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Abstract: Biofilms, formed by microbial communities that increase resistance to antibiotics,
are responsible for chronic infections, making their combat a therapeutic priority. Taking
this into account, the fruit Caryocar coriaceum stands out for its potential in the treatment of
infectious diseases. The different parts of this plant can be used, and the fixed oil extracted
from its fruit, rich in fatty acids, is indicated as responsible for its biological activities. Thus,
the objective of this study was to evaluate the chemical composition of the fixed oil extracted
from the fruits of C. coriaceum (FOCC), in addition to analyzing its action in the inhibition
and pre-formed biofilm disruption of bacteria. The fixed oil was extracted from the internal
mesocarp through exhaustive extraction with n-hexane, resulting in a yield of 38.29%. For
antibiofilm evaluation, multidrug-resistant bacterial strains were exposed to the oil, and
the antibiofilm activity was verified through biofilm formation and pre-formed biofilm
disruption assays. The chemical analysis of the fixed oil of C. coriaceum (FOCC) identified
eight fatty acids, representing 98.2% of the total composition, with a predominance of
oleic acid (60.1%) and palmitic acid (33.5%). FOCC demonstrated approximately 70%
inhibition of Streptococcus mutans biofilm formation at a concentration of 10 mg/mL and
approximately 60% inhibition against Staphylococcus aureus and Pseudomonas aeruginosa.
In pre-formed biofilm disruption, FOCC showed low efficacy against S. mutans and P.
aeruginosa but showed greater activity against Enterococcus faecalis and S. aureus. These
results indicate that FOCC has the potential to prevent biofilms, but its pre-formed biofilm
disruption capacity is still limited.
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1. Introduction
Antimicrobial resistance (AMR) poses an increasing threat to global health, charac-

terized by the development of resistance in microorganisms such as bacteria, fungi, and
parasites to previously effective treatments. This phenomenon results in the ineffectiveness
of antimicrobial therapy and necessitates the adoption of alternatives, such as combina-
tion drug therapy, to enhance treatment efficacy [1–3]. The number of deaths caused by
multidrug-resistant (MDR) microorganisms has been rising annually, with scientific fore-
casts indicating that, by 2050, deaths could surpass 10 million, exceeding those caused by
cancer, unless effective measures are implemented [4,5].

Bacterial resistance may be associated with various alternative forms of resistance, such
as gene transfer responsible for resistance production, overexpression of efflux pumps [6,7],
and the creation of mechanisms like biofilms. These are characterized by communities of
microorganisms that can behave as organisms of the same or different species, organized
and surrounded by a polymeric extracellular matrix, adhering to both biotic and abiotic
surfaces. Biofilms are responsible for a large portion of chronic infections, as they increase
resistance to antibiotics and allow bacteria to survive in unfavorable conditions, making
their control a relevant therapeutic measure [1,8]. Among oral biofilms, Streptococcus
mutans is well recognized as the major cariogenic species due to its acidogenicity and
aciduricity [9].

Given the need for alternative measures, medicinal plants have been widely investi-
gated for their potential in ethnopharmacology, standing out as a rich source of biologically
active substances with promising applications as antimicrobial agents, especially essential
oils extracted from them. The applicability of these substances has been demonstrated in
innovative therapies for treating diseases caused by MDR microorganisms with clinically
relevant antimicrobial activities. Furthermore, there is evidence that combining these sub-
stances may result in synergistic interactions, increasing their efficacy against bacteria and
fungi [10–14].

Various studies have evaluated the anti-biofilm activity of natural products, demon-
strating efficacy against different multidrug-resistant bacterial strains, including both
Gram-positive and Gram-negative species, such as Staphylococcus aureus, Escherichia coli,
and Pseudomonas aeruginosa [15–17]. Thus, the search for natural products with antimicro-
bial activity has increased, and the scientific community’s interest can be directed toward
highlighting the biodiversity of the Cerrado biome, which has revealed significant proper-
ties, underscoring its biological importance [18,19]. This Brazilian biome is home to a large
diversity of species used in the treatment of infectious diseases by traditional communities,
but many of these plants still remain unexplored from a chemical and pharmacological
point of view [18,19].

The genus Caryocar, found in the Cerrado, has been the subject of various scientific
studies due to its biological actions, which include pharmacological and biological proper-
ties such as anti-inflammatory, antioxidant, antimicrobial, and antiparasitic activities. The
species Caryocar coriaceum Wittm., popularly known as “pequi”, stands out for its potential
to treat diseases caused by microorganisms. Different parts of this plant can be used, and
the fixed oil extracted from its fruit, rich in fatty acids, is considered responsible for its
biological activities [20–24].

It is important to highlight that C. coriaceum extract is capable of intensifying the
action of conventional antibiotics against multiresistant microorganisms [21]. However,
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to our knowledge, there are no reports on the antibiofilm potential of the fixed oil from
the fruits of this plant. Therefore, the primary objective of the research was to evaluate
the phytochemical composition of the fixed oil extracted from the fruits of C. coriaceum,
as well as to analyze its action in inhibiting and eradicating bacterial biofilms formed by
Gram-positive and Gram-negative strains of relevance to public health.

2. Materials and Methods
2.1. Fruit Collection, Exsiccation and Obtaining Licenses

Ripe and healthy fruits of Caryocar coriaceum were collected, totaling 300 fruits. The
collection took place in Serra do Pequi, located in the Environmental Protection Area (APA)
of Chapada do Araripe, in the municipality of Jardim, Ceará, Brazil, at the coordinates
07◦29′269′′ S and 39◦18′050′′ W, during the month of February (2021). The species was
identified, and a specimen was deposited at the Geraldo Mariz Herbarium (UFP) with
the identification number 88,948. Before the collection, the study obtained approval and
registration in the Biodiversity Authorization and Information System (SISBio, Brazil) with
registration number 77450-1 and in the National System for the Management of Genetic
Heritage and Associated Traditional Knowledge (SisGen), with the registrations A4848B1.

2.2. Extraction of Fixed Oil

To extract the fixed oil from C. coriaceum (FOCC), the epicarps and external meso-
carps were removed. The internal mesocarp of C. coriaceum, obtained from 300 fruits,
was dehydrated at 40 ◦C for 7 days, yielding 760 g of dry material. The mesocarp was
ground and subjected to exhaustive extraction with n-hexane at room temperature for 72 h.
Subsequently, the solvent was removed from the sample using a rotary evaporator. The
FOCC was stored in an amber bottle at room temperature until chemical analyses and
biological assays were performed, with a total extraction yield of 291.06 g (38.29%).

2.3. Oil Hydrolysis and Identification of Fatty Acids

The fixed oil of C. coriaceum (0.2 g) was saponified for 10 min under reflux at 45 ◦C,
using a solution of potassium hydroxide in methanol (1.5 g of KOH in 35 mL of CH3OH),
according to the method described by [25]. The methyl esters of fatty acids were extracted
from the reaction medium with dichloromethane. The resulting organic phase was washed
with distilled water, dried, and filtered.

The analysis of the chemical components of FOCC was performed by gas chromatog-
raphy coupled with mass spectrometry (GC-MS). The transesterified FOCC was diluted
in dichloromethane to 1%, and 1 µL of this solution was injected into an Agilent 6890
chromatograph (Palo Alto, CA, USA) with a split flow of 1:20, equipped with an Agilent
5973 N mass selective detector. The injector temperature was maintained at 250 ◦C. The
separation of the constituents occurred in an HP-5MS capillary column (5% Phenyl, 95%
Dimethylpolysiloxane, 30 m × 0.25 mm × 0.25 µm) with helium gas as the carrier at a flow
rate of 1.0 mL/min. The temperature program for the oven started at 60 ◦C, increasing by
3 ◦C/min up to 240 ◦C. The mass detector operated in electron ionization mode (70 eV),
with a scanning rate of 3.15 s−1 and a mass range between 40 and 450.The temperatures of
the transfer line, ion source, and quadrupole analyzer were maintained at 260 ◦C, 230 ◦C,
and 150 ◦C, respectively.

The identification of the compounds was made by comparing the mass spectra with
the NIST 2016 library (2.2. Mass Spectral Library (NIST/EPA/NIH), National Institute of
Standards and Technology, Gaithersburg, MD, USA). For quantification, the diluted samples
were injected into an Agilent 7890 chromatograph with a flame ionization detector (FID)
operating at 280 ◦C. The analysis conditions followed the previous procedure, except for
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using hydrogen as the carrier gas at a flow rate of 1.5 mL/min. The percentage composition
was determined by electronic integration of the FID signal, calculating the area of each
peak relative to the total area (area%).

2.4. Evaluation of Bacterial Antibiofilm Potential
2.4.1. Strains, Culture Medium, Inocula and Drugs

The bacterial strains analyzed to assess the antibiofilm potential of FOCC included
Streptococcus mutans (INCQS 00,446, ATCC 25,175), Enterococcus faecalis (INCQS 00,018,
ATCC 14,506), Staphylococcus aureus (ATCC 25,923), and Pseudomonas aeruginosa (ATCC
9027). These microorganisms were provided by the Microbiology and Molecular Biology
Laboratory of the Regional University of Cariri (URCA) and the Oswaldo Cruz Foundation
(FIOCRUZ). The strains were cultured on BHI agar (Brain Heart Infusion) and incubated in
a biological oven for 24 h at 37 ◦C.

After incubation, the cells were diluted in a 0.85% NaCl solution, and the suspensions
were adjusted to a concentration of 5 × 105 CFU/mL, as described by Araújo et al. [26].
FOCC was weighed, dissolved in dimethyl sulfoxide (DMSO), and diluted in sterile water to
obtain MIC concentrations (Minimum Inhibitory Concentration, 10 mg/mL) and MIC × 10
(100 mg/mL). The reference drug used was chlorhexidine gluconate (CG) as a standard
antibiofilm reference, and DMSO served as a solvent for the substances.

2.4.2. Biofilm Formation Assay

Initially, the minimum inhibitory concentration (MIC) of the fixed oil against plank-
tonic pathogenic bacteria was evaluated using the serial broth microdilution method, as
described in the standardized protocols. This test allowed determining the lowest concen-
tration capable of visibly inhibiting bacterial growth, which is a widely recognized approach
for studies of antimicrobial activity. The results obtained demonstrated that the MIC of
the analyzed samples was higher than 1024 µg/mL. Biofilm formation was evaluated in
microtiter plates using the crystal violet method, where 160 µL of culture medium (BHI),
20 µL of distilled water, and 20 µL of bacterial inoculum adjusted to 1.5 × 108 CFU/mL
were added to the plates. For sterility control, distilled water replaced the bacterial in-
oculum. After incubation at 37 ◦C for 24 h, the plates were washed three times with 0.9%
saline solution and incubated at 55 ◦C. Then, 200 µL of crystal violet was added for 15 min,
followed by washing with distilled water, elution with 100% ethanol, and absorbance
reading at 492 nm, following the methodology described by [27,28] with adaptations.

2.4.3. Anti-Biofilm Formation Assessment

To evaluate the biofilm formation inhibition capacity of FOCC, 20 µL of FOCC at MIC
concentrations (10 mg/mL) and MIC × 10 (100 mg/mL) were added to microtiter plates,
along with 20 µL of bacterial inoculum (1.5 × 108 CFU/mL) and 160 µL of culture medium.
A 0.85% NaCl solution was used as a control for growth and sterility. The plates were
incubated at 37 ◦C for 24 h. After this period, planktonic cells were removed by three
washes with 0.9% saline solution. The biofilm was then fixed by incubating the plates at
55 ◦C for 1 h and stained with 0.4% crystal violet for 15 min. The plates were washed
three more times with saline solution, and the biofilm was eluted with absolute ethanol,
followed by an optical density reading at 492 nm. The antibiofilm activity was determined
by comparing the results with the growth control.

2.4.4. Pre-Formed Biofilm Disruption Assay

After the 48 h biofilm formation period, the biofilms were treated with 20 µL of
different concentrations (MIC and MIC × 10) of FOCC and CG while maintaining controls
in the microdilution plates. The plates were incubated at 37 ◦C for 24 h, followed by the
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removal of excess liquid. A triple wash with saline solution was then performed, followed
by incubation at 55 ◦C for 1 h and staining with 0.4% crystal violet for 15 min. The dye was
removed with saline solution, and the biofilm was eluted with 100% ethanol. Absorbance
was measured at 492 nm, as per [28].

2.5. Statistical Analysis

The GraphPad Prism software (Software Inc. version 6, San Diego, CA, USA) was used
for statistical analysis. The arithmetic mean of the triplicates for each concentration tested
was calculated, and the data were then subjected to one-way ANOVA analysis (p < 0.05;
* p < 0.1; **** p < 0.0001), with the application of the Tukey post hoc test.

3. Results
3.1. Chemical Composition of Fixed Oil

The identification of fatty acids by GC-MS revealed the chemical composition of FOCC,
with eight fatty acids identified, representing 97.97% of the total composition of the fixed
oil (Table 1 and Figure 1). It was observed that FOCC contains a higher concentration
of unsaturated fatty acids, with oleic acid being the predominant compound at 59.78%,
followed by palmitic acid, a saturated fatty acid, at 32.45%. Along with compounds in low
concentrations, such as linoleic, stearic, and elaidic acids.
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Figure 1. Chemical structure of compounds identified in fixed oil of Caryocar coriaceum (FOCC).

Table 1. Phytochemical profile of fixed oil of Caryocar coriaceum (FOCC).

Fatty Acids Retention Time [%]

Palmitic acid (C16:0) 24.31 32.45
Linoleic acid (C18:2) 46.19 1.47
Oleic acid (C18:1cis) 51.15 59.78
Stearic acid (C18:0) 51.61 2.36

Elaidic acid (C18:1trans) 52.2 1.91
Total 97.97
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3.2. Anti-Biofilm Formation Activity

The antibiofilm activity of FOCC and chlorhexidine gluconate (CG) is detailed in
Figure 2. FOCC showed promising results against both Gram-positive and Gram-negative
strains, exhibiting approximately 70% inhibition of S. mutans biofilm formation at the
lowest concentration tested (MIC 10 mg/mL). Regarding E. faecalis, a lesser effect was
observed, with significant results only at concentrations of 100 mg/mL (MIC × 10). The
MIC concentrations for S. aureus and P. aeruginosa (Gram-negative) resulted in effective
inhibition of approximately 60%, similar to the action of CG at the same concentrations. No-
tably, against P. aeruginosa (Figure 2d), FOCC demonstrated superior inhibition compared
to the reference drug.
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Figure 2. Antibacterial biofilm formation capacity of Caryocar coriaceum fixed oil (FOCC) and chlorhex-
idine gluconate (CG) antibiotic against Streptococcus mutans (a), Enterococcus faecalis (b), Staphylococcus
aureus (c), and Pseudomonas aeruginosa (d); *** = p < 0.001, **** = p < 0.0001.

3.3. Pre-Formed Biofilm Disruption Capacity

In contrast to the biofilm formation inhibition results (Figure 2), FOCC demonstrated
inferior or non-significant results in pre-formed biofilm disruption, as illustrated in Figure 3.
FOCC, tested at MIC and MIC × 10 concentrations, did not show clinical relevance against
S. mutans and P. aeruginosa, which may suggest higher resistance, similar to the action of
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CG on P. aeruginosa (Figure 3d). However, for other Gram-positive strains, such as E. faecalis
and S. aureus, greater pre-formed biofilm disruption efficacy was observed, even surpassing
CG’s action at 10 mg/mL concentrations.
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Staphylococcus aureus (c), and Pseudomonas aeruginosa (d); * = p < 0.05, ** = p < 0.01, *** = p < 0.001,
**** = p < 0.0001, ns: not significant.
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4. Discussion
Caryocar coriaceum is a plant species widely used in traditional folk medicine for the

treatment of wounds, muscle pain, and chronic arthritis, as well as in the management of
respiratory, gastric, and inflammatory diseases [20]. Our study demonstrates that the fixed
oil from the mesocarp of C. coriaceum mainly contains unsaturated fatty acids in its chemical
composition, with a particular predominance of oleic acid (60.1%) and palmitic acid (33.5%),
as shown in Table 1. The chemical composition obtained in this study is corroborated by
other research conducted previously. In prior studies by our research group, [29] analyzed
the fixed oil from the mesocarp of C. coriaceum and demonstrated that oleic acid (61%) and
palmitic acid (33%) were the most abundant components. Refs. [30,31] also described oleic
and palmitic acids as predominant components in their fixed oil samples.

These findings indicate that both fatty acids are potential chemical markers of the fixed
oil from C. coriaceum. Oleic acid, found as the primary compound in the studies, mainly
occurs chemically bound to triglycerides in natural oils (animal and vegetable) and fats.
Furthermore, it is described in the literature as possessing antioxidant activities [32], an-
timicrobial properties [33,34], and anti-inflammatory effects [35–37]. Palmitic acid, in turn,
exhibits anti-inflammatory, analgesic [38,39], antitumor [40], and antiviral [41] activities.

This study is the first to report the anti-biofilm potential of the fixed oil from the
mesocarp of C. coriaceum. FOCC does not present antibacterial activity against plank-
tonic bacteria at clinically relevant concentrations, presenting a MIC > 512 µg/mL [31].
The analyses demonstrate that the FOCC shows promising potential as an anti-biofilm
agent against Gram-positive bacteria (S. mutans and S. aureus) and Gram-negative bacteria
(P. aeruginosa). The exact mechanism of action of fixed oils against microorganisms is still
poorly understood; however, it is suggested that unsaturated fatty acids present in these
natural products inhibit bacteria by affecting the synthesis of endogenous fatty acids [42]
and reducing extracellular polymeric substances [43]. This antimicrobial activity may also
be related to the destruction of the cell membrane and interference in cellular processes
(signal transduction and transcription) [44].

The potential of fixed oils in combating pathogenic biofilms is a topic that has been
little explored in the literature. Much more attention has been given to the use of unsat-
urated fatty acids against these microbial communities. Petroselinic acid, for example,
significantly inhibited biofilm formation in methicillin-resistant and sensitive strains of
S. aureus. Furthermore, this acid suppressed the production of virulence factors, such as
staphyloxanthin, lipase, and α-hemolysin [45]. Nicol et al. [46] showed that palmitoleic
and myristoleic acids reduced biofilm formation in Acinetobacter baumannii (an important
agent of nosocomial infections), as well as promoting biofilm dispersion and drastically
decreasing bacterial motility. Atomic force microscopy experiments also showed that both
acids can act against the initial adhesion process. Other unsaturated fatty acids that are part
of the major composition of plant or microbial-derived extracts with anti-biofilm activity
have also been reported [47–49].

In our study, we also investigated the ability of FOCC to eradicate pre-formed biofilms.
FOCC showed significant efficacy in eradicating biofilms, primarily from the Gram-positive
bacterium S. aureus at a concentration of 10 mg/mL, compared to the control. The anti-
biofilm action of FOCC indicates that this oil is ineffective against most pre-formed micro-
bial biofilms, highlighting that bacterial cells in biofilms are more resistant than those in
a planktonic state [50]. However, this also underscores the potential of the fixed oil from
C. coriaceum against the biofilm of S. aureus.

The anti-biofilm activity of oleic acid, the major component of the fixed oil from
C. coriaceum, has been consistently described in the literature. Khadke et al. [51] demon-
strated that oleic acid (20 µg/mL) significantly inhibited the biofilm formation of
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A. baumannii without affecting the growth of its planktonic cells (CIM > 500 µg/mL), in
addition to reducing bacterial motility. Molecular dynamics simulations also showed that
this compound binds to acyl-homoserine lactone synthetase (AbaI), which is involved in
quorum sensing. Additionally, oleic acid has also been reported as an inhibitor of biofilms
of S. aureus [52,53] in a dose-dependent manner, potentially due to causing rupture in
the cell membrane [54,55]. Thus, these studies corroborate our results and suggest that
the anti-biofilm activity of FOCC, especially against S. aureus, may be associated with the
presence of oleic acid as a major compound without ruling out its synergistic action with
other compounds present.

Biofilms represent a significant challenge for public health, as they are complex struc-
tures formed by microbial communities adhered to surfaces, making them highly resistant
to conventional treatments. This resistance complicates the pre-formed biofilm disruption
of infections, especially when biofilms form on medical devices, such as catheters and
prostheses, potentially leading to persistent and recurrent infections [56,57]. Given this
problem, research into new strategies to combat biofilms is crucial. Innovations in this field
can significantly improve clinical outcomes, reduce the use of antibiotics, decrease the risk
of developing bacterial resistance, and alleviate the economic burden on healthcare systems.

According to previous studies, it is suggested that the use of fixed oil of C. coriaceum
can be considered biologically safe [29,58]. Silva et al. [58] reported that after a 9-week
period of administration of fixed oil from this plant in Swiss mice (100 mg/kg/day), no
significant changes were observed in food intake, body weight, or blood glucose levels in
the animals evaluated. Furthermore, Almeida-Bezerra et al. [29] also reported that the fixed
oil of C. coriaceum did not show toxicity when evaluated in an experimental model using
Drosophila melanogaster.

5. Conclusions
The fixed oil of Caryocar coriaceum exhibited a predominant composition of unsat-

urated fatty acids, particularly highlighting oleic acid and palmitic acid. Additionally,
it demonstrated promising activity in inhibiting bacterial biofilm formation, especially
against S. mutans, S. aureus, and P. aeruginosa, although its efficacy in eradicating pre-
formed biofilms was limited. The anti-biofilm formation potential, combined with the
presence of oleic acid, suggests that this natural product could be an interesting natural
alternative for preventing bacterial infections associated with biofilms.

It is suggested that new in vitro and in vivo studies be conducted to investigate the
possible mechanisms of action of the fixed oil of C. coriaceum, as well as of its major
compounds, oleic acid and palmitic acid, against S. mutans, S. aureus, and P. aeruginosa.
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