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Simple Summary: In this study, we performed microbial community ecology analyses of bacteria
present in the spleen of six species of rodents in Panama in order to identify taxa with zoonotic
potential in the country. Genera of bacteria containing species with zoonotic potential detected in
this study included Acinetobacter, Bartonella, Cutibacterium, Enterococcus, and Staphylococcus. The
results obtained are of value for estimating the prevalence and relative abundance of the bacteria
found and the potential of different species of rodents as reservoirs of bacterial zoonosis. This study
provides information for comparative studies in the Neotropics and other regions of the world and
to generate knowledge on the conditions that may drive zoonosis in different rural vs. suburban
environmental settings.

Abstract: Emerging zoonotic diseases are one of the main threats to human and animal health.
Among the agents with the potential for zoonoses, those of bacterial origin have great relevance
in Public Health. Rodents are considered one of the main reservoirs of pathogens that represent
a risk to human health or animal species. We used massive 16S ribosomal RNA gene amplicon
sequencing to survey bacteria present in the spleen of six species of rodents in Panama in order to
identify bacterial taxa with zoonotic potential in the country. We found 3352 bacterial Amplicon Se-
quence Variants (ASVs, i.e., phylogenetic species) in the spleen of six rodent species surveyed (Liomys
adspersus, Melanomys caliginosus, Mus musculus, Proechimys semispinosus, Rattus rattus, Zygodontomys
brevicauda). This bacterial community was represented by 25 phyla, 55 classes, 140 orders, 268 families,
and 508 genera. The three predominant phyla were Actinobacteria, Firmicutes, and Proteobacteria,
and the five predominant classes were Actinobacteria, Alpha- and Gammaproteobacteria, Bacilli,
and Clostridia. There were seven high-abundance genera: Acinetobacter, Bartonella, Cutibacterium,
Enterococcus, Sarcina, Staphylococcus, and Wolbachia. Genera found with less abundance included
Bradyrhizobium, Chryseobacterium, Clostridium, Corynebacterium, Lactobacillus, Pseudonocardia, Rhodococ-
cus, and Sphingomonas. Some of these genera (high or low abundance) have clinical importance.
The identification of bacterial taxa with zoonotic potential in rodent species performed here allows
us to have surveillance mechanisms for these pathogens and to be able to recognize localities to
be prioritized for prevention of transmission and outbreaks, thus being of value for public health
in Panama.
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1. Introduction

Emerging zoonotic diseases are one of the main threats to human and animal
health [1–3]. According to recent estimations, there are about 1407 human pathogens,
of which 58% are zoonotic, and 13% are classified as emerging or reemerging [4]. The
infectious agents that involve emerging and reemerging zoonotic diseases include viruses,
parasites, fungi, and bacteria, among others [3,5]. Among these etiological agents of
zoonoses, those with a bacterial origin have great relevance in public health [3,6]. Of the
1407 human pathogens reported, 538 are bacteria, and 54 of them (10%) are considered
emerging or reemerging. Most of them originated from an animal or other sources (i.e.,
water) and are considered to be zoonoses [7]. Zoonotic bacteria can be transmitted by
different animals, rodents being considered major hosts of pathogens [6,8,9], and cause
risk to human health or animal species when they act as reservoirs or amplifying hosts for
these microorganisms [10–12]. This participation of rodents in the epidemiology of human
pathogenic bacteria is also favored because they constitute one of the most abundant and di-
versified groups of mammals [8,9,13,14] and because of their ability to successfully colonize
a wide range of habitats, where they often interact with humans, but also with other animal
species [14,15]. In addition, from the ecological perspective, the transmission of diseases by
rodents also involves other factors, including alterations of the ecosystem (anthropogenic
or natural) and changes in the number of available hosts and vectors [16,17].

For instance, several authors have also pointed out that the destruction of habitats as a
consequence of human expansion and land use across the globe are among the main
factors that have led to a defaunation that includes the global reduced abundant of
mammals [18,19], which in turn causes an increase in the population of rodents and
their pathogens, as observed in the indirect transmission systems of Bartonella spp. from
Africa [18]. Therefore, an increase in the prevalence of rodent-borne diseases occurs as a re-
sult of changes in the abundance of susceptible hosts (rodents) and by closer human–rodent
contact [10,20,21]. Therefore, taxonomic surveys of microbial communities in different
species of rodents can contribute to understanding the natural occurrence and dynamics of
pathogenic bacteria in them, and this information is valuable in the development of more
precise risk models for these diseases [10,21].

A review of the diversity of rodents that make up the wild mammal fauna of Panama
has shown the existence of several species of rodents that in other countries have been
reported as reservoirs and hosts of zoonotic agents, which are frequently closely related to
the human environment (synanthropic) [10,21]. Therefore, understanding the presence of
rodents in Panama with the capacity to act as a reservoir for pathogenic bacteria will provide
information on the epidemiological links in the country for the circulation and transmission
of bacterial zoonoses. On the other hand, the continuous deforestation, land use, and
unplanned urbanization in Panama have increased human contact with rodents, which has
intensified the number of infections transmitted by rodents in the human population [20].

Based on the above and considering the increase in the cases of zoonoses in various
rural and suburban areas with the consequent cases of death [20,22], it is important to
carry out studies that allow for the identification of pathogenic bacteria present in different
rodents in order to derive the prevalence, co-infection, and interaction of these bacteria and
their distribution in natural populations of rodents, and in this way, to know the potential
that these animals have to directly or indirectly transmit zoonoses.

In this study, we used massive 16S ribosomal RNA gene amplicon sequencing and
microbial community ecology analyses to survey bacteria present in the spleens of six
species of rodents in Panama in order to identify and list bacteria with zoonotic potential in
the country. This study contributes to generating information on the potential of different
species of rodents as reservoirs of bacterial zoonosis in Panama.
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2. Materials and Methods
2.1. The Materials Rodent Surveys and Sample Collection

Six species of rodents (Liomys adspersus, Melanomys caliginosus, Mus musculus, Proechimys
semispinosus, Rattus rattus, Zygodontomys brevicauda) were collected from seven sites along
Panama: Cañazas Chiriquí Grande (8◦54′24′′ N, 82◦14′19′′ W, CCG); Comarca Ngäbe-Buglé
(8◦46′11′′ N, 81◦44′02′′ W, CNB); Divalá (8◦25′12” N, 82◦43′12′′ W); Mercado de Abasto
de Curundú (8◦59′12′′ N, 79◦32′11′′ W, MAC); Mercado Público de David (8◦26′00′′ N,
82◦26′00′′ W, MPD); Oajaca Chiguirí Arriba (8◦38′12′′ N, 80◦12′22′′ W, OCA); and Panama
Port Balboa (8◦57′27′′ N, 79◦33′40′′ W, PPB), (Table 1, Figure 1). The traps were placed
according to Armien’s methodology [20]. Trapping grids were separated by a minimum
distance of 500 m. All trapping grids were georeferenced with a Global Positioning System
(GPS) receiver (Garmin 60 CSx) using the WGS 84 / UTM zone 17 N system, and their
central points (centroids) were selected. For the distribution map, we used ArcMap 10.7.1.
Mammals were handled according to recommendations by Mills and others [23]. The
rodent species collected were identified using taxonomic keys, morphometry, and refer-
ence books [24–26]. Information on reproductive stage, age, morphometric measurements,
and habitat was recorded for each specimen. The animals were euthanized with inhaled
isoflurane. Blood and samples of the spleen, liver, kidneys, heart, and lungs were collected
in separate, labeled cryovials, using clean, sterilized instruments for each animal. All
biological samples were immediately placed into liquid nitrogen. Data collected for all
individuals were captured according to previous work [20].

Table 1. Species of rodents collected in this study, sites, and sample size (n).

Species Site n

L. adspersus Comarca Ngäbe-Buglé (CNB) 1
L. adspersus Oajaca Chiguirí Arriba (OCA) 1

M. caliginosus Cañazas Chiriquí Grande (CCG) 1
M. musculus Mercado Público de David (MPD) 7
M. musculus Panama Port Balboa (PPB) 7

P. semispinosus Cañazas Chiriquí Grande (CCG) 2
P. semispinosus Oajaca Chiguirí Arriba (OCA) 1

R. rattus Mercado de Abasto Curundú (MAC) 4
Z. brevicauda Divalá 1
Z. brevicauda Mercado Público de David (MPD) 1
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2.2. DNA Extraction

Total DNA was extracted from the spleens using the DNeasy Blood and Tissue Kit
(Qiagen, Chatsworth, CA, USA) following the manufacturer’s protocol and with final DNA
elution in 200 µL of AE buffer. A total of 26 samples were processed.

2.3. DNA Amplification

Primers 799 F and 1115R [27,28] were used to amplify a portion of the V5 and V6
regions of the 16S rRNA gene. We use these primers because we can reduce the number of
chloroplasts in our sequences [27,28], knowing that rodents are consumers of many plants
and a wide range of crops [29,30]. These primers contained read adapters for a second PCR
needed for DNA library preparation. Each sample was amplified in triplicate PCR using
2.0 µL of DNA, 2.5 µL of 10 X PCR buffer, 1.5 µL 25 mM MgCl2, 2.0 µL of 10 mM dNTPs,
0.75 µL of 10 µM of primers (799 F and 1115 R), 0.5 µL of Taq DNA polymerase (Taq DNA
polymerase kit of Qiagen (Product catalog 201203 (Qiagen, Valencia, CA, USA), and 15 µL
of molecular grade water to obtain a total volume of 25 µL. Amplifications were conducted
as follows: denaturation at 94 ◦C for 3 min, followed by 35 cycles of denaturation at 94 ◦C
for 45 s; annealing at 50 ◦C for 60 s; elongation of 72 ◦C for 90 s; and final extension of 72 ◦C
for 10 min. We run 2 µL of PCR products on 1% agarose gel to verify amplification using
GelRed stain.

2.4. DNA Library Preparation

The three PCR replicates of each sample were pooled and used as templates for a sec-
ond PCR conducted with complementary primers to read primer adapters and containing
indexes and flow cell adapters for Illumina® DNA sequencing by synthesis technology.
Reactions were conducted as follows: 14.75 µL of molecular grade water; 2 µL of 10 X
Buffer; 1.5 µL of 25 mM MgCl2; 2 µL of 10 mM dNTPs; 1 µL of 5 µM of each index primer
(forward and reverse); 0.25 µL of Taq; and 2 µL of pooled DNA template. PCR reaction
started with a denaturation step of 94 ◦C for 3 min, followed by six cycles of 94 ◦C for
45 s, 50 ◦C for 60 s, 72 ◦C for 1.5 min, and a final extension of 30 s at 72 ◦C. PCR samples
were combined, concentrated, and later purified using Agencourt AMPure XP, following
the manufacturer’s instructions (Beckman Coulter International, Nyon, Switzerland). The
DNA library was quantified using a Qubit fluorometer (Invitrogen, Waltham, MA, USA),
and quality was determined on a BioAnalyzer (Agilent Technologies, Santa Clara, CA,
USA). Finally, the DNA library was sequenced on an Illumina MiSeq sequencing platform
following a 2 × 250 bp Paired-End sequencing (Illumina Inc., San Diego, CA, USA).

2.5. Data Analysis

Using the QIIME 2TM bioinformatics pipeline [31–33], we dereplicated and quality-
filtered DNA sequences using the Divisive Amplicon Denoising Algorithm
(DADA2) [34,35]. Read 1 (R1) was used for subsequent analyses because the sequence
quality for Read 2 was low. Continuously, we trained the sequence classifier for our spe-
cific region (V5 and V6) using the SILVA database (v.138 for bacteria, www.arb-silva.de,
accessed on 17 January 2021) [36,37] that was used to taxonomically annotate amplicon
sequence variants (ASVs). DNA sequences of mitochondria, chloroplasts, and unassigned
bacterial taxa, as well as ASVs with less than 10 counts, were excluded for further analyses.
Community ecology analyses were performed using QIIME 2.0 as well as the R software
for subsequent plotting [38].

2.6. Bacterial Diversity and Community Composition

For diversity estimation analysis, sequence data from each sample were rarefied to
a depth of 3000. Alpha diversity from rodent species and localities was estimated using
Faith’s phylogenetic diversity (Faith’s PD) and analyzed by non-parametric Kruskal–Wallis
to determine statistical differences. Faith’s PD was used to compare bacterial diversity asso-
ciated with M. musculus from two sites, as these were the rodent species with a comparable

www.arb-silva.de


Zoonotic Dis. 2024, 4 166

number of samples from two sites. Beta diversity between species was estimated based
on weighted UniFrac distance using PERMANOVA and ANOSIM analyses in the vegan
package [39,40] and visualized using Principle Coordinates Analysis (PCoA) phyloseq [35]
and ggplot2 package [41]. We did not estimate beta diversity between localities due to two
sites (Comarca Ngäbe-Buglé and Divalá) being represented by only one rodent specimen
(Table 1).

3. Results

We obtained a total of 403,188 sequence reads (per sample Min = 6828; Median = 12,830;
Maximum = 41,263; Mean = 15,507), from which 3352 (ASVs, i.e., putative bacterial species)
were detected. Rarefaction curves captured the majority of the bacterial diversity dataset in
this study (Figure S1A,B).

The Spleen Microbiome by Rodent Species and Locality

The spleen microbiome of six species of rodents was composed of 3352 ASVs. This
bacterial community was represented by 25 phyla, 55 classes, 140 orders, 268 families,
and 508 genera. The three predominant phyla were Actinobacteria, Firmicutes, and Pro-
teobacteria (Figure 2A). The five predominant classes were Actinobacteria, Alpha- and
Gammaproteobacteria, Bacilli, and Clostridia (Figure 2A). There were seven most dominant
genera: Acinetobacter; Bartonella; Cutibacterium; Enterococcus; Sarcina; Staphylococcus; and
Wolbachia. However, there were other bacterial taxa groups in less abundance, such as
Bradyrhizobium, Chryseobacterium, Clostridium, Corynebacterium, Lactobacillus, Pseudonocardia,
Rhodococcus, and Sphingomonas. Overall, some of them could be of clinical importance
(Table 2, Figure 2B). No statistical significance in Alpha diversity was observed by species
and site (Kruskal–Wallis: H = 9.38, p > 0.05, Figure 3A). Additionally, the spleen microbiome
of M. musculus did not show significant differences between sites (Kruskal–Wallis: H = 1.18,
p > 0.05, Figure 3B). We found a significant difference in Beta diversity between species
(Adonis statistic: R2 = 0.30, p < 0.001; Anosim statistic: R = 0.59, p < 0.001, Figure 3C).
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Table 2. Relative abundance (%) of bacteria at the level of genus in the six species of rodents. Sites are
shown in abbreviation with exception of Divala. Number of sample sizes are shown in n. Only M.
musculus showed relative abundance with same number of n.

Bacteria Species of Rodents

Genus

L. M. M. P. R. Z.
adspersus caliginosus musculus semispinosus rattus brevicauda

CNB OCA CCG MPD PPB CCG OCA MAC Divalá MPD
n = 1 n = 1 n = 1 n = 7 n = 7 n = 2 n = 1 n = 4 n = 1 n = 1

1174-901-12
(Alphaproteobacteria) 0.00 5.97 1.97 3.16 3.97 3.54 5.31 4.11 4.59 0.66

Acinetobacter
(Gammaproteobacteria) 2.46 25.19 15.24 16.70 19.62 16.67 19.36 20.90 29.01 5.16

Bartonella
(Alphaproteobacteria) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 74.87

Bradyrhizobium
(Alphaproteobacteria) 0.00 0.36 0.38 1.45 0.31 0.25 0.27 0.22 0.00 0.22

Bryobacter (Acidobacteria) 0.00 2.33 0.71 1.73 1.60 0.91 1.55 1.44 2.03 0.30
Chryseobacterium
(Bacteroidia) 3.83 0.11 0.31 0.12 0.29 0.54 0.00 0.03 0.03 0.11

Clostridium sensu stricto 1
(Clostridia) 0.90 0.14 0.00 0.65 0.09 0.66 0.00 0.14 0.00 0.00

Corynebacterium
(Actinobacteria) 3.28 0.38 0.24 0.88 1.29 0.67 0.07 2.52 0.19 0.56

Cutibacterium
(Actinobacteria) 18.85 0.92 1.01 2.05 3.50 2.87 1.02 6.41 0.64 0.93

Enterococcus (Bacilli) 0.16 0.00 10.56 0.64 0.17 2.50 0.39 0.46 0.06 0.63
Lactobacillus (Bacilli) 0.62 0.00 6.79 0.58 0.01 5.27 0.00 0.07 0.00 0.00
Pseudonocardia
(Actinobacteria) 0.33 4.06 2.08 3.17 3.04 2.22 3.44 3.97 5.10 1.10

Rhodococcus
(Actinobacteria) 5.65 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

Sarcina (Clostridia) 0.00 0.24 0.00 13.10 0.11 0.06 0.71 0.26 0.19 0.07
Sphingomonas
(Alphaproteobacteria) 0.71 4.11 1.51 2.85 3.47 3.12 1.90 3.66 4.18 0.58

Staphylococcus (Bacilli) 12.36 1.07 0.31 1.19 1.82 3.26 1.58 2.86 0.49 0.59
Wolbachia
(Alphaproteobacteria) 0.00 0.00 24.26 0.00 0.00 2.47 0.00 0.00 0.00 0.00

Other bacteria (<3%) 50.85 55.12 34.63 51.73 60.71 54.99 64.40 52.93 53.49 14.22
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Sarcina (Clostridia) 0.00 0.24 0.00 13.10 0.11 0.06 0.71 0.26 0.19 0.07 

Sphingomonas (Alphaproteobacte-

ria) 
0.71 4.11 1.51 2.85 3.47 3.12 1.90 3.66 4.18 0.58 

Staphylococcus (Bacilli) 12.36 1.07 0.31 1.19 1.82 3.26 1.58 2.86 0.49 0.59 

Wolbachia (Alphaproteobacteria) 0.00 0.00 24.26 0.00 0.00 2.47 0.00 0.00 0.00 0.00 

Other bacteria (<3%) 50.85 55.12 34.63 51.73 60.71 54.99 64.40 52.93 53.49 14.22 
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4. Discussion

A survey of the spleen microbiome of species of rodents in Panama represents an
important opportunity to explore potential zoonosis bacteria in these small mammals,
which are considered one of the main hosts of pathogens. Here, we assessed the bacterial
community associated with six closely related species of small mammals in Panama using
a massive 16S ribosomal RNA gene amplicon sequencing for the first time.

Bacterial Composition in the Spleen of Six Species of Rodents, Role in Rodents, and Implications in
Zoonotic Diseases

Overall, we found 3352 ASVs associated with the six species of rodents. The most
common and abundant bacterial taxa included the classes of Actinobacteria, Alpha- and
Gammaproteobacteria, Bacilli, Clostridia, and Bacteroidia. Here, such genera as Acinetobac-
ter, Bartonella, Cutibacterium, Enterococcus, Sarcina, Staphylococcus, and Wolbachia showed
high abundance either in species of rodents or sites. Some of these bacterial taxa are
pathogens responsible for several zoonotic diseases in humans and animals (i.e., domestic
and wild animals) [10,42–45], and some genera or some species belonging to these genera
are also found in rodents, which are major reservoirs [10,44,45]. For instance, Acinetobacter,
which we found in all our rodent species and sites, was previously isolated from laboratory
mice and rodents [46] and is associated with infections, and some species showed high
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drug resistance [47]. Bartonella, which was only found in high abundance in Z. brevicauda,
is a common bacteria found in rodents worldwide [10,45,48–51], and some species are
associated with many clinical manifestations, including endocarditis [52,53], neurologic
disorders [54], and meningitis [55], among others [45]. Additionally, a study showed ev-
idence of the transmission of Bartonella from rodents by fleas [45]. Cutibacterium, which
was found in L. adspersus, contains species (i.e., Cutibacterium acnes) that are known as
skin infection bacteria [56,57]. Enterococcus was found in high abundance in M. caliginosus;
this bacterium is found in different animals, including free-living raptors [44], and it is a
commensal organism, an opportunistic pathogen associated with the mortality of humans
and animals [44,58]. On the other hand, previous studies showed that species such as
Enterococcus faecalis were associated with small rodents [43,59], and it has caused inflam-
matory disease in mice [43]. Another observation is Sarcina, which was found in high
abundance in M. musculus. Studies have shown that some species belonging to Sarcina
(i.e., Sarcina ventriculi) are Gram-positive bacteria, able to survive in extremely low pH
environments [60], and it is an important pathogen that is associated with a lethal disease
in sanctuary chimpanzees [61]. Staphylococcus was found in high abundance in L. adspersus.
It contains some species, such as Staphylococcus aureus; this species is a commensal bacteria
of the human skin and gastrointestinal tract, which causes infections [62]. Finally, Wolbachia
was found in the spleen of rodents, and it was also found in high abundance in M. caligi-
nosus. This bacterium is associated with insects [63–66] and has implications for ecology
and reproduction in various insects [63,67–69].

This study is the first step in screening bacterial taxa with the potential for zoonosis in
the rodents surveyed in Panama. Although we found several pathogenic bacteria, more
studies are needed to accurately estimate their potential for zoonosis in the country. Further
research is also needed to assess the core microbiome associated with different species of
rodents and which ones have a higher potential for zoonosis.

5. Conclusions

This study resulted in the identification and relative abundance of important bacterial
taxa with the potential for zoonosis in six rodent species in a neotropical country. More
studies are needed to determine which of the rodent species studied have a higher potential
for bacterial zoonosis and which environmental conditions, for example, rural vs. suburban
or urban settings, may drive bacterial zoonosis.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/zoonoticdis4020015/s1, Figure S1: Rarefaction curves of bacterial
phylogenetic diversity (Faith’s PD, ±SE) associated with species of rodents from Panama (A) and
associated with M. musculus from two sites (B). Inner plot showed rarefaction curves from other
sites collected.
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