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Abstract: Antiphospholipid syndrome (APS), also known as Hughes syndrome, is a systemic autoim-
mune disorder characterized by recurrent thrombosis and pregnancy complications, accompanied by
the presence of antiphospholipid antibodies (aPLs). These antibodies target anionic phospholipids or
protein–phospholipid complexes within cell membranes, contributing to the underlying mechanisms
of the disease. Although anticoagulation therapy remains the cornerstone of APS management, it
often fails to prevent complications, particularly in obstetric and thrombotic cases. As autoimmune
diseases become increasingly linked to alterations in the gut microbiome, this study investigates
the complex interaction between gut bacteria and immune modulation in APS. We explore how
disruptions in the gut microbiome may influence the development of autoimmune conditions, with a
specific focus on APS. By identifying key microorganisms potentially involved in this gut–immune
axis, we aim to provide insights into novel preventive and control approaches. Future research should
focus on harnessing the gut microbiome to develop more effective treatments that target both the
immune system and microbial populations in APS patients.

Keywords: gut microbiome; antiphospholipid syndrome; antiphospholipid antibodies; autoimmunity;
gut health

1. Introduction

APS is an autoimmune disease characterized by the presence of persistent antiphos-
pholipid antibodies, leading to vascular thrombosis and/or pregnancy-related complica-
tions [1]. Typical features of this syndrome are venous or arterial thrombosis, miscarriage,
and thrombocytopenia [2]. In addition, APS is considered a thrombo-inflammatory disease
that occurs in approximately a third of systemic lupus erythematosus (SLE) cases and is
often associated with increasing organ damage over time [3].
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Other clinical manifestations of this disease include neurological symptoms such as
chorea, livedo reticularis, autoimmune hemolytic anemia, transverse myelitis, migraine,
epilepsy, Raynaud’s phenomenon, and heart valve lesions [4]. The classification of APS is
based on specific clinical criteria and circumstances; the first criterion includes three clinical
aspects: arterial or venous thrombosis, obstetric loss, or thrombocytopenia [5] with other
diagnostic parameters including lupus anticoagulant and anticardiolipin antibodies [6].

The recent 2023 ACR/EULAR Antiphospholipid Syndrome Classification Criteria
introduces a more detailed classification system. This includes an entry criterion of at
least one positive aPL test within three years of identifying an aPL-associated clinical crite-
rion, followed by additive weighted criteria clustered into six clinical domains. Patients
must accumulate at least three points each from clinical and laboratory domains to be
classified as having APS [7]. Further classification identifies APS as primary when not
accompanied by other autoimmune diseases and secondary when associated with autoim-
mune diseases, infections, drug-related factors, or cancer, with the strongest correlation
observed in systemic lupus erythematosus [8]. Other non-criteria manifestations such as
thrombocytopenia, APS-associated nephropathy, valvular heart disease, livedo reticularis,
and cognitive impairment have also been reported [8]. Another form of APS, known as
catastrophic APS, is characterized by the formation of thrombi in multiple small vascular
beds, resulting in organ failure and a high mortality rate in this specific group of APS
patients [9,10].

Antiphospholipid antibodies are a diverse group of autoantibodies that play a crucial
role in the pathogenesis of APS by interacting with various plasma proteins, including beta-
2 glycoprotein 1, prothrombin, thrombomodulin, plasminogen, antithrombin III, protein
C, protein S, Annexin II, and Annexin V [11,12]. These antibodies trigger prothrombotic
mechanisms by activating endothelial cells, monocytes, platelets, coagulation factors, and
complement proteins, leading to disrupted fibrinolysis, coagulation pathways, inflamma-
tion, and placental injury [13–17]. aPL targets either anionic phospholipids directly or
protein–phospholipid complexes within the cell membrane. Categorically, they can be
subdivided into three main types: anti-β2-glycoprotein-1 (anti-β2GPI), anticardiolipin, and
lupus anticoagulant [18–22]. Notably, the specificity of antiphospholipid antibodies for
APS is limited because they may also be present in healthy individuals with a history of
thrombosis, pregnancy-related morbidity, or individuals with autoimmune disorders [23].

In this study, we provide a general overview of APS and its clinical manifestations,
followed by laboratory findings that reinforce the gut bacteria–immune axis in autoimmu-
nity. We emphasize the potential link between gut microbiota and APS, identify implicated
microorganisms, and propose future directions for therapeutic development.

2. Pathophysiology of APS

Infections, especially those caused by bacterial or viral pathogens, are believed to be the
primary triggers for developing antiphospholipid antibodies; this is evident in the case of
anti-β2GPI [23]. This process, known as molecular mimicry, involves similarities between
the amino acid sequences of infectious agents (bacteria or viruses) and that of amino
acid sequences from beta-2 glycoprotein-1 (β2GPI), which contributes to the formation of
autoantibodies [24]. While the pathophysiology of APS depends on the diverse action of
antibodies on their myriad antigenic target sites in various patients [25], the etiology of
these pathogenic autoantibodies is likely a result of an intertwined intricacy of different
environmental factors in individuals who carry genetic markers further increasing disease
susceptibility [26,27], Although the mechanism is not fully understood, the APS has been
reported to disrupt the homeostatic regulation of blood coagulation [28]. The precise
mechanism of thrombosis is not yet defined. Still, a hypothesis is that there is a deficiency
in cellular apoptosis, exposing membrane phospholipids and instigating antiphospholipid
antibody formation [29]. In the APS, pathogenic antiphospholipid autoantibodies have been
shown to cause various thrombotic events that encourage coagulation while preventing
fibrinolysis [28]. This is achieved by autoantibodies that target phospholipid-binding
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proteins that cause blood clots in veins and arteries and bolster thrombosis through a
diverse array of means by disrupting the function of vital phospholipid-binding proteins
crucial to blood clot regulation and activate platelets, pivotal for clot formation [30].

Additionally, they activate endothelial cells, which in turn causes the expression of
coagulation-related molecules hindering the activity of naturally occurring anticoagulants
like protein C and protein S, which usually prevent the formation of clots, further interfering
with the fibrinolytic system and preventing the clot from dissolving [30]. Overall, APS
represents a complex interplay between autoantibodies and physiological processes that
predispose people to thrombotic events and pregnancy complications. In the context of
APS, these antibodies play a diverse role in pregnancy loss by inducing thrombosis in the
placenta, which leads to placental insufficiency and fetal death [31]. Also, the triggering of
the activation of endothelial cells, monocytes, and platelets leads to the overproduction
of tissue factor and thromboxane A2, ultimately leading to placental damage and fetal
loss [32].

3. Clinical Features of APS

APS affects various tissues and organs in the body, including blood vessels, the kid-
neys, the brain, the heart, the lungs, the skin, the liver, and the gastrointestinal tract,
resulting in various clinical symptoms and complications. These clinical features include
venous, arterial, or small vessel thrombosis; fetal loss; and thrombocytopenia. Deep vein
thrombosis is the most common manifestation, while cerebrovascular accidents represent
the predominant form of arterial thrombosis. Early fetal loss, preterm birth, and pre-
eclampsia are the most common fetal and obstetric manifestations [33]. Additional clinical
features such as cognitive dysfunction or demyelination may be associated with interac-
tions between phospholipid antibodies and cells, possibly due to a disrupted blood–brain
barrier or increased intrathecal synthesis of phospholipid antibodies [34]. This disease has
various clinical manifestations, which differ in their respective frequencies. In over 20% of
cases, patients may experience venous thromboembolism, thrombocytopenia, miscarriage
or fetal loss, stroke or a transient ischemic attack, migraine, and livedo reticularis. Less
commonly occurring in 10–20% of cases, the APS may manifest as heart valve disease,
pre-eclampsia or eclampsia, premature birth, hemolytic anemia, and coronary artery dis-
ease. Rare manifestations, occurring in less than 10% of cases, include vascular dementia,
retinal artery or venous thrombosis, amaurosis fugax, pulmonary hypertension, leg ulcers,
digital gangrene, osteonecrosis, antiphospholipid nephropathy, and mesenteric ischemia.
Occurring in less than 1% of cases, APS may lead to adrenal hemorrhage and Budd-Chiari
Syndrome [35]. This spectrum of clinical manifestations underscores the complexity and
heterogeneity of APS, necessitating thorough evaluation and tailored management ap-
proaches for affected individuals.

4. Current Treatments of APS

Despite the volume of knowledge so far, there are still uncertainties in treating APS, with
some aspects requiring further evidence [36]. The primary goals of treatment for individuals
with APS include preventing thrombosis in individuals without prior incidents (i.e., primary
thromboprophylaxis), effectively treating acute thrombosis if it occurs, and averting the recur-
rence of thrombosis in individuals with established APS (secondary thromboprophylaxis) [37].
Treatment strategies for APS include a variety of anticoagulant approaches. For instance,
vitamin K antagonists such as warfarin have historically been the cornerstone of treatment
for thrombotic APS [11]. In addition, low-dose aspirin is recommended for people who have
abnormal antiphospholipid antibodies without a history of blood clots [38,39]. Also, heparin
and direct oral anticoagulants (DOACs) such as rivaroxaban are considered in cases of war-
farin intolerance, allergy, or inadequate anticoagulant control [11]. Lastly, emerging evidence
suggests possible adjunctive therapies such as hydroxychloroquine, rituximab, and statins,
although further research is needed [38,40]. Long-term management goals in APS revolve
around preventing recurrent thrombosis while minimizing anticoagulation-related side effects,
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especially for catastrophic APS, where early intervention is crucial and typically involves a
combination of anticoagulants to address severe manifestations [41,42].

5. Involvement of Microorganisms in APS

It is well known that persistent pathogenic autoantibodies targeted at membrane
phospholipids and/or their linked plasma proteins play a role in establishing APS [29].
This is the major characteristic of APS, where two mechanisms are forwarded to cause
the presence of aPLs [43]. One reason explains the occurrence of clinical events such as
vascular thrombosis and/or pregnancy morbidity with the persistence of aPLs such as
lupus anticoagulant (LA), anticardiolipin antibodies(aCL), and anti-β2 glycoprotein 1 an-
tibody (anti-β2GP1) [1]. However, a thrombosis event in the pathogenesis of APS rarely
occurs, indicating the involvement of other determinants that modulate the thrombotic
milieu. This brought about the conception of a second hit that focuses on exploring innate
immunity like inflammation, infection, or surgery essential to precipitate the thrombotic
event in aPL carriers, with a line of thought of infective agents being one of the mechanisms
increasing the aPL exposure [44–46]. Research has shown that microbial pathogens can
provoke the production of aPLs in an antigen-dependent manner, such as the previously
mentioned molecular mimicry or through an antigen-independent manner, which includes
the breakdown of immune tolerance due to an inflammatory response [44]. Molecular
mimicry is one of the most relevant mechanisms to explain the association between infec-
tions and clinical manifestations linked with aPLs in APS because it justifies the generation
of cross-reactive T and B lymphocyte cells that recognize antigens from pathogens but
cross-react to autoantigens [47,48].

An example is rheumatic fever, a human autoimmune disease believed to have origi-
nated from cross-reactivity with protein or carbohydrate structures from pathogens. Further
research shows several similarities between rheumatic fever and APS due to the bond and
cross-reactivity of streptococcal proteins with β2GP1 [49], with homologies between pro-
teins of microorganisms and peptides generated from β2GP1 that contribute to T and B cell
activation [50]. Various animal models are used to understand the potential pathogenic
effect of infections exhibiting surface components analogous to the major immunogenic
epitopes targeted by anti-β2GP1 antibodies. From this research, it is seen that upon im-
munization, high titers of antipeptide anti-β2GP1 antibodies were detected in murine
immunized with Haemophilus influenza, Neisseria gonorrhea, Candida albicans, and tetanus
toxoid and showed APS features like thrombocytopenia with an increased risk of fetal loss.
A succinct link between gut microbiome and APS highlights the intestine as a potential
chronic trigger in patients with APS. Roseburia intestinalis (bacteria abundant in the human
gut) contains amino acid sequences homologous to those found in the B cell and T cell
epitopes within [51–54]. Significantly, when R. intestinalis is administered orally using a
mouse model of APS, it leads to the development of anti-human-β2GP1 antibodies with
the occurrence of morbidity and mortality associated with APS [55]. Some studies demon-
strate that fermented milk contains a probiotic bacterial strain that can modify aPLs in
non-autoimmune animals which further suggests that gut microbes may be able to regulate
the development of pathogenic autoantibodies and APS.

Furthermore, an association between APS and other infectious agents, including hep-
atitis C virus (HCV) and HIV, cytomegalovirus, Epstein–Barr virus, and herpes simplex
virus have been reported (Table 1). Other reports have also shown the induction of APS
by parvovirus unique region (VP1u) [55]. During the COVID-19 pandemic, APS severe
acute respiratory syndrome coronavirus 2 (SARS-CoV2) with eight types of aPL antibodies
was discovered in the plasma of over 50% of hospitalized COVID-19 patients [56]. Simi-
larly, aPLs have been associated with some bacterial infections, caused by Coxiella burnetii,
Helicobacter pylori, Mycoplasma pneumonia, Streptococci, Borrelia burgdorferi, and Mycobac-
terium tuberculosis (Table 1). For instance, syphilis patients show aCL antibodies that could
have been provoked by the cross-reactivity of syphilis antibodies with treponemal car-
diolipins [57]. Likewise, patients with leprosy also present aPL and β2GP1-dependent
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binding [44]. However, there is a paucity of data on the ability of parasitic or fungal
infections to trigger aPLs [44].

Table 1. List of key organisms involved in aPL generation and thrombosis. aCL means anticardiolipin
antibodies, anti-β2GP1 means anti-β2 glycoprotein, and LA means lupus anticoagulants.

Infection Organism aCL Anti-β2GP1 LA Thrombosis

Viral CMV + + + +
EBV + + + +
HIV + + + +
SARS-Cov-2 + + + +
Varicella zoster virus + + + +
Parvovirus B19 + + + +
Hepatitis A Virus + - - +
Hepatitis B Virus + + + -
Hepatitis CVirus + + + +
Hepatitis D Virus + + + -
mumps virus (MuV) + - - -
Rubella + - - -
Adenovirus + + - -
Human T-lymphotropic virus + + - -
Influenza A + - - +

Bacterial Mycobacterium leprae + + + +
Borrelia burgdorferi + + + +
Salmonella sp. + + + +
Streptococcus spp. + + + +
M. tuberculosis + + - +
Escherichia coli + + - +
Coxiella burnetiid + - + -
Helicobacter pylori + + - -
Klebsiella sp. + - - -
Chlamydia + + - -
Mycoplasma pneumonia + + - +
Treponema pallidum + + - -

Parasitic Plasmodium malariae + + - +
Leishmania sp. + + + -
Leptospira sp. + + - -
Plasmodium falciparum + - - -
Toxoplasma sp. + - - -

6. Gut Microbiome
6.1. Overview

The development of the human gut microbiota begins early, even before birth, because
it is essential in maintaining the host organism’s normal physiological processes [58]. This
microbiota can synthesize diverse metabolic compounds that can exert beneficial and
detrimental effects on human health through interactions with the host due to its ability
to proliferate along the intestinal surfaces, establishing a resilient system that serves as a
barrier against the intrusion of pathogenic microorganisms [58].

6.2. Gut Microbiome—Metabolic and Protective Role

The gut microbiota plays a pivotal role in metabolizing dietary components, trans-
forming indigestible carbohydrates like cellulose, hemicelluloses, resistant starch, pectin,
oligosaccharides, and lignin into short-chain fatty acids (SCFAs), including acetic, propi-
onic, and butyric acids produced by Firmicutes, Bacteroidetes, and certain anaerobic gut
microorganisms. The gut microbiota also contributes to the host’s well-being by facilitating
the synthesis of essential vitamins such as biotin, thiamine, cobalamin, riboflavin, nicotine,
pantothenic acids, as well as vitamins B and K. It is worth noting that the gut microbiota
can also produce neurochemicals, including gamma-aminobutyric acid (GABA), an im-
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portant inhibitory neurotransmitter in the brain; dysregulation of GABA has been linked
to various neuropsychiatric disorders. Additionally, the microbiota generates various
compounds such as carbohydrates, branched-chain amino acids, amines, phenols, indoles,
and phenylacetic acid. Moreover, it plays a role in synthesizing bile acids, cholesterol, and
conjugated fatty acids. In summary, the microbiota’s metabolic activities are multifaceted
and encompass transforming dietary components, vitamin synthesis, neurochemical pro-
duction, and generating various bioactive compounds [59]. The protective role of the
microbiota is to occupy intestinal surfaces and create stability in the system that prevents
the invasion of pathogenic microorganisms. The production of SCFAs serves as a signifi-
cant energy source for intestinal epithelial cells. It strengthens the mucosal barrier, which
is regarded as a tumor suppressor due to its promising anti-inflammatory and chemo-
preventive properties [60]. The microbiota plays a protective role by colonizing intestinal
surfaces and establishing a stable environment that acts as a barrier against the intrusion
of pathogenic microorganisms. Moreover, producing short-chain fatty acids (SCFAs) is a
crucial energy source for intestinal epithelial cells, reinforcing the mucosal barrier. SCFAs
are also recognized as tumor suppressors, owing to their notable anti-inflammatory and
chemo-preventive properties [61].

6.3. Microbiota and the Gut–Brain Axis

The brain–gut–microbiota axis is a bidirectional system enabling gut microorganisms
to communicate with the central nervous system (CNS) and the CNS with the gut. The
mechanisms of signal transmission are complex and not fully understood but include neural,
endocrine, immune, and metabolic pathways which influence the array of factors affecting
the microbiome–gut–brain axis such as diet, genetics, drugs, environment, exercise, cognitive
behavior, stress, social interactions, and fear [61,62]. Gut microbes can produce most neuro-
transmitters in the human brain and their precursors. However, some neurotransmitters, like
glutamate, GABA, dopamine, and serotonin, cannot cross the blood–brain barrier and must be
synthesized in the brain from local pools of precursor neurotransmitters [63]. These precursors
mostly comprise amino acids, e.g., food-derived neurotransmitters (tyrosine and tryptophan)
that pass through the blood–brain barrier. They are absorbed by the corresponding cells in the
brain that produce neurotransmitters [63].

The precursors are subsequently transformed via several intermediate processes uti-
lizing different host enzymes into functional neurotransmitters, such as dopamine, nore-
pinephrine, and serotonin; therefore, by controlling the metabolism of neurotransmitter
precursors, the gut microbiota can affect host behavior due to the dietary origin of these
precursors. For instance, probiotic bifidobacterial therapy can raise the tryptophan lev-
els necessary for serotonin synthesis. Certain Lactobacilli species change how gamma-
aminobutyric acid (GABA) is metabolized and how the GABA receptor expresses itself and
behaves in the brain. [64] Escherichia, Bacillus, and Saccharomyces spp. can produce GABA,
as Lactobacillus and Bifidobacterium species can produce enterococcus, streptococcus,
and Escherichia, and norepinephrine can create dopamine, acetylcholine, and serotonin;
Bacillus can produce both [64]. Outside the brain, dopamine production has been detected
in Staphylococcus in the human intestine, which can take up the precursor l-3,4-dihydroxy-
phenylalanine (l-DOPA) and convert it into dopamine by staphylococcal aromatic amino
acid decarboxylase (SadA) expressed by these bacteria. More than 50% of dopamine in the
human body is synthesized in the gut. Dopamine and its receptors are widely distributed
in the intestinal tract and affect gastric secretion, motility, and mucosal blood flow [65,66].

6.4. Microbiota and the Gut–Kidney Axis

The gut–kidney axis, a pathological interaction between the gut microbiota and kidney
diseases, appears to be associated with a variety of clinical manifestations, including
hemodialysis, peritoneal dialysis, immunoglobulin A (IgA) nephropathy, acute kidney
injury (AKI), hypertension, nephrolithiasis, and chronic kidney disease (CKD) [67]. The gut–
kidney axis is driven by various important processes. Studies show that alterations in the
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functions and compositions of gut microbiota can induce inflammation, increase oxidative
stress, and cellular and DNA damage [68]. A significant involvement for abnormal gut
microbiota has been found in the pathogenesis of chronic kidney disease (CKD) with severe
results [69]. Additionally, alterations like decreased α-diversity gut microbiota composition
are associated with kidney stone formation [69].

Potential links exist between the gut–kidney axis and APS, notwithstanding the lack
of empirical evidence in this regard. Vascular dysfunction and coagulation dysregulation,
which are hallmarks of the disease, lead to a wide range of complicated symptoms, includ-
ing kidney failure in APS. Dissimilar to lupus nephritis, kidney disease associated with aPL
is not inflammatory [70]. Novel therapeutics aimed at the gut–kidney axis, like probiotics
and dietary adjustments, might exhibit possibility of treating kidney problems associated
with APS, albeit further investigation is recommended [71].

6.5. Gut Microbiome in Health and Diseases

The gut microbiome refers to the diverse community of microorganisms inhabiting
the human gastrointestinal tract, including bacteria, viruses, fungi, and other microbes.
It plays a crucial role in maintaining overall health and is implicated in various diseases
when its composition and function are disrupted, as shown in Figure 1. The gut microbiota
has the largest quantities of microorganisms and the most species compared to other
body parts. They consist of thousands of microorganisms, including bacteria, viruses,
and some eukaryotes, that colonize the digestive tract just after birth. The microbial
composition of the gut microbiota varies across the digestive tract. In the stomach and
small digestive tract, relatively few species of bacteria are present. The intestinal microbiota
consist of more than 1500 species distributed in more than 50 different phyla. The colon
contains a densely populated microbial ecosystem with up to 1012 cells for every gram
of intestinal substance [71]. The most dominant bacterial phyla in the human gut are
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, and the most recorded bacterial
genera are Bacteroides, Clostridium, Peptococcus, Bifidobacterium, Eubacterium, Ruminococcus,
Faecalibacterium, and Peptostreptococcus [72]. It was reported that Bacteroidetes and Firmicutes,
followed by Proteobacteria, Fusobacteria, Tenericutes, Actinobacteria, and Verrucomicrobia,
were the most dominant phyla, making up to 90% of the total microbial population in
humans [73]. Among these, Bacteroides are the most abundant, comprising about 30%
of bacteria in the gut, suggesting they are particularly significant in the functioning of
the host organism. Most gut bacteria (99%) are anaerobes; however, high densities of
aerobic microbes are recorded in the cecum. Fungi, protists, archaea, and viruses are
also present in the gut flora; however, less is known about their activities [71]. Several
factors can change the gut microbiota composition and function. These factors include host
genetics, diet, age [74], antibiotics use, and diseases [75]. The gut microbiota has a lot of
significant functions in the human body, including supporting protection from pathogens
by colonizing mucosal surfaces, creating different antimicrobial substances, enhancing the
immune system, playing a vital role in digestion and metabolism, controlling epithelial cell
proliferation and differentiation, modifying insulin resistance, and affecting its secretion
influencing brain–gut communication and thus affecting the mental and neurological
functions of the host; hence, the gut microbiota plays a significant role in maintaining
normal gut physiology and health [71].
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Figure 1. Gut microbiome and immune pathways. The gut microbiota beneficially aids in forming
a thick protective layer of mucus made up of mucins glycoproteins (MGPs) secreted from Goblet
cells. Microbes and their derived products could cause the Paneth and gut epithelial cells to generate
antimicrobial peptides (AMPs). Commensals and their products are recognized by immune cells
like dendritic cells (DCs), epithelial cells, and macrophages in the gut lumen or within the gut tissue.
Foreign pathogens arriving in the gut and their pathogen-associated molecular patterns (PAMPs) are
also recognized by immune cells like DCs, epithelial cells, and macrophages, within the gut lumen
and gut tissue with the aid of pattern recognition receptors (PRRs) expressed by these immune cells.
Antigens in the gut lumen are detected directly by dendritic extensions of DCs piercing through
borders between gut epithelial cells. A specialized endocytic intestinal epithelial cell known as an M
cell can also transport microbial antigens across the epithelial surface and present them to DCs and
macrophages to process and activate the immune response. Microbial antigens are also recognized
by plasmacytoid dendritic cells (pDCs), which secrete high levels of type I interferons that help effect
antiviral immunity. DCs and macrophages use the prompts from the normal gut microbiota to train
the immune system by secreting inflammatory mediators and contributing to developing specialized
cells like B cells and T cells. Macrophages and mature DCs also transfer signals received from
invading pathogens to secrete inflammatory mediators and induce the development of naïve T cells
into inflammatory T-cell subsets, including T helper 1 (Th1), T helper 17 (Th17), T follicular helper
(Tfh), and T regulatory (Treg) cells. Mature DCs also induce the differentiation of B cells into plasma
cells, which produces antibodies including protective secreted IgA (SIgA). The various T cell subsets
express inflammatory mediators like interferon-gamma (IFNγ), interleukin 17 (IL-17), and interleukin
17 (IL-17), which helps to localize pathogenic infections and prevent their systemic dissemination.
However, T regulatory (Treg) cells secrete TGF-b and IL-10, which can limit the functions of many
immune cells and create an anti-inflammatory cytokine condition in a regulatory manner.

6.6. Gut Microbiome and Age

Maternal milk, which is the optimal food for infants, meets all their nutrition and
physiologic requirements and protects against infections due to the presence of immune
effectors, such as immunoglobulin A (IgA); this natural mode of feeding contributes to
the maturation of the infant’s immune system and modulates the development of its gut
microbiota. Human milk, which is not sterile, contains protein, fat, carbohydrates, im-
munoglobulins, and endocannabinoids. It also contains as many as 600 different species
of bacteria, including beneficial Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobac-
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terium longum, Bifidobacterium bifidum, and Bifidobacterium dentium [76]. Moreover, the
carbohydrate component of human milk has oligosaccharides, which make up the third
largest solid component of the entire food source. Human milk oligosaccharides are indi-
gestible polymers formed by a few monosaccharides that serve as prebiotics by selectively
stimulating the growth of members of the genus Bifidobacterium [77]. They have been
linked with strengthening gut mucosal protection through activities against pathogens, also
increasing the production of immunoglobulin A, which is correlated with modulation of the
intestinal immune system [78,79]. It is noted that the Bifidobacterium-dominated microbiota
of the infant changes over time into the Bacteroidetes and Firmicutes-dominated microbiota of
adults. This distribution remains stable throughout adulthood without perturbations, such
as long-term dietary changes, repeated antibiotic usage, or disease. Declines in dentition,
salivary function, digestion, and intestinal transit time may affect the gut microbiota upon
aging. There are notable differences in the microbiota in elderly people compared with
young adults, with relative proportions of Bacteroidetes predominating in elderly people
compared with higher proportions of Firmicutes in young adults [80].

6.7. Gut Microbiome and Environmental Influences—Focus on APS

There is a research gap and a lack of a detailed scoping review on the environmental
factors influencing the gut microbiome shape, structure, functions, and association with
APS. The gut microbiome is extremely dynamic, and its variations are linked to various
health outcomes, including neurological diseases, inflammatory bowel disease, respiratory
illnesses, obesity, arthritis, depression, cardiovascular diseases, chronic liver diseases, and
pancreatic disorders, as stated above. These variations are often influenced by environmen-
tal factors such as environmental contaminants and medication use [81,82]. The impact of
environmental factors on the gut microbiome can differ based on demography and level
of exposure. The interactions between the environment and gut microbiome are complex,
with diverse environments playing crucial roles in shaping the gut microbiome [83]. This
becomes particularly important during early life stages, as differences in hygiene and diet
among households and communities significantly contribute to gut colonization by various
bacterial species, predisposing individuals to different health conditions [83]. The gut
microbiome changes throughout life, starting from neonatal development. The nurturing
surroundings where a child grows up can notably impact the development of specific gut
microbiome species. This could affect their vulnerability to APS because various healthy
microbiomes support a varied and balanced array of microorganisms and their activities,
which is vital for a strong immune system [84].

Environmental factors such as the dissemination of contaminants, including pesticides,
heavy metals, and microplastics, pose significant threats to the human gut microbiome
and are highly associated with various diseases resulting from changes in the composition,
diversity, and metabolic activity of the gut microbiome community [85]. Most contaminants
remain persistent and bioactive in the environment. Upon ingestion, contaminants are
metabolized by the gut microbiome, and the bioactive metabolites, i.e., residues, affect
the homeostasis balance of the gut microbiome, resulting in severe health complications.
Indeed, bioactive metabolites’ effects on the gut microbiome were found to interfere with
neurotransmitters, leading to cognitive impairments and mental health disorders [86]. The
assimilation of glyphosate, a pesticide, has been shown to cause neurological disorders,
including autism, through the modification of gene expression, DNA replication, and
immunomodulation of gut microbial communities [87]. Heavy metals such as mercury,
copper, lead, and cadmium in food, soil, and water have been shown to impose selective
pressure on the gut microbiota composition, thereby increasing the vulnerability of the
host to different types of cancers, immune response alteration, and inflammatory cytokine
increments [88]. The most adverse effects of heavy metals are inhibiting gut microbiome
proliferation, interfering with the composition and metabolic prowess of the gut bacterial
community, and distorting the oxidative and immune status of the host [85].
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Microplastics are reservoirs of organic and inorganic contaminants as well as antibi-
otics. Such microplastics as virgin polystyrene absorb polyaromatic hydrocarbons. Also,
the concentrations of copper and zinc were determined to be highly correlated with the
amounts of virgin polystyrene bead and polyvinyl chloride, respectively. These were
studied to be widely distributed in the environment [89] and cause several health issues,
including intestinal tract infections, mucosa damage, and increasing permeability [90].
Microplastics are home to diverse microbial communities, including pathogens [90,91].
These can displace gut microbiota, leading to the dominance and dissemination of bacterial
pathogens in the gut. This impacted cytokine secretion and the proportion of Th17 and
Treg cells within CD4+ cells, leading to inflammation of the intestines [92].

Medication use, including antibiotics and their effects on gut microbiota, has been
extensively studied. Antibiotics are substances that kill or inhibit bacterial growth but also
target commensal bacteria in the gut, causing various collateral damage [93]. Antibiotics
can either be bactericidal or bacteriostatic by killing bacteria or inhibiting bacterial prolif-
eration. Antibiotic exposure induces long-term changes in the gut microbiome structure
and increases the susceptibility of the host to immunological, inflammatory, metabolic,
gastrointestinal, and allergic consequences [94]. Antibiotic exposure during pregnancy
results in an imbalanced gut microbiome, which in turn predisposes pregnant women to
severe risk of depressive symptoms [95]. After childbirth, antibiotic consumption increases
postpartum depression within six months [85]. Different antibiotics target different bacterial
cells, but some are broad-spectrum, with activities directly affecting the gut microbiome,
leading to dysbiosis and resulting in a dysfunctional immune system, which is a major
factor facilitating the predisposition of the host to APS [96].

7. Conclusions

The gut microbiome is a complex environment vital in maintaining host health and
controls several physiological mechanisms, such as metabolism and regulation of the im-
mune system, among others. Disturbances in or interruptions of the gut microbiota have
been associated with several health problems, such as neuropsychiatric disorders, metabolic
conditions, and immune dysregulation. Several studies have highlighted the role of mi-
crobiota in protecting against pathogens and regulating immune and metabolic pathways.
Moreover, the gut microbiota is influenced by various environmental factors, especially
diet and medications. Therefore, investigating these environmental factors, specifically in
the context of autoimmune disorders like APS, emphasizes the need for continued research.
Investigating the gut microbiome’s activities in several disease scenarios has the potential
to develop novel therapeutic strategies aimed at controlling and preventing those menaces.

8. Recommendations and Perspectives: A Need for a Holistic Treatment Approach

Understanding the link between infectious disease agents, gut microbiota, and APS
is necessary for curating and advancing alternative approaches to treating APS [97]. The
complex, intricate relationships between the gut microbiota, the neuronal mechanisms, and
the hormonal pathway of the gut need to be further studied to be able to interpret molecular-
level interactions useful in animal models, healthy individuals, and patients to yield novel
methods for diagnosing, preventing, and managing APS and other associated autoimmune
conditions [98]. Rather than the conventional treatment approaches, which aim to eliminate
venous thrombosis, there is a need for an evidence-based treatment regimen that manages
the syndrome with concise consideration for older adults and pregnant mothers due to
the complications of their gut microbiota proliferation, which has been found to influence
the production of aPLs [97]. Also, considering all the prospects that may promote the
proliferation of the intestinal microbiome leading to the release of various aCL antibodies or
their molecular mimicry could hinder the established treatment regimen and cause failure
and delayed recovery, further aggravating the autoimmune disease syndrome [98].

Furthermore, beyond anticoagulation, which is regarded as the cornerstone of APS
treatment, current studies are progressively focused on a few biologics, largely because
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these biologics, such as rituximab and eculizumab, are generally indicated for refractory
catastrophic APS [7] with high specificity and sensitivity, albeit with some limitations so
far. Ultimately, more studies are needed to design useful, safe, and effective vaccines and
therapies for APS.
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