Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review
Abstract
:1. Introduction
2. Push–Pull Technology
3. Beneficial Microbes in the Plant–Soil Continuum
Microbes Studied | Key Benefits | References |
---|---|---|
Rhizobia | Nitrogen fixation, improved soil fertility, increased crop yield | [13,18,23,52] |
Mycorrhizal fungi | Enhanced nutrient uptake (phosphorus, nitrogen), improved drought resistance, increased crop yield | [50,51,62,63] |
Pseudomonas | Disease suppression, enhanced root growth, increased nutrient uptake | [41,43] |
Bacillus | Biocontrol of soil-borne pathogens, enhanced plant growth, improved stress tolerance | [17,53,64] |
Trichoderma | Biocontrol of plant pathogens, improved seedling vigor, increased crop yield | [16,65,66] |
Azospirillum | Nitrogen fixation, improved root architecture, increased nutrient uptake and growth | [13,43,53,66] |
Endophytic fungi | Enhanced growth, increased resistance to biotic and abiotic stress | [40,45,67,68] |
Phosphate-solubilizing bacteria | Improved phosphorus availability, enhanced root development, increased yield | [11,12,20,24,29] |
Actinomycetes | Biocontrol of pathogens, enhanced nutrient cycling, improved plant growth | [39,40,66] |
Plant growth-promoting rhizobacteria (PGPR) | Enhanced disease resistance, improved nutrient uptake, increased plant growth | [10,39] |
Nitrogen-fixing bacteria | Improved nitrogen availability, enhanced plant growth, increased yield | [13,52,69] |
Siderophore-producing bacteria | Enhanced iron uptake, improved plant health, increased resistance to pathogens | [10,39,48,66] |
Lactic acid bacteria | Improved plant growth, enhanced nutrient uptake, biocontrol of soil pathogens | [47,66,70] |
Cyanobacteria | Nitrogen fixation, improved soil health, increased crop productivity | [1,48,71] |
Vesicular–arbuscular mycorrhiza (VAM) | Improved nutrient and water uptake, enhanced soil structure, increased plant resilience | [50,51,62,63] |
4. Applications of Biofertilizers in Push–Pull Technologies
4.1. Biofertilizers
4.2. Pest Management
4.3. Disease Suppression
4.4. Soil Health
4.5. Water Management
5. Microbial Mechanisms for Sustainable Crop Production in Challenging Soils
6. Biofertilizer-Mediated Changes in Microbial Diversity
7. Future Directions and Research Needs
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmud, A.A.; Upadhyay, S.K.; Srivastava, A.K.; Bhojiya, A.A. Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Curr. Res. Environ. Sustain. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Zhao, G.; Zhu, X.; Zheng, G.; Meng, G.; Dong, Z.; Baek, J.H.; Jeon, C.O.; Yao, Y.; Xuan, Y.H.; Zhang, J.; et al. Development of biofertilizers for sustainable agriculture over four decades (1980–2022). Geogr. Sustain. 2024, 5, 19–28. [Google Scholar] [CrossRef]
- Pickett, J.A.; Woodcock, C.M.; Midega, C.A.; Khan, Z.R. Push–pull farming systems. Curr. Opin. Biotechnol. 2014, 26, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Conlong, D.E.; Rutherford, R.S. Conventional and new biological and habitat interventions for integrated pest management systems: Review and case studies using Eldana saccharina Walker (Lepidoptera: Pyralidae). In Integrated Pest Management: Innovation-Development Process; Peshin, R., Dhawan, A.K., Eds.; Springer Science and Business Media: New York, NY, USA, 2009; pp. 241–261. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Muriithi, B.; Niassy, S.; Ouya, F.O.; Pittchar, J.O.; Kassie, M.; Khan, Z.R. Sustainable intensification of vegetable production using the cereal ‘push-pull technology’: Benefits and one health implications. Environ. Sustain. 2023, 6, 25–34. [Google Scholar] [CrossRef]
- Mutyambai, D.M.; Mutua, J.M.; Jalloh, A.A.; Niassy, S.; Dubois, T.; Khan, Z.; Subramanian, S. Push-pull cropping system positively impacts diversity and abundance of springtails (Hexapoda: Collembola) as bioindicators of soil health. Eur. J. Soil Biol. 2024, 122, 103657. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Bruce, T.J.A.; Hooper, A.M.; Pickett, J.A. Push-pull technology: A conservation agriculture approach for integrated management of insect pests, weeds, and soil health in Africa. Int. J. Agric. Sustain. 2018, 16, 92–104. [Google Scholar] [CrossRef]
- Bittencourt, P.P.; Alves, A.F.; Ferreira, M.B.; da Silva Irineu, L.E.S.; Pinto, V.B.; Olivares, F.L. Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms 2023, 11, 502. [Google Scholar] [CrossRef]
- Jalloh, A.A.; Khamis, F.M.; Yusuf, A.A.; Subramanian, S.; Mutyambai, D.M. Long-term push–pull cropping system shifts soil and maize-root microbiome diversity paving way to resilient farming system. BMC Microbiol. 2024, 24, 92. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef]
- Janati, W.; Bouabid, R.; Mikou, K.; El Ghadraoui, L.; Errachidi, F. Phosphate solubilizing bacteria from soils with varying environmental conditions: Occurrence and function. PLoS ONE 2023, 18, e0289127. [Google Scholar] [CrossRef]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Bhattacharjee, R.B.; Singh, A.; Mukhopadhyay, S.N. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: Prospects and challenges. Appl. Microbiol. Biotechnol. 2008, 80, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the rhizosphere microbiome for disease-suppressive microorganisms. Soil Biol. Biochem. 2011, 43, 1455–1467. [Google Scholar] [CrossRef]
- Yuan, K.; Reckling, M.; Ramirez, M.D.A.; Djedidi, S.; Fukuhara, I.; Ohyama, T.; Yokoyama, T.; Bellingrath-Kimura, S.D.; Halwani, M.; Egamberdieva, D.; et al. Characterization of rhizobia for the improvement of soybean cultivation at cold conditions in central Europe. Microbes Environ. 2020, 35, ME19124. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Meng, L.; Ou, Y.; Shao, C.; Xiong, W.; Zhang, N.; Liu, H.; Li, R.; Shen, Q.; Kowalchuk, G.A. Trichoderma-amended biofertilizer stimulates soil resident Aspergillus population for joint plant growth promotion. NPJ Biofilm. Microbiomes 2022, 8, 57. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Factories 2014, 13, 66. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Sathya, A.; Vijayabharathi, R.; Varshney, R.K.; Gowda, C.L.; Krishnamurthy, L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 2015, 5, 355–377. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. SOIL 2015, 1, 491–508. [Google Scholar] [CrossRef]
- Wu, S.; Cao, Z.; Li, Z.; Cheung, K.; Wong, M. Effect of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Singh, B.; Boukhris, I.; Pragya; Kumar, V.; Yadav, A.N.; Farhat-Khemakhem, A.; Kumar, A.; Singh, D.; Blibech, M.; Chouayekh, H.; et al. Contribution of microbial phytases to the improvement of plant growth and nutrition: A review. Pedosphere 2020, 30, 295–313. [Google Scholar] [CrossRef]
- Muthuraja, R.; Muthukumar, T. Isolation and characterization of potassium solubilizing Aspergillus species isolated from saxum habitats and their effect on maize growth in different soil types. Geomicrobiol. J. 2021, 38, 672–685. [Google Scholar]
- Tena, W.; Wolde-Meskel, E.; Walley, F. Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of Southern Ethiopia. Agronomy 2016, 6, 11. [Google Scholar]
- Sindhu, S.S.; Phour, M.; Choudhary, S.R.; Chaudhary, D. Phosphorus cycling: Prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. Geomicrobiol. Biogeochem. 2014, 39, 199–237. [Google Scholar]
- Okur, N. A review-bio-fertilizers-power of beneficial microorganisms in soils. Biomed. Biomed. J. Sci. Tech. Res. 2018, 4, 4028–4029. [Google Scholar] [CrossRef]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef]
- Agustiyani, D.; Dewi, T.K.; Laili, N.; Nditasari, A.; Antonius, S. Exploring biofertilizer potential of plant growth-promoting rhizobacteria candidates from different plant ecosystems. Biodivers. J. Biol. Divers. 2021, 22, 2691–2698. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Liu, H.; Macdonald, C.A.; Singh, B.K. Microbial inoculants with higher capacity to colonize soils improved wheat drought tolerance. Microb. Biotechnol. 2023, 16, 2131–2144. [Google Scholar] [CrossRef]
- Rafique, M.; Ortas, I.; Ahmed, I.A.; Rizwan, M.; Afridi, M.S.; Sultan, T.; Chaudhary, H.J. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. J. Environ. Manag. 2019, 247, 672–680. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; et al. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef]
- Yao, H.; Liu, Q.; Hu, H.; Zhou, J.; Li, X.; Zhang, X. Soil microbiome influences plant growth and productivity. Front. Microbiol. 2018, 9, 1355. [Google Scholar] [CrossRef]
- Imbaya, E.A.; Kuyah, S.; Gichua, M.; Were, S. Structure, tree diversity, and aboveground carbon stocks of smallholder farms with push-pull technology in western Kenya. Trees For. People 2024, 17, 100645. [Google Scholar]
- Midega, C.A.O.; Khan, Z.R. Impact of a habitat management system on diversity and abundance of maize stemborer predators in western Kenya. Int. J. Trop. Insect Sci. 2003, 23, 301–308. [Google Scholar] [CrossRef]
- Khan, Z.R.; Ampong-Nyarko, K.; Chiliswa, P.; Hassanali, A.; Kimani, S.; Lwande, W.; Overholt, W.A.; Picketta, J.A.; Smart, L.E.; Woodcock, C.M. Intercropping increases parasitism of pests. Nature 1997, 388, 631–632. [Google Scholar] [CrossRef]
- Sobhy, I.S.; Tamiru, A.; Morales, X.C.; Nyagol, D.; Cheruiyot, D.; Chidawanyika, F.; Subramanian, S.; Midega, C.A.O.; Bruce, T.J.A.; Khan, Z.R. Bioactive volatiles from push-pull companion crops repel fall armyworm and attract its parasitoids. Front. Ecol. Evol. 2022, 10, 883020. [Google Scholar] [CrossRef]
- Hoarau, C.; Campbell, H.; Prince, G.; Chandler, D.; Pope, T. Biological control agents against the cabbage stem flea beetle in oilseed rape crops. Biol. Control. 2022, 167, 104844. [Google Scholar] [CrossRef]
- Niassy, S.; Agbodzavu, M.K.; Mudereri, B.T.; Kamalongo, D.; Ligowe, I.; Hailu, G.; Kimathi, E.; Jere, Z.; Ochatum, N.; Pittchar, J.; et al. Performance of push–pull technology in low-fertility soils under conventional and conservation agriculture farming systems in Malawi. Sustainability 2022, 14, 2162. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Del Rio, T.G.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Ann. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef]
- Compant, S.; Van Der Heijden, M.G.; Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol. Ecol. 2010, 73, 197–214. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Bakker, P.A.H.M.; Pieterse, C.M.J.; van Loon, L.C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 2007, 97, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.; Weinand, T.; Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009, 32, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.; Verma, S.; Sudha; Sahay, N.; BütEhorn, B.; Franken, P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 1999, 65, 2741–2744. [Google Scholar]
- Vurukonda, S.S.K.P.; Vardharajula, S.; Shrivastava, M.; SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016, 184, 13–24. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef]
- Oldroyd, G.E.; Downie, J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 2008, 59, 519–546. [Google Scholar] [CrossRef]
- Bashan, Y.; Holguin, G.; De-Bashan, L.E. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 2004, 50, 521–577. [Google Scholar] [CrossRef] [PubMed]
- Baldani, J.I.; Reis, V.M.; Baldani, V.L.; Döbereiner, J. A brief story of nitrogen fixation in sugarcane—Reasons for success in Brazil. Funct. Plant Biol. 2002, 29, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Lupwayi, N.Z.; Rice, W.A.; Clayton, G.W. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 1998, 30, 1733–1741. [Google Scholar] [CrossRef]
- Hartman, K.; van der Heijden, M.G.; Wittwer, R.A.; Banerjee, S.; Walser, J.C.; Schlaeppi, K. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 2018, 6, 14. [Google Scholar]
- Nelkner, J.; Henke, C.; Lin, T.W.; Pätzold, W.; Hassa, J.; Jaenicke, S.; Grosch, R.; Pühler, A.; Sczyrba, A.; Schlüter, A. Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes 2019, 10, 424. [Google Scholar] [CrossRef]
- Smith, B.J.; Kirkegaard, J.A.; Howe, G.N. Impacts of Brassica break-crops on soil biology and yield of following wheat crops. Aust. J. Agric. Res. 2004, 55, 1–11. [Google Scholar] [CrossRef]
- Kladivko, E.J. Tillage systems and soil ecology. Soil Tillage Res. 2001, 61, 61–76. [Google Scholar] [CrossRef]
- Ramirez, K.S.; Craine, J.M.; Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 2012, 18, 1918–1927. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Lone, R.; Shuab, R.; Khan, S.; Ahmad, J.; Koul, K.K. Arbuscular Mycorrhizal Fungi for Sustainable Agriculture. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2023, 17, 168627. [Google Scholar] [CrossRef]
- Sharma, R.; Sindhu, S.; Sindhu, S.S. Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl. Soil Ecol. 2018, 129, 145–150. [Google Scholar] [CrossRef]
- Zaw, M.; Matsumoto, M. Plant growth promotion of Trichoderma virens, Tv911 on some vegetables and its antagonistic effect on Fusarium wilt of tomato. Environ. Control Biol. 2020, 58, 7–14. [Google Scholar] [CrossRef]
- Bashan, Y.; De-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.; Salomon, M.; Lowe, A.; Cavagnaro, T. Microbial solutions to soil carbon sequestration. J. Clean. Prod. 2023, 417, 137993. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2020, 28, 1327–1350. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Chittora, D.; Meena, M.; Barupal, T.; Swapnil, P.; Sharma, K. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem. Biophys. Rep. 2020, 22, 100737. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Tao, C.; Wang, Z.; Liu, S.; Lv, N.; Deng, X.; Xiong, W.; Shen, Z.; Zhang, N.; Geisen, S.; Li, R.; et al. Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytol. 2023, 238, 1198–1214. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Z.; Chang, X.; Huang, J.; Nie, X.; Liu, C.; Liu, L.; Wang, D.; Dong, Y.; Jiang, J. Soil erosion-related dynamics of soil bacterial communities and microbial respiration. Appl. Soil Ecol. 2017, 119, 205–213. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Midega, C.A.; Salifu, D.; Bruce, T.J.; Pittchar, J.; Pickett, J.A.; Khan, Z.R. Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crop. Res. 2016, 155, 144–152. [Google Scholar] [CrossRef]
- Adesemoye, A.; Torbert, H.; Kloepper, J. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl. Soil Ecol. 2010, 46, 54–58. [Google Scholar] [CrossRef]
- Yang, L.Y.; Lin, C.S.; Huang, X.R.; Neilson, R.; Yang, X.R. Effects of biofertilizer on soil microbial diversity and antibiotic resistance genes. Sci. Total Environ. 2022, 820, 153170. [Google Scholar] [CrossRef]
- Shen, Z.; Xue, C.; Penton, C.R.; Thomashow, L.S.; Zhang, N.; Wang, B.; Ruan, Y.; Li, R.; Shen, Q. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol. Biochem. 2019, 128, 164–174. [Google Scholar] [CrossRef]
- Shen, Z.; Zhong, S.; Wang, Y.; Wang, B.; Mei, X.; Li, R.; Ruan, Y.; Shen, Q. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur. J. Soil Biol. 2013, 57, 1–8. [Google Scholar] [CrossRef]
- Nawaz, A.; Qamar, Z.U.; Marghoob, M.U.; Imtiaz, M.; Imran, A.; Mubeen, F. Contribution of potassium solubilizing bacteria in improved potassium assimilation and cytosolic K+/Na+ ratio in rice (Oryza sativa L.) under saline-sodic conditions. Front. Microbiol. 2023, 14, 1196024. [Google Scholar]
- Dong, M.; Zhao, M.; Shen, Z.; Deng, X.; Ou, Y.; Tao, C.; Liu, H.; Li, R.; Shen, Q. Biofertilizer application triggered microbial assembly in microaggregates associated with tomato bacterial wilt suppression. Biol. Fertil. Soils 2020, 56, 551–563. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Bellenger, J.P.; Darnajoux, R.; Zhang, X.; Kraepiel, A.M. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review. Biogeochemistry 2020, 149, 53–73. [Google Scholar] [CrossRef]
- Russo, A.; Felici, C.; Toffanin, A.; Götz, M.; Collados, C.; Barea, J.M.; Moënne-Loccoz, Y.; Smalla, K.; Vanderleyden, J.; Nuti, M. Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants. Biol. Fertil. Soils 2005, 41, 301–309. [Google Scholar] [CrossRef]
- Sun, B.; Bai, Z.; Bao, L.; Xue, L.; Zhang, S.; Wei, Y.; Zhang, Z.; Zhuang, G.; Zhuang, X. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 2020, 144, 105989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, X.; Wang, G.; Wu, B.; Xiao, Y. Medicago sativa and soil microbiome responses to Trichoderma as a biofertilizer in alkaline-saline soils. Appl. Soil Ecol. 2020, 153, 103573. [Google Scholar] [CrossRef]
- Wei, X.; Bai, X.; Cao, P.; Wang, G.; Han, J.; Zhang, Z. Bacillus and microalgae biofertilizers improved quality and biomass of Salvia miltiorrhiza by altering microbial communities. Chin. Herb. Med. 2023, 15, 45–56. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Sas-Paszt, L.; Frąc, M. New insight into the soil bacterial and fungal microbiome after phosphorus biofertilizer application as an important driver of regenerative agriculture including biodiversity loss reversal and soil health restoration. Appl. Soil Ecol. 2023, 189, 104941. [Google Scholar] [CrossRef]
- Sivaprakasam, N.; Vaithiyanathan, S.; Gandhi, K.; Narayanan, S.; Kavitha, P.S.; Rajasekaran, R.; Muthurajan, R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res. Microbiol. 2024, 175, 104217. [Google Scholar] [CrossRef]
- Otaiku, A.A.; Mmom, P.C.; Ano, A.O. Biofertilizer Impacts on Cassava (Manihot esculenta Crantz) Rhizosphere: Crop Yield and Growth Components, Igbariam, Nigeria. World J. Agric. Soil Sci. 2019, 3, 1–15. [Google Scholar] [CrossRef]
Biofertilizer Impact | Key Insights | References |
---|---|---|
Nutrient uptake enhancement | Nitrogen-fixing bacteria (e.g., Azospirillum, Rhizobia) improve nitrogen and phosphorus uptake, reducing dependence on chemical fertilizers. | [20,26,54,77] |
Plant growth and yield improvement | PGPRs (Pseudomonas, Trichoderma) promote plant growth by producing plant hormones, enhancing nutrient absorption, and protecting against pathogens, leading to increased yields. | [43,53,69] |
Abiotic stress tolerance | Help plants cope with drought and salinity by promoting beneficial root–microbe interactions, improving water uptake, and enhancing root growth. | [8,44,46] |
Soil microbial health | Enhance microbial diversity and interactions in the rhizosphere, improving soil health, structure, and long-term fertility. | [41,61,78] |
Disease suppression | Biofertilizers containing Pseudomonas and Trichoderma induce systemic resistance, reducing crop disease incidence and minimizing chemical pesticide use. | [43,65,79,80] |
Phosphorus solubilization | Biofertilizers with PSB enhance phosphorus availability, which is critical for crop nutrition and productivity, especially in phosphorus-limited soils. | [12,24] |
Climate resilience | Biofertilizers containing climate-resilient microbes can help plants withstand environmental stresses, such as temperature fluctuations and extreme weather. | [16,28,40] |
Phytoremediation | Siderophore-producing bacteria and other PGPRs assist in the phytoremediation of heavy metals, contributing to soil detoxification and rehabilitation of polluted lands. | [48,53] |
Greenhouse gas reduction | Improved nutrient use efficiency with biofertilizers reduces nitrous oxide (N2O) emissions, a potent greenhouse gas associated with synthetic fertilizer overuse. | [13,60] |
Crop quality enhancement | Biofertilizers improve the nutritional quality of crops (e.g., higher vitamin, protein, and mineral content) by improving nutrient absorption, especially phosphorus and potassium. | [22,81] |
Synergy with organic amendments | Biofertilizers work synergistically with organic matter (compost, manure) to enhance microbial activity, nutrient availability, and sustainable nutrient release. | [19,61,80] |
Biofertilizers as microbial carriers | Biofertilizers can act as carriers for diverse microbial communities, improving soil microbiome composition and stability, particularly when combined with amendments like biochar. | [30,61] |
Marginal climate applications | Cold-tolerant microbial strains in biofertilizers enhance crop performance in cold or marginal soils, improving yield and plant health in difficult growing conditions. | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzvene, A.R.; Chiduza, C. Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review. Bacteria 2024, 3, 271-286. https://doi.org/10.3390/bacteria3040018
Dzvene AR, Chiduza C. Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review. Bacteria. 2024; 3(4):271-286. https://doi.org/10.3390/bacteria3040018
Chicago/Turabian StyleDzvene, Admire R., and Cornelius Chiduza. 2024. "Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review" Bacteria 3, no. 4: 271-286. https://doi.org/10.3390/bacteria3040018
APA StyleDzvene, A. R., & Chiduza, C. (2024). Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review. Bacteria, 3(4), 271-286. https://doi.org/10.3390/bacteria3040018