts. The findings may
provide valuable insights into novel therapeutic targets for metabolic disorders.

Keywords: obesity; adipose tissue; 3D culture; spheroid model; adipogenic differentiation;
adipose inflammation

1. Introduction

Considered the most significant nutritional disorder, obesity has become a major
public health concern, responsible for 2.8 million deaths annually worldwide, according
to the World Health Organization [1]. Obesity is characterized by an excessive accumula-
tion of white adipose tissue (WAT), resulting from an imbalance between energy intake
and expenditure. This accumulation is often accompanied by mild or chronic systemic
inflammation [2]. Consequently, obesity significantly increases the risk of developing type
2 diabetes, cardiovascular diseases, and certain types of cancer [3]. The rising prevalence of
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obesity has sparked growing interest in studying adipose tissue biology, as well as gaining
a deeper understanding of its cellular and molecular mechanisms [4].

In addition to fat storage, adipose tissue is known to secrete a wide range of adipokines
that regulate systemic energy homeostasis through autocrine, paracrine, or endocrine mecha-
nisms, protecting various tissues from lipotoxicity and metabolic dysfunctions. Adipokines,
including leptin, adiponectin, and others, play key roles in regulating metabolism, appetite,
cardiovascular function, and several physiological processes. Therefore, adipose tissue
is not merely a repository of adipocytes but also an integral part of the body’s endocrine
system [5,6].

Adipocytes are the primary cellular component of WAT, essential for both energy
storage and endocrine activity. In addition to adipocytes, WAT is composed of mesenchymal
cells, preadipocytes (precursor cells), macrophages, T cells, fibroblasts, vascular cells
(endothelial and vascular smooth muscle cells), extracellular matrix, blood vessels, and
capillaries [7].

Adipogenic differentiation, or adipogenesis, occurs throughout life as part of normal
cell turnover and in response to increased fat storage demands [8]. This process can lead to
rapid tissue remodeling through adipocyte hypertrophy and hyperplasia [9]. Conversely,
when caloric intake is insufficient and energy expenditure is elevated, WAT releases stored
components into the bloodstream, where they are transported to other tissues and oxi-
dized to produce energy [10]. Adipogenesis is the transformation of preadipocytes into
adipocytes, a multi-phase process that involves the activation of several transcription fac-
tors, including C/EBPα and PPARγ, which are essential for the differentiation of precursor
cells into mature adipocytes. The expression patterns of key transcripts and proteins are
tightly coordinated throughout the stages of adipogenesis [11]. These critical regulators of
adipocyte differentiation include fatty acid binding protein 4 (FABP4), adiponectin, IL-6,
leptin, glucose transporter type 4 (GLUT4), cluster of differentiation 36 (CD36), and insulin
receptor substrate 1 (IRS1) [12].

Molecular and cellular mechanisms involved in the adipogenesis process have been
extensively studied using various in vitro model systems [13–16]. The 3T3-L1 cell line
(preadipocytes), first described by [17], has become a well-established in vitro model for
studying adipogenesis. Despite their morphological similarity, these cells are already com-
mitted to the adipocyte lineage. When treated with a hormonal medium containing fetal
bovine serum, isobutylmethylxanthine, dexamethasone, and insulin, 3T3-L1 cells undergo
differentiation into mature adipocytes. This process is characterized by a change in mor-
phology to a spherical shape, lipid accumulation, and the expression of fat differentiation
markers [18,19].

Obesity models using 3T3-L1 cells have been developed to evaluate the activity of new
compounds with therapeutic potential for obesity treatment, particularly those that inhibit
adipogenesis and reduce inflammatory adipokines [20–22]. In addition, the relationship
between obesity and diseases such as cancer and diabetes has been studied using the
3T3-L1 cell line [13,23,24]. The role of various genes involved in adipogenesis has also been
investigated through gene silencing techniques [25–27]. Furthermore, studies have utilized
3T3-L1 cells to explore the role of miRNAs as mediators of preadipocyte differentiation
into adipocytes, focusing on their regulation of genes involved in the cell cycle [28–30].

Co-culture systems combining adipocytes with other cell types, such as macrophages
and fibroblasts, are crucial for studying inflammatory pathways, adipokine synthesis, and
release, as well as for understanding the complex interactions between adipose tissue and
other tissues in the body [31,32]. Reproducing these cellular interactions in vitro offers a
valuable strategy for investigating and comprehending cell–cell dynamics involved in the
progression of various diseases.

Three-dimensional cell culture systems integrate different cell types into a specialized
environment that forms a three-dimensional structure, closely mimicking the natural tissue
architecture. These models have shown great potential for more accurately simulating the
in vivo microenvironment, providing a more physiologically relevant system for studying
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complex tissue behaviors [33–35]. Additionally, 3D systems facilitate the examination
of cellular and molecular interactions, changes in the extracellular matrix, and signaling
pathways. Unlike traditional 2D cultures, cells in 3D environments, particularly in co-
culture systems, more effectively replicate the in vivo tissue architecture, enhancing the
relevance of experimental findings.

In this study, we used murine, immortalized cell lines—pre-adipocytes, fibroblasts,
and macrophages—chosen for their ease of acquisition, cultivation, and ability to reli-
ably replicate in vitro adipose tissue interactions. Pre-adipocytes are the progenitors of
adipocytes, while fibroblasts provide structural integrity and contribute to adipose tissue
plasticity, supporting adipogenic differentiation. Macrophages are crucial for immune
response and tissue remodeling, adding an inflammatory component to the adipose tissue
microenvironment. The inclusion of these cell types enables a more comprehensive repre-
sentation of adipose tissue interactions, reflecting its natural complexity. These cells are
co-cultured in a 3D system, promoting cell–cell aggregation and spheroid formation, with
agarose hydrogels providing a non-adherent surface to facilitate spheroid assembly. This
versatile material supports the growth of various cell types and is essential for developing
an effective, in vitro adipose tissue model. Agarose hydrogels, used in the liquid-overlay
method, promote cell–cell aggregation and spheroid formation. This material is versatile,
allowing its use with various cell types. Additionally, the extracellular matrix and microen-
vironment in adipose tissue exhibit significant complexity due to interactions between
adipocytes, preadipocytes, stromal cells, endothelial cells, and immune cells [36–40].

In the context of obesity, spheroid models developed thus far using 3T3-L1 pre-
adipocytes have primarily focused on studying adipogenic processes, adipocyte functions,
and pro-inflammatory pathways, making them a valuable platform for investigating the
adipose tissue microenvironment [35,41–44]. However, most current models rely on cells
derived from human adipose tissue, which can be difficult to obtain and cultivate. In con-
trast, the model developed in this study incorporates murine pre-adipocytes, macrophages,
and fibroblasts, all of which are immortalized cell lines that are easy to obtain and cul-
ture. The primary objective of this study was to evaluate the formation of 3D spheroids
and adipogenic differentiation in vitro, providing a more physiologically relevant system
for studying adipose tissue and identifying potential therapeutic targets for obesity and
obesity-related diseases.

2. Materials and Methods
2.1. Cell Culture

The murine macrophage cell line J774.1, the murine fibroblast cell line NIH-3T3,
and the murine 3T3-L1 pre-adipocytes were obtained from a cell bank in Rio de Janeiro,
Brazil. Macrophages and fibroblasts (J771.1 and NIH-3T3) were maintained in Dulbecco’s
Modified Eagle Medium (DMEM—Sigma®, St. Louis, MO, USA) supplemented with
10% fetal bovine serum (FBS—Gibco®, Grand Island, NY, USA), while pre-adipocytes
(3T3-L1) were maintained in DMEM supplemented with 10% calf serum (CS—Gibco®),
all containing 100 U/mL of penicillin, 100 µg/mL of streptomycin, and 10 mM of 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Gibco®). Cells were cultured at
37 ◦C in an atmosphere of 5% CO2, and the medium was changed every 48 h. The cells
were cultured until they reached 80–90% confluence and were then subcultured. 3T3-L1
pre-adipocytes and NIH-3T3 fibroblasts were dissociated with 0.25% trypsin for 5 min at
37 ◦C, while J774.1 macrophages were detached by scraping with a rubber policeman.

2.2. 3D Cell Culture

In the 3D cell culture, agarose powder (Ludwig Biotecnologia Ltda., Rio Grande do Sul,
Brazil) was dissolved in distilled water to a final concentration of 2% (w/v). The solution
was then heated to 60–80 ◦C until complete dissolution and transferred to a 96-well plate
(50 µL/well), followed by 30 min of sterilization under UV light.
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2.3. Generation of Mono and Heterospheroids Using the Liquid Overlay Technique and Adipogenic
Differentiation Induction

Five spheroid conditions were established based on previous work with modifica-
tions [44]. Monospheroids were formed with 3T3-L1 or NIH-3T3, and heterospheroids were
produced with a combination of 3T3-L1:J774.1, 3T3-L1:NIH-3T3 or 3T3-L1:J774.1:NIH-3T3
(1:1:1, 1.2 × 104 cell/well). Plates were maintained at 37 ◦C in an atmosphere of 5% CO2 and
four days after seeding, adipogenic differentiation was induced. The medium was replaced
with adipogenic differentiation induction medium (MDI) containing DMEM supplemented
with 10% FBS, 500 µM of 3-isobutyl-1-methylxanthine (IBMX), 1 µM dexamethasone (DEX),
and 1.67 µM insulin (INS) (all from Sigma®). After 3 days, the induction medium was
replaced with maintenance medium containing DMEM supplemented with 10% FBS and
1.67 µM INS, which was replaced every 2 days for a total of 11 days.

Another five spheroid conditions were generated without MDI (DMEM + 10% CS) for
the same period, with half of the medium changed every 48 h as a control group. After
11 days of 3D cell culture, the supernatant from both control spheroids and those exposed
to MDI was collected and stored at −80 ◦C.

2.4. Cell Viability Assessment and Sizing

Cell viability was assessed using the Trypan blue exclusion test [45]. Briefly, eight
spheroids from each 3D condition were transferred to microtubes, washed with PBS, and
dissociated with 0.25% trypsin for 10 min at 37 ◦C. Subsequently, 1 mL of PBS and 500 µL
of FBS were added, followed by centrifugation at 1800× g for 5 min. The supernatant was
discarded, and the cells were stained with a 0.5% Trypan blue solution (Sigma®) (1:1 v/v
in DMEM) and counted in a Neubauer chamber. Spheroids were photographed using an
inverted light microscope equipped with a DCM 510 camera and a 40× objective lens on
days 4, 7, and 11. Images were captured using ScopePhoto 3.0 software, and the horizontal
diameter was measured using ImageJ Version 1.50 [46].

2.5. Morphology of the Mono and Heterospheroids

External cellular morphology was evaluated by scanning electron microscopy (SEM) as
previously described by [47], with modifications. After 11 days of 3D cell culture, spheroids
were transferred to microtubes and washed twice with PBS. Subsequently, the spheroids
were fixed with 2.5% glutaraldehyde and 4% paraformaldehyde at room temperature for
30 min. Following fixation, the spheroids were incubated in osmium tetroxide for 1 h in the
dark, followed by four washes in distilled water. The spheroids were then dehydrated in
ethanol diluted in distilled water at increasing concentrations (80%, 90%, 96%, and 100%)
and incubated in a mixture of hexamethyldisilane (HMDS) (1:1 in ethanol) for 15 min each.
This was followed by two incubations in pure HMDS for 15 min each. Finally, the spheroids
were covered with HMDS until complete evaporation. The spheroids were transferred
to conductive carbon adhesive tabs, sputtered with gold particles, and analyzed using a
scanning electron microscope (SEM, JEOL JSM-6390LV).

2.6. Quantification of Intracellular Lipids

Intracellular lipids were quantified by flow cytometry using the lipophilic stain Nile
Red (Sigma®), as previously described [48], with modifications. Spheroids (n = 16) were
collected on day 11 and dissociated using 0.25% trypsin for 15 min at 37 ◦C, followed by
centrifugation for 5 min at 1800× g. Subsequently, the supernatant was discarded, and the
pellet was fixed with 2% formaldehyde at room temperature for 20 min. After that, the
cells were washed with PBS and centrifuged again. Nile Red (1 µg/mL) in PBS was added
to the cells and incubated at room temperature for 30 min in the dark. Cells were then
washed and analyzed using a Flow Cytometer (FACS Canto IITM, BD Biosciences, Franklin
Lakes, NJ, USA) with the Flowing 2.5 software (University of Turku) or stained with DAPI
(Sigma®) (diluted 1:1000 in PBS) for confocal microscopy (Leica DMI6000 B equipped with
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a 20× oil-immersion objective, with excitation parameters of 405 nm for DAPI and 488 nm
for Nile Red). The captured images were analyzed using LAS AF Lite software version 3.3.

2.7. Protein Extraction and NO Analysis for Inflammatory Profile

For protein extraction, eight spheroids from each 3D condition were collected, washed
with PBS, and dissociated using 0.25% trypsin for 10 min at 37 ◦C, followed by centrifuga-
tion at 1800× g for 10 min. Subsequently, protein extraction was performed with 120 µL
of RIPA buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM sodium chloride, 1% Triton
X-100®, 0.1% sodium dodecyl sulfate, 1 mM phenylmethylsulfonyl fluoride, 5 µg/mL apro-
tinin, 1 µg/mL leupeptin, and 1 µg/mL pepstatin (all from Sigma®). Protein levels were
quantified using the Lowry method [49], with bovine serum albumin as a standard reagent.
Nitric oxide (NO) levels were measured in the supernatant of the spheroids used for protein
extraction using Griess reagent [50]. The basal release of nitric oxide (NO) was determined
in the supernatant from a pool of eight spheroids. The NO results were normalized to the
total protein concentration extracted from each 3D condition after 11 days of culture.

2.8. Statistical Analyses

Results are presented as the mean ± standard deviation of duplicate or triplicate tests
conducted on alternate days. Statistical analyses were performed using GraphPad Prism 5,
and significance was determined with one-way analysis of variance followed by Dunnett’s
multiple comparisons test or Student’s paired t-test for comparisons with the control group.
Values with p ≤ 0.05 were considered significantly different.

3. Results
3.1. Macrophages and MDI Medium Influence Cell Growth and Viability on Spheroids

The adipogenic differentiation protocol for the pre-adipocyte lineage was established
in a 2D model to validate the MDI for subsequent assays in 3D. For adipogenesis, 3T3-
L1 pre-adipocytes were subjected to MDI, and after 7 days, the differentiated cells were
stained with Oil Red or Nile Red and visualized under a light and fluorescence microscope,
respectively. When exposed to a specific hormonal medium, these cells restart the cell
cycle, undergo clonal expansion, and enter the terminal differentiation phase, resulting in
changes in morphology and intracellular lipid storage.

In this work, lipid formation was confirmed via visualization in the 2D cell culture,
revealing red staining via Oil Red staining (Supplementary Figure S1) and green staining
via Nile Red staining (Supplementary Material Table S2). For the 3D experiments, spheroids
maintained in control medium were cultured for the same period as those exposed to the
adipogenic differentiation medium (Figure 1A). In both groups, spheroids were success-
fully formed (Figure 1B,C). The size of the spheroids was evaluated on days 4, 7, and
11 by measuring the horizontal diameter of all 3D models. The growth profile of each
condition (control and MDI) is shown in Figure 1D,E, respectively (diameters provided in
Supplementary Tables S1 and S2).

The results indicated that some of the spheroid models maintained in control medium
exhibited a decrease in size in comparison to MDI medium. On the 11th day of culture,
the monospheroid formed by the 3T3-L1 lineage exhibited the smallest size, while the
heterospheroid established with 3T3-L1 cells was the only one to show significant growth
during this period. In comparison to the control group, the MDI-treated group displayed
a notable variation in spheroid size. Furthermore, the heterospheroid formed by the
combination of 3T3-L1 and J774 cells presented the largest size on the fourth day and
remained constant over time, reaching a diameter of 200.6 ± 21.66 µm (Figure 1D,E).
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Figure 1. Spheroid growth and cell viability. The model for the spheroid formation process (A).
Representative images of spheroids formation in control (B) and MDI medium (C). Scale bar: 100 µm.
Data are expressed as the mean ± standard deviation (SD) of three experiments. One-way ANOVA,
followed by Dunnett’s multiple comparisons test, was used for statistical significance. Growth of
spheroids formed on control medium (D). *** (p < 0.001) 3:J:N group in relation to all other groups on
day 4. ϵϵϵ (p < 0.001) 3:J:N group in relation to all other groups except 3:J on day 7. ϕϕϕ (p < 0.001)
3:J:N group in relation to all other groups except 3:J on day 11. Growth of spheroids formed on
MDI medium (E). *** (p < 0.001) 3:J:N group in relation to all other groups on day 4. ϵϵϵ (p < 0.001)
3:J:N group in relation to N group on day 7. ϕϕϕ (p < 0.001) 3:J:N group in relation to N group on
day 11. δ (p < 0.05) 3:J:N group in relation to 3:J group on day 11. Legend: 3 = 3T3-L1; N = NIH-3T3;
3:J = 3T3-L1:J774; 3:N = 3T3-L1:NIH-3T3; 3:J:N = 3T3-L1:J774:NIH-3T3.
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The diameter of the spheroids subjected to MDI (Figure 1) indicates that these models
exhibited an increase in size when exposed to the hormonal medium. The heterospheroid
3:J had the largest diameter on day 4; however, by day 7, all other models showed similar
sizes, except for the NIH/3T3 (N) monospheroid, which was the only model that did not
exhibit any increase in size when exposed to MDI. Moreover, the viability of the cells was
evaluated on day 11 and was around 70–80%. The MDI appeared to improve this viability,
with no significant difference between groups (Table 1).

Table 1. Cell viability after 11 days of 3D culture.

Viability (%)

Control MDI

3 80.63 ± 4.7 81.55 ± 6.1
N 92.85 ± 3.9 94.56 ± 3.2
3:J 66.76 ± 7.6 79.78 ± 4.4
3:N 87.95 ± 9.3 87.26 ± 4.4

3:J:N 76.87 ± 15.1 84.49 ± 8.3

The external cellular morphology of spheroids was evaluated by SEM, and the images
revealed differences between the control group and the MDI group (Figure 2A,B).
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Figure 2. External morphology and cellular viability of different spheroids formed on day 11. SEM-
imagens of spheroids formed in control (A) and MDI medium (B). Scale bar 100 and 10 µm. Legend:
3 = 3T3-L1; N = NIH-3T3; 3:J = 3T3-L1:J774; 3:N = 3T3-L1:NIH-3T3; 3:J:N = 3T3-L1:J774:NIH-3T3.

Regarding phase-contrast images, spheroids cultivated in control medium exhibited a
reduction in size on day 11. Additionally, at high magnification, they displayed a rough
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surface with the presence of abnormal cells in some conditions. However, cells with a round
morphology were also visible, along with cell-to-cell interactions and intense production of
the extracellular matrix.

3.2. Spheroids Themselves Induce Adipogenic Differentiation

Adipogenic differentiation was visualized by confocal microscopy (Figure 3A,B) and
quantified using flow cytometry (Figure 3C). The results demonstrated that spheroids
formed in control medium underwent spontaneous adipogenic differentiation without the
need for hormonal stimuli, as shown by Nile Red staining. Importantly, no significant
difference in adipogenic differentiation was observed between the control and MDI-treated
spheroids for the 3:J condition (control: 75.7 ± 1.7% versus MDI: 60.7 ± 10.3%), indicating
that both conditions—control and MDI—produced similar levels of differentiation.
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Figure 3. Adipogenic differentiation of mono and heterospheroids with or without hormonal stimuli.
Maximum intensity projection from 1 µm apart of spheroids formed in control (A) and MDI medium
(B). Spheroids were stained with Nile red (yellow), and nuclei were counterstained with DAPI (blue).
Scale bar 100 µm. Graphic representation of the percentage of positive Nile red cells (C). Data are
expressed as mean ± SD of three experiments. Statistical analyses by Student’s t-test. Legend:
3 = 3T3-L1; N = NIH-3T3; 3:J = 3T3-L1:J774; 3:N = 3T3-L1:NIH-3T3; 3:J:N = 3T3-L1:J774:NIH-3T3.
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Analyses of the inflammatory profile were conducted on day 11 in the supernatant
of spheroids with or without hormonal induction (Figure 4). The results of basal ˙NO
production were normalized by the total protein content on the same day. As observed
in Figure 4, the heterospheroid 3:J:N exhibited the highest production of ˙NO, with no
significant difference between control and MDI spheroids reported (1.43 ± 0.55 versus
1.49 ± 0.09 µM/µg of protein, respectively). The data presented demonstrate that com-
pared to models 3:J and N, there is sufficient evidence to conclude that the observed effect
in the study is statistically significant. This difference is attributed to the composition of
the spheroids exposed to MDI.
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Figure 4. ˙NO release profile in the supernatant of spheroids maintained in control medium or
treated with MDI. Data are presented as mean ± standard deviation (n = 3). Statistical analysis
was performed using one-way ANOVA followed by Bonferroni post hoc test. * (p < 0.05) compared
to the 3:J model; α (p < 0.05) compared to the 3 model; β (p < 0.05) compared to the N model; ϕ
(p < 0.05), ϕϕ (p < 0.01) compared to the 3:J. 3 = 3T3-L1; N = NIH/3T3; 3:J = 3T3-L1; 3:N = 3T3-L1/3T3;
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4. Discussion

In this study, we developed and characterized an in vitro 3D multicellular spheroid
model composed of murine immortalized pre-adipocytes, macrophages, and fibroblasts.
This model, which uses easily obtainable and culturable murine cell lines, offers a superior
alternative to traditional 2D cultures, as it does not require a differentiation medium. It
more accurately mimics in vivo adipose tissue by benefiting from the interconnections
and interactions between the cell types, which allow for the spontaneous differentiation
of pre-adipocytes. This self-differentiation highlights the potential of the 3D model to
replicate key aspects of adipose tissue biology, providing a more physiologically relevant
system for studying adipocyte behavior and interactions. The method for generating
the spheroids was adapted from a 3D approach previously established in our research
group [51]. Spheroids were created using the liquid-overlay technique (LOT) in a 96-well
plate coated with agarose gel. LOT is a widely recognized and standardized method [52,53],
frequently employed for various purposes [47]. The agarose gel forms a semi-solid, non-
adherent surface, making it an ideal substrate for the formation of 3D spheroids. However,
the concentration and volume of agarose must be adjusted depending on the specific
cell type used [37]. Here, we developed five distinct 3D spheroid models using murine
cell lines native to adipose tissue: preadipocytes (3T3-L1), macrophages (J774.1), and
fibroblasts (NIH-3T3). The conditions included monospheroids composed of either 3T3-L1
or NIH-3T3 cells, as well as heterospheroids combining 3T3-L1 + J774, 3T3-L1 + NIH-3T3,
and 3T3-L1 + J774 + NIH-3T3. Additionally, the spheroids were exposed to adipogenic
differentiation medium (MDI) and compared to those maintained in control medium. In all
conditions, the spheroids were homogenous in both diameter and shape (Figure 1B,C).

All spheroids cultured in control medium, except those containing macrophages, ex-
hibited smaller diameters compared to the 3 spheroids (Figure 1B). Furthermore, spheroids
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treated with MDI showed an increase in size from day 4 to day 7. The only exception was
the monospheroid composed of NIH-3T3 cells in MDI, which maintained a consistent size
over time (Figure 1C). Previous 3D studies using 3T3-L1 cells demonstrated an increase
in size when spheroids were exposed to MDI [36,41]. Additionally, both 3T3-L1 and NIH-
3T3 cells exhibited contact inhibition when not exposed to the hormonal medium [54].
According to Stephan and colleagues [55], the availability of serum and glucose in the
3D environment can influence cell proliferation and survival. The increased size of MDI-
treated spheroids may be due to media supplementation (insulin and serum), providing an
additional growth stimulus, which could also affect cell viability (Table 1). Moreover, we
observed that in the presence of macrophages, spheroid size remained stable, highlighting
the critical role these cells play in supporting growth and maintaining the 3D model when
co-cultured with fibroblasts. Also, the addition of those fibroblasts and macrophage cells
are essential to sustaining the spheroid formation and growth [54].

Cell viability is influenced by spheroid size. Large spheroids (>200–300 µm in di-
ameter) tend to exhibit a necrotic core, which can result from reduced nutrient diffusion,
insufficient oxygen supply, waste accumulation, and subsequent hypoxia [56–58]. It should
be noted that the average spheroid size was limited to approximately 200 µm, with control
spheroids showing a mean viability of 71% and MDI-treated spheroids showing 81%. Simi-
lar viability rates were reported by Amann and colleagues [59]. In general, the adipogenic
differentiation medium seems to have a slight influence on cell viability. However, the
control 3:J spheroid showed a significant increase in viability when exposed to the hormonal
medium (59.05% vs. 79.36%, respectively).

It has been reported that pre-adipocytes and fibroblasts produce extracellular matrix
(ECM) components such as collagen and fibronectin [59,60], which, in addition to con-
tributing to spheroid compaction, promote a smooth surface. In this study, SEM images
revealed differences in size between the control and MDI groups, as well as intense cell–cell
contact (Figure 2A,B, respectively). Furthermore, except for the NIH-3T3 monospheroid,
which displayed a smooth surface, all other conditions exhibited a rough surface. In some
cases, such as the control 3:J heterospheroid and the MDI-treated 3T3-L1 monospheroid,
individual cells connected by ECM-like structures were observed. These structures have
been previously described as a form of communication between cells [61].

Interestingly, according to the results obtained through confocal microscopy and flow
cytometry (Figure 3A,C), spheroids formed in control medium also exhibited adipogenic
differentiation, suggesting that 3D cell culture can induce self-differentiation, which is
more pronounced in co-culture conditions. Ruehl and colleagues [62] revealed that col-
lagen XIV, a component of the ECM expressed in differentiated tissues, can promote
pre-adipocyte differentiation.

Although this study did not specifically evaluate the ECM components produced
by the cell lineages used in the 3D system, it can be suggested that the intense cell–cell
and cell-matrix interactions may have induced the self-differentiation observed in control
spheroids. Additionally, co-culture systems containing adipose tissue macrophages and
adipose stem cells have been shown to induce the formation of new pre-adipocytes, which
display intracellular lipid accumulation and adipogenic gene expression [63]. Furthermore,
the study demonstrated that pre-adipocytes formed after co-culture may partly originate
from adipose tissue macrophages. A limitation of this study is the use of a fixed 1:1:1
ratio of pre-adipocytes, fibroblasts, and macrophages in the heterospheroids. The effects of
varying these cell proportions on spheroid growth and differentiation remain unexplored
and could be an important direction for future research. Additionally, while immortalized
murine cell lines offer ease of acquisition and culture, they may not fully capture the
complexity of in vivo adipose tissue. These findings suggest that paracrine cross-talk
between macrophages and other cellular components plays a role in the self-differentiation
observed under control conditions.

The inflammatory profile was evaluated through ˙NO production, and the results
suggest that the adipogenic differentiation process observed in both control and MDI
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conditions contributes to the formation of a 3D multicellular adipose tissue model with an
inflammatory profile. While some studies report that the interaction between macrophages
and adipocytes increases ˙NO synthesis, leading to inhibition of insulin signaling and
glucose uptake [64,65], other studies suggest that ˙NO can stimulate glucose transport via
a mechanism independent of insulin signaling [66]. In this study, the 3D multicellular
adipose tissue model exhibited adipogenic differentiation under both conditions (control
and MDI), even in the presence of an inflammatory profile.

5. Conclusions

This study demonstrated that the 3D multicellular adipose tissue model exhibited
adipogenic differentiation under both conditions (control and MDI), even in the presence
of an inflammatory profile. In conclusion, the development of new methods and in vitro
models of adipose tissue can be valuable tools for basic research and drug screening.
The 3D multicellular in vitro model established here offers a more advanced platform
for understanding the mechanisms involved in adipogenesis, tissue engineering, and the
evaluation of therapeutic responses in obesity treatment.
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