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Abstract: Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that play a crucial
role in sustainable agriculture by enhancing plant growth through various mechanisms. This review
examines the contributions of PGPR in improving nutrient availability, producing phytohormones,
providing biocontrol against pathogens, and enhancing abiotic stress tolerance. By reducing the
necessity for chemical fertilizers and pesticides, PGPR mitigate environmental impacts, enhance soil
health, and support long-term agricultural productivity. However, challenges such as inconsistent
performance across various soils, regulatory barriers, and limited farmer awareness, hinder their
widespread adoption. Recent advancements in nano-encapsulation technology, genetic engineering,
and bioinformatics, present promising solutions for overcoming these obstacles and enhancing
PGPR efficacy. The incorporation of PGPR into biofertilizers, biopesticides, and integrated plant
management (IPM) offers a sustainable resolution to global agricultural challenges. This review
addresses the current state of PGPR research, applications, and future directions for optimizing their
use in promoting sustainable agriculture.
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1. Introduction

Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria residing in the
rhizosphere, the soil region contacted by plant roots [1]. These bacteria play a vital role
in promoting plant growth and health through various mechanisms, making them a key
component of sustainable agriculture [2,3]. PGPR can promote plant growth directly by im-
proving nutrient acquisition and producing growth-mediating hormones (phytohormones)
or indirectly by protecting plants from pathogens (biotic stresses) and mitigating abiotic
stresses (such as drought and salinity) [4–6].

Different PGPR have different mechanisms of action. Among them, conserved mecha-
nisms are nutrient solubilization and fixation [7,8], phytohormone production [4,6], bio-
control of pathogens [4–6], and abiotic stress tolerance [5]. Specifically, PGPR enhance
nutrient availability by solubilizing phosphorus and fixing atmospheric nitrogen, thus
reducing the need for chemical fertilizers, which are not sustainable [9,10]. PGPR produce
phytohormones such as auxins, gibberellins, and cytokinins, which stimulate root and
shoot development, enhancing overall plant growth [5,6,11,12]. PGPR protect plants from
pathogens by producing antimicrobial compounds, competing for resources, and inducing
systemic resistance in plants, which can reduce the reliance on chemical pesticides [4,6,9].
These bacteria also help plants withstand abiotic stresses like drought and salinity by
enhancing stress response mechanisms and detoxifying harmful substances [4,5,9].
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The need for sustainable agricultural practices has become increasingly urgent due
to the environmental and health concerns associated with conventional farming methods.
Traditional agriculture often relies heavily on synthetic fertilizers and pesticides, which
can lead to soil degradation, water pollution, and the development of resistant pest strains.
These conventional practices contribute to environmental issues such as eutrophication
and biodiversity loss, posing significant threats to ecosystems and human health [9,13].
By integrating PGPR into agricultural practices, farmers can achieve higher crop yields
and quality while reducing the environmental impact of farming. This approach aligns
with the goals of sustainable agriculture, promoting ecological balance and long-term
productivity [9,11].

PGPRs are increasingly recognized as a sustainable alternative or complement to
conventional agricultural practices. Their ability to enhance crop productivity while mini-
mizing environmental impacts makes them a promising solution for future agricultural
challenges. As research advances, the development of more effective PGPR strains and
application methods is expected to further their roles in sustainable agriculture [14].

The integration of PGPR in agricultural practices offers several benefits: (1) Reduced
chemical inputs: By improving nutrient availability and providing natural pest control,
PGPRs reduce the need for synthetic fertilizers and pesticides, contributing to more sustain-
able agricultural practices [9,10]. (2) Improved soil health: PGPR enhance soil fertility and
structure, supporting long-term agricultural productivity and sustainability [9]. (3) Environ-
mental benefits: The reduction in chemical inputs leads to lower environmental pollution
and a smaller carbon footprint, aligning with the goals of sustainable agriculture [11,15].
(4) Additionally, PGPR play a pivotal role in augmenting soil fertility and structure by
promoting organic matter breakdown and nutrient cycling, thereby fostering overall soil
health [7,9,15].

2. Mechanisms of Action
2.1. Nutrient Solubilization and Fixation

PGPRs play a crucial role in enhancing plant nutrition by solubilizing phosphorus
and fixing atmospheric nitrogen, making these essential nutrients more available to plants.
Phosphorus is a vital nutrient for plant growth, but it often exists in forms that are not
readily accessible to plants. Although the dynamics of inorganic phosphate and PGPR’s
influence on it are completely different from those of the organic phosphate fraction, some
PGPR can solubilize certain types of insoluble phosphates through the production of
organic acids like gluconic acid and citric acid. These acids lower the pH and chelate
cations bound to the phosphate group, thereby releasing it into a form that plants can
absorb [16]. This process could be facilitated by enzymes like phytases and phosphatases,
which further aid in the mineralization of organic phosphorus compounds [17]. Recent
studies have highlighted the effectiveness of PGPR strains from genera such as Bacillus,
Pseudomonas, and Enterobacter in solubilizing phosphate and promoting plant growth [18].

In addition to phosphorus solubilization, PGPR are instrumental in fixing atmospheric
nitrogen, a process that converts inert nitrogen gas into ammonia, which plants can incor-
porate. This biological nitrogen fixation is primarily carried out by diazotrophic bacteria,
which possess the nitrogenase enzyme complex capable of reducing atmospheric nitro-
gen to ammonia [19]. PGPR such as Azospirillum and Rhizobium are well-known for their
nitrogen-fixing capabilities, particularly in association with leguminous plants, where they
form symbiotic relationships in root nodules [20]. These interactions not only enhance
nitrogen availability but also improve soil fertility and reduce the necessity for chemical
nitrogen fertilizers, contributing to more sustainable agricultural practices [19].

2.2. Phytohormone Production

PGPR are known for their ability to produce phytohormones such as auxins, gib-
berellins, and cytokinins, which play a crucial role in enhancing plant growth and de-
velopment. Auxins, particularly indole-3-acetic acid (IAA), are among the most studied
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phytohormones produced by PGPR [4,5]. IAA is primarily produced in the rhizosphere and
is instrumental in promoting root elongation, root hair formation, and lateral root develop-
ment, which collectively enhance the plant’s ability to absorb water and nutrients [21,22].
This hormone is produced by various PGPR species, including Azospirillum, Pseudomonas,
and Agrobacterium. IAA’s production is also considered a key mechanism through which
PGPR facilitate plant growth [23].

Gibberellins (GAs) are another group of phytohormones produced by PGPR that
significantly influence plant growth. These hormones are involved in promoting seed
germination, stem elongation, and flowering. PGPR such as Bacillus and Pseudomonas
species have been reported to produce gibberellins, which can enhance plant growth even
under stressful conditions [24,25]. The application of PGPR that produce gibberellins can
be particularly beneficial in improving crop yield and resilience to unfavorable stresses,
making them a valuable component of sustainable agricultural practices [26].

Cytokinin is another class of phytohormones produced by PGPR that play a vital role
in cell division, shoot initiation, and leaf expansion. These phytohormones interact with
auxins to regulate various aspects of plant growth and development, including delaying
leaf senescence and enhancing chlorophyll production [27,28]. The production of cytokinin
by PGPR can lead to improved plant vigor and productivity, as demonstrated in studies
involving Bacillus megaterium and other cytokinin-producing rhizobacteria [29].

2.3. Biocontrol of Pathogens

PGPR protect plants from pathogens through several mechanisms, including the pro-
duction of antimicrobial compounds and competition for resources. These bacteria reside
in the rhizosphere and play a pivotal role in enhancing plant health by suppressing natural
plant diseases. One of the primary mechanisms by which PGPR exert their protective effects
is through the production of antimicrobial compounds like antibiotics, siderophores, and
enzymes that degrade pathogen cell walls [4,6]. For instance, PGPR like Pseudomonas and
Bacillus species produce antibiotics that inhibit the growth of harmful pathogens, thereby
reducing disease incidence in plants [30].

In addition to producing antimicrobial compounds, PGPR compete with pathogens
for nutrients and ecological niches, effectively limiting the resources available to harmful
microbes [31]. This competition is crucial in the rhizosphere, where nutrients can be scarce,
and the ability of PGPR to efficiently utilize these resources can outcompete and suppress
pathogenic organisms [32]. By rapidly colonizing plant roots and establishing themselves
in the rhizosphere, PGPR can effectively prevent the colonization and proliferation of
pathogens, thereby acting as a natural biocontrol agent [33].

Furthermore, PGPR can induce systemic resistance in plants, enhancing their innate
immune responses against a broad spectrum of pathogens [4,6]. This induced resistance is
often mediated by signaling molecules such as salicylic acid, jasmonic acid, and ethylene,
which activate defense pathways in plants, providing them with enhanced protection
against future pathogen attacks [34]. The integration of PGPR into agricultural practices
not only helps reduce the reliance on chemical pesticides but also contributes to sustain-
able agriculture by promoting plant health and resilience in an environmentally friendly
manner [9].

2.4. Abiotic Stress Tolerance

PGPR play a significant role in helping plants cope with abiotic stresses such as
drought, salinity, and heavy metal toxicity. These stresses are exacerbated by climate change
and pose significant challenges to agricultural productivity. PGPR mitigate these stresses
through different mechanisms such as the production of phytohormones, modulation of
antioxidant systems, and enhancement of nutrient uptake [35,36].

In the context of drought stress, PGPR enhance plant tolerance by producing phy-
tohormones like indole-3-acetic acid (IAA) and gibberellic acid, which promote root
growth and increase water uptake efficiency [37,38]. Additionally, PGPR can produce
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1-aminocyclopropane-1-carboxylate deaminase (ACC), an enzyme that lowers ethylene
levels in plants [4]. Since ethylene can inhibit root growth under stress conditions, reducing
its concentration helps in maintaining root growth and function during drought [39].

Under salinity stress, PGPR improve plant resilience by enhancing ionic balance and
osmotic adjustment. They achieve this by producing osmo-protectants and modulating ion
transporters that help maintain a favorable potassium-to-sodium ratio, which is necessary
for cellular function under saline conditions [40,41]. PGPR also enhance the antioxidant
capacity of plants, reducing oxidative damage caused by salt-induced stress [35].

In the case of heavy metal toxicity in plants and soil, PGPR assist in phytoremediation
by secreting chelating agents and enzymes that transform metals into less toxic forms. They
are also capable of immobilizing heavy metals in the rhizosphere, which helps prevent
these metals from being absorbed by plants [42,43]. This not only protects plants from
metal toxicity but also improves soil health by reducing metal bioavailability [44].

3. Applications in Agriculture
3.1. Biofertilizers

A biofertilizer is a formulated product containing one or more living microorganisms
(or their latent cells) that, when applied to seeds, plant surfaces, or soil, colonize the rhi-
zosphere or the interior of the plant and promote growth by enhancing the availability,
uptake, or use efficiency of nutrients [45]. PGPR have emerged as a promising alternative
or complement to synthetic fertilizers, offering a sustainable approach to improve soil
fertility and plant growth. These beneficial bacteria are naturally occurring soil microor-
ganisms that colonize plant roots (or other parts of the plant) and promote growth through
various mechanisms. Recent studies have shown that PGPR can improve soil biological
activity [46,47]. The formulation of PGPR biofertilizers involves isolating effective strains
from the rhizosphere, mass-producing them through fermentation, and developing stable
formulations such as liquid suspensions, powders, or granules [48].

The application of PGPR biofertilizers can be tailored to different crops and farming
practices. Methods such as seed inoculation, soil drenching, foliar sprays, and root dipping
are commonly used to deliver PGPR to plants. These applications enhance root colonization,
improve nutrient uptake, and protect plants from pathogens [46,49]. PGPR biofertilizers
offer several advantages over conventional synthetic fertilizers. PGPR biofertilizers are
environmentally sustainable, reducing soil and water pollution while maintaining soil
health and fertility [48]. PGPR also improve nutrient efficiency by enhancing the availability
of nitrogen, phosphorus, and other essential nutrients, thereby reducing the need for
chemical fertilizers [46].

Moreover, PGPR enhance plants’ resilience to abiotic stresses by producing stress-
relieving compounds like ACC-deaminase and inducing systemic resistance, thereby con-
tributing to healthier plant growth [46,49]. While the initial costs of PGPR biofertilizers
may be higher, they can lead to long-term cost savings by reducing the need for chemical
inputs and improving crop yields [48].

3.2. Seed Treatments and Soil Amendments

PGPR are applied to crops through various methods, each tailored to optimize their
effectiveness in different environments and crop types. One common method is seed
inoculation, where seeds are coated with PGPR before planting. This technique promotes
early root colonization, leading to improved seedling vigor and nutrient uptake. Seed
inoculation has been shown to be particularly effective in enhancing the growth of crops
like maize and cowpea, as it facilitates the establishment of a healthy soil microbiome [50].

Another effective method is soil amendment, which involves incorporating PGPR into
the soil to improve its fertility and structure. This approach enhances nutrient availability
and promotes root growth, making it suitable for various crops, including lettuce and poplar.
Recent studies have demonstrated that soil amendments with PGPR can significantly
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improve plant growth and yield by enhancing nutrient uptake and reducing the need for
chemical fertilizers [51].

Additionally, PGPR can be applied through foliar sprays and root dipping, which are
particularly useful in environments where soil conditions are suboptimal or where rapid
microbial colonization is needed [50]. In addition to triggering induced systemic resistance
(ISR), some PGPR can directly inhibit the growth of plant pathogens, even though they
were originally isolated from plant root systems [4–6,52].

The effectiveness of PGPR applications varies depending on the crop and environ-
mental conditions. For instance, in hydroponic systems, PGPR have been used to reduce
mineral fertilizer use while maintaining or even improving crop yield and quality. This
is particularly beneficial in regions where mineral fertilizers are costly or difficult to ob-
tain [53].

4. Challenges and Limitations
4.1. Consistency and Survival

The inconsistent performance of PGPR in different soils and environmental conditions
presents a significant challenge to their widespread adoption in sustainable agriculture.
One of the primary reasons for this variability is the complex interaction between PGPR
and the native soil microbiome. These interactions can influence the colonization and
efficacy of PGPR, as native microbes often compete with introduced strains for resources
and niches [54]. Additionally, the physiochemical properties of the soil, such as pH, nutrient
content, and moisture levels, can affect the survival and activity of PGPR. This makes it
difficult to predict their performance across different environments [55].

Another factor contributing to the inconsistent performance of PGPR is the specificity
of plant–microbe interactions. Different plant species and even cultivars within a species
can exhibit varying responses to the same PGPR strains. This host specificity can result
in variable plant growth promotion and disease resistance outcomes, depending on the
plant genotype and the PGPR strain used [9]. At the molecular level, this specificity is often
mediated by plant pattern recognition receptors (PRRs) that recognize specific molecular
patterns associated with microbes (MAMPs or PAMPs). The composition and sensitivity of
these PRRs can vary between plant species and cultivars, leading to differential recognition
and response to PGPR [56]. For instance, certain plants may have evolved PRRs that are
more sensitive to the flagellin or lipopolysaccharides of specific PGPR strains, resulting in
a stronger growth-promoting response [57]. Physiologically, the effectiveness of PGPR can
be modulated by the plant’s hormonal balance and nutrient status. Different plant species
and cultivars may have varying baseline levels of phytohormones or different sensitivities
to PGPR-produced hormones like auxin or cytokinin. This can result in differential growth
responses when exposed to the same PGPR strain [58]. Moreover, environmental stressors
such as temperature fluctuations can further complicate the effectiveness of PGPR, as
these conditions can alter plant physiology and microbial community dynamics in the
rhizosphere [59].

The rhizosphere is the narrow region of soil surrounding plant roots, typically ex-
tending a few millimeters from the root surface. This zone is characterized by intense
microbial activity due to the presence of root exudates, which serve as a nutrient source for
microorganisms [60]. In contrast, the rhizoplane refers to the root surface itself, including
the epidermis and mucilage. This zone is in direct contact with soil particles and is the site
of intimate plant–microbe interactions [61]. Many PGPR form biofilms on the rhizoplane,
creating a protective barrier against pathogens and enhancing nutrient exchange. This
natural defense mechanism reduces the need for chemical pesticides [62]. PGPR colonizing
the rhizoplane can directly influence plant growth by producing phytohormones like aux-
ins and cytokinins. This promotes sustainable plant growth without reliance on synthetic
growth regulators [63]. Beneficial PGPR on the rhizoplane can also outcompete pathogenic
microorganisms, providing a natural and sustainable approach to disease control [64].
However, PGPR face several challenges and limitations when applied to the rhizosphere
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and/or rhizoplane for sustainable agriculture [55]. These include biological constraints
such as competition with indigenous microorganisms and potential incompatibility with
existing beneficial microbes. Technical constraints involve maintaining PGPR viability
during formulation, storage, and application, as well as ensuring consistent rhizoplane
colonization. Field-level constraints include unpredictable performance under varying soil
and environmental conditions and potential negative interactions with agrochemicals [55].
To address these challenges, several strategies have been proposed, one of which is to select
robust PGPR strains that are adaptable to local environmental conditions and compatible
with specific crops. This involves screening for PGPR that can withstand stress factors
and that have shown effectiveness with local plant species [59]. Additionally, developing
advanced formulations that enhance the viability and stability of PGPR during storage,
transport, and application can improve their persistence in the soil [55]. Utilizing consortia
of different PGPR strains that have synergistic effects can also enhance nutrient acquisition,
disease suppression, and stress tolerance [65].

4.2. Compatibility and Interaction

The compatibility of PGPR with target crops and the indigenous soil microbiome is
crucial for their successful application in sustainable agriculture. This compatibility ensures
that PGPR can effectively colonize plant roots, promote growth, and provide protection
against pathogens. One of the primary challenges in achieving this compatibility is the
strain specificity of PGPR, as certain strains may only benefit specific plants or perform
optimally under particular environmental conditions [53]. This specificity necessitates
careful selection of PGPR strains that are well-suited to the target crop and its optimal
growing environment.

The interactions between PGPR and the native soil microbiome also play a significant
role in determining the effectiveness of PGPR applications. Indigenous microorganisms
can compete with introduced PGPR strains for resources and ecological niches, potentially
limiting their colonization and persistence in the rhizosphere [54]. It is essential to under-
stand these interactions, as they can influence the overall efficacy of PGPR in promoting
plant growth and health. For example, PGPR must be able to survive and proliferate in the
presence of native soil microbes to exert their beneficial effects [33].

To address these challenges, it is important to select PGPR strains that are not only
effective with the target crop but also compatible with the existing soil microbiome. This
involves screening for strains that can thrive in the specific soil conditions and that have
demonstrated positive interactions with the target plant species [65]. Additionally, devel-
oping formulations that enhance the stability and viability of PGPR during storage and
application can improve their performance in diverse environments [66].

4.3. Commercialization and Adoption

The widespread adoption of PGPR technologies faces several significant barriers,
including regulatory challenges and a lack of farmer awareness. Regulatory issues are
particularly daunting because each country has its own set of regulations governing the
use of microbial products in agriculture. These regulations can be complex and costly to
navigate, often requiring significant investments in time and resources to ensure compliance.
For example, the high costs associated with the development and registration of new
biocontrol agents (BCAs) have been identified as a barrier in countries like Australia, where
regulatory frameworks demand rigorous evaluation to ensure environmental safety and
efficacy [67,68]. This complexity is compounded by the lack of standardized international
regulations, which can hinder the global commercialization of PGPR products [33,69].

Alongside regulatory hurdles, it is essential to increase farmer awareness and edu-
cation about the benefits and applications of PGPR technologies. Many farmers may be
unfamiliar with PGPR or lack the knowledge needed to integrate these biological solutions
into their current farming practices. This lack of awareness can lead to slow adoption
rates, as farmers may perceive chemical fertilizers and pesticides as more reliable and
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predictable compared to PGPR [68]. Educational programs and workshops highlighting
the economic and environmental benefits of PGPR can be crucial in overcoming this barrier,
helping farmers understand how to use PGPR effectively to improve crop productivity and
sustainability [67,70].

Moreover, the scalability and cost-effectiveness of PGPR strategies are critical for their
widespread adoption. PGPR technologies must be adaptable to different crops, environ-
ments, and farming practices to be effective. This adaptability requires ongoing research
and development to tailor PGPR solutions to specific agricultural contexts [65]. Addition-
ally, efforts must be made to reduce production costs and improve accessibility, particularly
for farmers in developing countries. Collaboration among researchers, farmers, govern-
ments, and industry stakeholders is essential to develop cost-effective and sustainable
PGPR products and practices [65].

5. Advances and Future Directions
5.1. Nano-Encapsulation Technology

Nano-encapsulation offers a promising method to increase the efficacy and stability
of PGPR formulations, which can address some of the challenges associated with their
application in agriculture. By encapsulating PGPR in nanoparticles, it is possible to protect
these beneficial microbes from environmental stressors, such as UV radiation, desiccation,
and temperature fluctuations, thereby improving their survival and functionality [71]. This
protective mechanism ensures that PGPR can be delivered more effectively to plant roots,
enhancing their colonization and promoting better plant growth and resilience [72].

Recent studies have demonstrated the potential of various encapsulation materials,
such as alginate, silica nanoparticles, and carbon nanotubes, to improve the delivery and
performance of PGPR. For instance, the encapsulation of Pseudomonas sp. in alginate beads
with salicylic acid and zinc oxide nanoparticles has shown enhanced antifungal activity and
superior plant growth-promoting effects on rice seedlings compared to non-encapsulated
strains [72]. Similarly, nano-encapsulated Bacillus subtilis using sodium alginate, starch,
and bentonite has been effective in controlling the proliferation of Rhizoctonia solani and
increasing bean vegetative growth parameters [73].

The use of nano-encapsulation not only improves the stability and efficacy of PGPR
formulations but also allows for the controlled and sustained release of the bacteria into
the soil. This ensures a more consistent and prolonged interaction between PGPR and
the plant roots, which is crucial for maximizing their growth-promoting effects [73,74].
Moreover, nano-encapsulation can enhance the resilience of PGPR to abiotic stresses, such as
drought and salinity, by providing a stable microenvironment that supports their metabolic
activity [75].

5.2. Biotechnological Approaches

The integration of genetic engineering and bioinformatics in the development of PGPR
strains holds significant promise for enhancing their effectiveness in agriculture. Genetic
engineering allows for the modification of PGPR strains to enhance desirable traits such as
nutrient solubilization, phytohormone production, and pathogen resistance. By employing
techniques such as CRISPR-Cas9, researchers can precisely edit the genomes of PGPR
to introduce or enhance specific plant growth-promoting traits, thereby improving their
efficacy under various environmental conditions [76,77]. Bioinformatics plays a crucial
role in this process by enabling the analysis and interpretation of large genomic datasets,
which is essential for identifying genes responsible for beneficial traits in PGPR. Through
genome mining and comparative genomics, researchers can uncover biosynthetic gene
clusters and regulatory networks that contribute to the plant growth-promoting capabilities
of PGPR [78]. This information is invaluable for designing genetically engineered strains
that are more robust and effective in promoting plant health and productivity [79].

Moreover, bioinformatics tools facilitate the prediction and modeling of PGPR in-
teractions with plant hosts and soil microbiomes, allowing for the optimization of strain
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selection and application strategies. By understanding these complex interactions, scientists
can develop PGPR strains that are better customized to given crops and environmental
conditions, thereby enhancing their performance in the field [80]. This approach not only
improves the efficacy of PGPR but also supports sustainable agriculture by lowering the
need for chemical fertilizers and pesticides [81].

The use of biotechnological approaches to develop new PGPR strains is a topic of
considerable debate, both within and outside the scientific community. For agriculture,
genetic modification is not expected to introduce additional regulatory barriers for future
applications [82]. In other words, while biotechnological approaches offer significant
potential for developing improved PGPR strains, they do introduce additional regulatory
considerations. However, these are not necessarily insurmountable barriers, especially
given the existing frameworks for GMOs in agriculture. The key will be to balance the
potential benefits of engineered PGPR with ensuring their safety and addressing public
concerns. Ongoing dialogue between scientists, regulators, and the public will be crucial in
navigating this aspect of PGPR development and application.

5.3. Integrated Plant Management (IPM)

Incorporating PGPR into integrated plant management (IPM) strategies offers a com-
prehensive approach to enhancing crop health and yield while reducing reliance on chem-
ical pesticides. By incorporating PGPR into IPM, farmers can leverage these natural
processes to create more resilient agricultural systems that are less dependent on syn-
thetic chemicals, thereby minimizing environmental impact and promoting sustainable
practices [32].

Nutrient use efficiency (NUE) is a crucial concept in agriculture that measures how
effectively plants utilize available nutrients for growth and yield production. The applica-
tion of PGPR has been shown to improve NUE in various crops. The integration of PGPR
in agricultural practices shows promise in reducing chemical fertilizer requirements by
20–30% while maintaining or even improving crop yields and quality. This approach aligns
with sustainable agriculture goals by reducing environmental impacts and potentially low-
ering production costs [83]. In hydroponic systems, combining 80% mineral fertilizers with
PGPR has resulted in yields comparable to 100% mineral fertilizer treatments [53], which
further underscores the potential of PGPR to enhance NUE across different agricultural
systems. Of note, PGPR should be compatible with chemical fertilizers, contributing to
more sustainable agriculture as a practical approach. Currently, PGPR are not an alternative
to conventional management but rather a complement that can boost crop yield and reduce
environmental impact.

PGPR contribute to IPM by suppressing plant diseases through various mechanisms,
including the production of pathogen-antagonizing compounds [6] and the stimulation
of systemic resistance in plants [4,6]. These actions not only help control pathogens but
also enhance the plant’s innate defense responses, making them more resistant to pest
attacks [33]. For example, PGPR can produce antibiotics and enzymes that inhibit the
growth of harmful microbes, while also triggering plant immune responses that bolster the
plant’s ability to withstand pest pressures [34].

Moreover, PGPR improve nutrient uptake and root architecture, indirectly contributing
to pest management. By enhancing root growth and nutrient acquisition, PGPR help plants
become more vigorous and less susceptible to pest infestations. This improved plant health
can lead to increased tolerance to pest damage and a reduction in the need for chemical
interventions [65].

6. Conclusions

The integration of PGPR into agricultural systems as biofertilizers offers a sustainable
alternative or complement to chemical fertilizers, promoting nutrient cycling and improv-
ing plant health and yield (Figure 1A). By solubilizing phosphorus and fixing nitrogen,
PGPR enhance nutrient availability and uptake, leading to improved plant growth and
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productivity [18]. Moreover, the use of PGPR can mitigate environmental impacts associ-
ated with excessive fertilizer use, such as soil degradation and water pollution, thereby
supporting sustainable agriculture (Table 1) [16,20]. PGPR biofertilizers represent a vi-
able alternative or complement to synthetic fertilizers, providing sustainable solutions
for enhancing crop productivity and soil health. Their ability to improve nutrient uptake,
enhance stress tolerance, and suppress diseases makes them an invaluable tool in the
pursuit of sustainable agriculture, particularly as the global demand for food continues to
rise [46,48]. As research continues to advance, the development of more effective PGPR
strains and formulations will be crucial in maximizing their benefits for crop production
and environmental health [17].

Table 1. Potential of PGPR from the soil microbiome for sustainable agriculture.

Functional PGPR
Species

Source Isolated
From Beneficial Roles Mechanisms of

Action
Applicable

Plants References

Arthrobacter
globiformis Soil, rhizosphere

Nutrient
solubilization,

pathogen control

Phosphate
solubilization,
biocontrol of

pathogens

Vegetables,
cereals [84–86]

Azospirillum
brasilense Soil, plant roots

Enhanced root
growth, nitrogen

supply

Nitrogen fixation,
phytohormone

production (auxins)

Cereals (e.g.,
maize, wheat),

grasses
[87,88]

Azotobacter
chroococcum Soil, rhizosphere

Nitrogen fixation,
soil fertility

improvement

Nitrogen fixation,
produces

growth-promoting
substances

Cereals,
vegetables [89,90]

Bacillus
amyloliquefaciens Soil, plant roots

Pathogen
suppression, growth

enhancement

Antifungal activity,
induced systemic

resistance
Fruits, vegetables [4,91–93]

Bacillus cereus Soil, plant roots
Disease control,

plant vigor
improvement

Biocontrol of
pathogens, induced
systemic resistance

Vegetables,
cereals [94–96]

Bacillus subtilis Soil, plant roots
Disease suppression,

nutrient uptake
enhancement

Produces antibiotics,
induces systemic

resistance, solubilizes
phosphorus

Vegetables,
cereals, legumes [97,98]

Bacillus
thuringiensis Soil, plant roots

Insect pest
suppression, plant

protection

Pest control, biocontrol
of insects Vegetables, fruits [99–102]

Burkholderia cepacia Soil, rhizosphere
Pathogen control,

plant growth
promotion

Produces antifungal
compounds, competes

with pathogens

Vegetables,
ornamentals [103,104]

Enterobacter cloacae Soil, plant roots
Disease suppression,

nutrient
enhancement

Phosphate
solubilization,
biocontrol of

pathogens

Vegetables,
cereals [105,106]

Flavobacterium
johnsoniae Soil, rhizosphere Disease suppression,

growth enhancement

Biocontrol of
pathogens, growth

promotion

Vegetables,
cereals [107–109]

Klebsiella
pneumoniae Soil, rhizosphere Nitrogen supply,

growth enhancement
Nitrogen fixation,
growth promotion

Vegetables,
cereals [110,111]

Micrococcus luteus Soil, plant roots
Nutrient availability,

plant growth
support

Phosphate
solubilization, growth

promotion

Vegetables,
cereals [112–114]
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Table 1. Cont.

Functional PGPR
Species

Source Isolated
From Beneficial Roles Mechanisms of

Action
Applicable

Plants References

Paenibacillus
macerans Soil, plant roots Nutrient availability,

growth promotion

Produces enzymes,
solubilizes

phosphorus

Vegetables,
cereals [115,116]

Paenibacillus
polymyxa Soil, plant roots

Nutrient
solubilization,

disease suppression

Nitrogen fixation,
phosphate

solubilization

Cereals,
vegetables [117,118]

Pseudomonas
fluorescens

Soil, plant roots,
rhizosphere

Disease resistance,
improved nutrient

acquisition

Produces siderophores
and antibiotics,

induces systemic
resistance

Vegetables, fruits,
cereals [119,120]

Pseudomonas putida Soil, rhizosphere
Enhanced nutrient

uptake, disease
control

Siderophore
production, biocontrol

of pathogens

Vegetables,
ornamentals [121,122]

Pseudomonas
stutzeri Soil, rhizosphere Nitrogen fixation,

disease suppression

Nitrogen fixation,
biocontrol of

pathogens

Vegetables,
cereals [123–126]

Rhizobium
leguminosarum Soil, legume roots

Symbiotic nitrogen
fixation, plant

growth promotion

Nitrogen fixation,
nodule formation

Legumes (e.g.,
peas, beans) [127–129]

Streptomyces
griseoviridis Soil, plant roots

Disease control,
enhanced plant

health

Produces antibiotics,
competes with

pathogens

Vegetables,
ornamentals [130–132]

Streptomyces lydicus Soil, rhizosphere
Disease control,
enhanced plant

health

Antifungal activity,
biocontrol of

pathogens

Vegetables,
ornamentals [133–135]Bacteria 2024, 3, FOR PEER REVIEW 11 
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The production of auxins, gibberellins, and cytokinins by PGPR significantly con-
tributes to their ability to promote plant growth and development (Table 1). These phyto-
hormones enhance root and shoot growth, improve nutrient uptake, and increase plant
resilience to environmental stresses, which makes PGPR an integral part of modern sus-
tainable agriculture (Figure 1B) [26,136]. As research continues to explore the complex
interactions between PGPR-produced phytohormones and plant physiology, the potential
for optimizing PGPR applications in agriculture remains promising [137].

The integration of PGPR into agricultural practices offers a sustainable approach to
managing abiotic stresses (Figure 1C). By enhancing plant growth and resilience, PGPR
contribute to improved crop yields and stability, even under adverse environmental condi-
tions [39,138]. PGPR offer a promising approach to biopesticide development, providing an
eco-friendly and effective means of controlling plant diseases and pests (Figure 1C). Their
ability to enhance plant resilience and promote growth makes them an invaluable tool in
the pursuit of sustainable agricultural practices [65]. As research continues to advance, the
development of more effective PGPR strains and formulations will be crucial in maximizing
their benefits for stress management in agriculture (Table 1) [139].

The application of PGPR through methods like seed inoculation and soil amendments
offers a sustainable approach to improving crop productivity and resilience (Figure 1D).
By enhancing nutrient uptake and stress tolerance, PGPR contribute to more sustainable
agricultural practices, reducing the reliance on chemical inputs and supporting global food
security [9]. While the inconsistent performance of PGPR in different soils and environ-
mental conditions poses challenges, ongoing research and innovation in PGPR selection,
formulation, and application strategies hold promise for overcoming these obstacles.

By optimizing PGPR inoculum efficacy in field conditions, researchers and farmers can
enhance crop productivity, soil health, and environmental sustainability, contributing to
more resilient agricultural systems [9,55]. Despite those promising advancements, further
research is needed to optimize nano-encapsulation techniques and assess their long-term
impacts on soil health and plant growth. The scalability and cost-effectiveness of these tech-
nologies remain challenges that need to be addressed to facilitate their widespread adoption
in agriculture [140]. Nonetheless, the integration of nanotechnology with PGPR formula-
tions represents a significant step forward in developing more efficient and sustainable
agricultural practices (Table 1) [141].

Ensuring the compatibility of PGPR with target crops and indigenous soil microflora
is essential for maximizing their benefits in sustainable agriculture (Figure 2). By selecting
appropriate strains and understanding the complex interactions within the soil ecosystem,
researchers and practitioners can enhance the effectiveness of PGPR applications, leading
to improved crop productivity and resilience (Table 1) [53,54]. While PGPR technologies
hold significant potential for improving sustainable agriculture, overcoming regulatory
hurdles and increasing farmer awareness are crucial for their widespread adoption. By
addressing these challenges, PGPR can become a more integral part of agricultural systems,
contributing to enhanced crop productivity and environmental sustainability [49].

Despite these advancements, challenges remain in the large-scale application of geneti-
cally engineered PGPR. Regulatory hurdles and public concerns about genetically modified
organisms (GMOs) can impede the commercialization of these strains. However, ongoing
research and dialogue among scientists, policymakers, and stakeholders are essential to
address these issues and realize the full potential of genetic engineering and bioinformatics
in developing effective PGPR strains for sustainable agriculture [142,143].

The integration of PGPR into IPM strategies requires the careful selection of compatible
strains that can thrive in specific environmental conditions and work synergistically with
other IPM components. This approach not only enhances the effectiveness of pest manage-
ment but also contributes to overall crop productivity and sustainability [65]. As research
continues to advance, the development of tailored PGPR formulations and application
methods will be crucial in maximizing their benefits within IPM frameworks, ultimately
leading to more resilient and productive agricultural systems (Figure 3) [32]. PGPR protect
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plants from pathogens through a combination of antimicrobial production, resource com-
petition, and induction of systemic resistance. These mechanisms make PGPR a valuable
component of integrated pest management strategies, offering a sustainable alternative
or complement to chemical-based disease control methods (Table 1) [144]. As research
continues to advance, the development of more effective PGPR strains and formulations
will be crucial in maximizing their benefits for crop protection and productivity [11].
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