
Citation: Ouaddi, C.; Benaddi, L.;

Khriss, I.; Jakimi, A. Developing

Conversational Agent Using Deep

Learning Techniques. Comput. Sci.

Math. Forum 2023, 6, 3. https://

doi.org/10.3390/cmsf2023006003

Academic Editor: Mohamed Oualla

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Developing Conversational Agent Using Deep Learning
Techniques †

Charaf Ouaddi 1,* , Lamya Benaddi 1,*, Ismaïl Khriss 2,* and Abdeslam Jakimi 1,*

1 Software Engineering & Information Systems Engineering (GL-ISI) Team, Faculty of Sciences and Techniques
of Errachidia (FSTE), University of Moulay Ismail (UMI), Meknes 50050, Morocco

2 Département de Mathématique, Informatique et Génie, Université du Québec à Rimouski,
Rimouski, QC G5L 3A1, Canada

* Correspondence: c.ouaddi@edu.umi.ac.ma (C.O.); l.benaddi@edu.umi.ac.ma (L.B.);
ismail_khriss@uqar.ca (I.K.); ajakimi@yahoo.fr (A.J.)

† Presented at the 3rd International Day on Computer Science and Applied Mathematics, Errachidia, Morocco,
13 May 2023.

Abstract: Recent advances in artificial intelligence and natural language processing have been
widely used in recent years, and one of the best applications of these technologies is conversational
agents. These agents are computer programs that can converse with users in natural languages.
Developing conversational agents using artificial intelligence techniques is an exciting prospect in
natural language processing. In this study, we built an intelligent conversational agent using deep
learning techniques. We used a sequence-to-sequence model with encoder–decoder architecture. This
encoder–decoder uses a recurrent neural network with long–short-term memory cells. The encoder
was used to understand the user’s question, and the decoder was to provide the answer.

Keywords: conversational agents; deep learning; recurrent neural networks; long–short-term memory;
sequence to sequence; natural language processing

1. Introduction

Recent advances in artificial intelligence (AI) and natural language processing (NLP)
have been widely used in recent years, and one of the best uses for these technologies is
conversational agents. These agents are computer programs that can converse with users
in natural languages. They are frequently used to automate hotel booking, flight booking,
shopping, etc. Additionally, they can be integrated into messaging platforms, mobile apps,
websites, and other communication channels [1,2].

Developing conversational agents using AI techniques is an interesting prospect in
NLP. Many research and development projects use machine learning algorithms, deep
learning, and NLP techniques to develop conversational agents. Additionally, developers
can use many frameworks and platforms to build these applications, such as Google’s
Dialogflow [3], IBM’s Watson [4], Microsoft’s Bot Framework [5], and Amazon’s Lex [6].
However, they also have drawbacks, such as NLP service lock-in and a high cost.

Previously, conversational agents have been designed using manually written rule-
based architecture and retrieval techniques. With the advent of deep learning, these
traditional models have been replaced by neural networks. In particular, recurrent encoder–
decoder models [7] have been used in neural machine translation [8] and are also used to
develop agents.

In this paper, we have developed a conversational agent using deep learning tech-
niques. We used a sequence-to-sequence (Seq2Seq) model with encoder–decoder architec-
ture [9]. This encoder–decoder uses a recurrent neural network with LSTM cells.

Comput. Sci. Math. Forum 2023, 6, 3. https://doi.org/10.3390/cmsf2023006003 https://www.mdpi.com/journal/csmf

https://doi.org/10.3390/cmsf2023006003
https://doi.org/10.3390/cmsf2023006003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/csmf
https://www.mdpi.com
https://orcid.org/0000-0002-0829-7326
https://doi.org/10.3390/cmsf2023006003
https://www.mdpi.com/journal/csmf
https://www.mdpi.com/article/10.3390/cmsf2023006003?type=check_update&version=1

Comput. Sci. Math. Forum 2023, 6, 3 2 of 6

The rest of the paper is organized as follows: Section 2 presents the related works.
Section 3 shows an overview of our approach. Section 4 gives the experiment and the
results of our method. Finally, Section 5 concludes our paper.

2. Related Work

A conversational agent or chatbot is a computer program that can converse with a human
being in using natural language (NL). It can be a simple rule-based agent or an AI-based
application that leverages natural language understanding (NLU). It uses NLP algorithms
and machine learning (ML) to understand and interpret users’ inputs and generates responses
using NL. These applications are often used to automate tasks, such as customer service,
e-commerce, flight booking, etc. They can be integrated into mobile applications, websites, or
social networks to provide users with quick and personalized responses.

The architecture of an agent usually consists of three essential components [10,11].
The first one is the NLU component, which receives NL text from the user interface (label 1
in Figure 1) and extracts intents and entities (label 2). This representation is then handled
by the Dialogue Manager (DM), which examines the context of the conversation and can
perform different actions depending on the intent, such as calling an external service to
retrieve data (label 3). Finally, a natural language generation (NLG) component produces a
response, typically an NL sentence (label 4).

Comput. Sci. Math. Forum 2023, 6, 3 2 of 7

The rest of the paper is organized as follows: Section 2 presents the related works.
Section 3 shows an overview of our approach. Section 4 gives the experiment and the re-
sults of our method. Finally, Section 5 concludes our paper.

2. Related Work
A conversational agent or chatbot is a computer program that can converse with a

human being in using natural language (NL). It can be a simple rule-based agent or an AI-
based application that leverages natural language understanding (NLU). It uses NLP al-
gorithms and machine learning (ML) to understand and interpret users’ inputs and gen-
erates responses using NL. These applications are often used to automate tasks, such as
customer service, e-commerce, flight booking, etc. They can be integrated into mobile ap-
plications, websites, or social networks to provide users with quick and personalized re-
sponses.

The architecture of an agent usually consists of three essential components [10,11].
The first one is the NLU component, which receives NL text from the user interface (label
1 in Figure 1) and extracts intents and entities (label 2). This representation is then handled
by the Dialogue Manager (DM), which examines the context of the conversation and can
perform different actions depending on the intent, such as calling an external service to
retrieve data (label 3). Finally, a natural language generation (NLG) component produces
a response, typically an NL sentence (label 4).

Figure 1. A typical architecture for conversational agents (adapted from Refs. [11,12]).

Generally, we implement this type of application either by reusing services offered
by some platforms and frameworks [3–6] or by developing them from scratch using exist-
ing techniques, such as NLP, machine learning algorithms, or deep learning techniques.

Recurrent neural networks (RNNs) are artificial neural networks specifically de-
signed to process sequential data (for instance, text and sound) used by agents. Unlike
Feed-Forward Neural Networks (FFNN) that process fixed-length inputs, RNNs can han-
dle variable-length sequences, x = (x1, …, xn), as inputs and produce a sequence of hidden
states, y = (yt1, …, ytn), using a recurrent loop. This is also called unrolling the network, as
shown in Figure 2. X is the input sequence, yti-1 is the output sequence, yi is hidden state
sequence, Wx and Wy are the network weights.

Figure 1. A typical architecture for conversational agents (adapted from Refs. [11,12]).

Generally, we implement this type of application either by reusing services offered by
some platforms and frameworks [3–6] or by developing them from scratch using existing
techniques, such as NLP, machine learning algorithms, or deep learning techniques.

Recurrent neural networks (RNNs) are artificial neural networks specifically designed
to process sequential data (for instance, text and sound) used by agents. Unlike Feed-
Forward Neural Networks (FFNN) that process fixed-length inputs, RNNs can handle
variable-length sequences, x = (x1, . . . , xn), as inputs and produce a sequence of hidden
states, y = (yt1, . . . , ytn), using a recurrent loop. This is also called unrolling the network,
as shown in Figure 2. X is the input sequence, yti-1 is the output sequence, yi is hidden state
sequence, Wx and Wy are the network weights.

Comput. Sci. Math. Forum 2023, 6, 3 3 of 7

Figure 2. Unfolding of an RNN over 4 time steps (adapted from Ref. [9]).

For long sequences, implementations of RNNs are rarely used because the network
cannot remember long-term dependencies (vanishing or exploding gradients), and thus,
is challenging to train. For example, given the following sentence: “Errachidia is one of
the tourist regions of Morocco; it is located in the southeast of the country.” The RNNs
might not consider the connection between the words “Errachidia” and “it.” That is why
LSTM [13] or Gated Recurrent Units (GRU) [14] were developed to address the problem
of long-term dependencies faced by RNNs, allowing models to learn how to memorize
short- and long-term information. LSTMs and GRU have been successfully used in the
development of conversational agents for NLU and NLG.

Then, Seq2Seq architecture is introduced as a dialogue and machine translation sys-
tem model [9]. It consists of two RNNs, an encoder and a decoder. An encoder takes a
sequence as an input and processes one symbol at each time step. Its goal is to convert a
sequence of characters into a context vector representing the intent of the sequence. The
decoder generates another output sequence from the context.

More recently, transformer architecture has been introduced, which uses attention
mechanisms to allow models to consider the full context when they are generating text.
Transformer models, such as Bidirectional Encoder Representations from Transformers
(BERT) [15] and Generative Pre-trained Transformers (GPT) [16], have significantly im-
proved performance in various NLP tasks, including developing conversational agents,
for instance, the development of ChatGPT based on GPT3 [16].

In the next section, we present a practical approach used to develop a conversational
agent using the Seq2Seq model with LSTM cells in the process of encoder decoder, in
which the encoder is used to understand the question and the decoder to provide the an-
swer.

3. Approach
Our approach in this study consists of five steps. First, we import data we want to

use (label 1 in Figure 3). In the second step, we preprocess data (label 2). In the third step,
data are divided into two sets, one for training and the other for testing the model (label3).
In the fourth step, a Seq2Seq model is built using encoder–decoder architecture, with
LSTM cells for both components (label 4). An encoder is used to understand the user’s
message, while a decoder is used to generate a response. Finally, the model is trained and
saved (label 6) and used to converse with users (labels 7, 8, and 9).

Figure 2. Unfolding of an RNN over 4 time steps (adapted from Ref. [9]).

Comput. Sci. Math. Forum 2023, 6, 3 3 of 6

For long sequences, implementations of RNNs are rarely used because the network
cannot remember long-term dependencies (vanishing or exploding gradients), and thus,
is challenging to train. For example, given the following sentence: “Errachidia is one of
the tourist regions of Morocco; it is located in the southeast of the country”. The RNNs
might not consider the connection between the words “Errachidia” and “it”. That is why
LSTM [13] or Gated Recurrent Units (GRU) [14] were developed to address the problem
of long-term dependencies faced by RNNs, allowing models to learn how to memorize
short- and long-term information. LSTMs and GRU have been successfully used in the
development of conversational agents for NLU and NLG.

Then, Seq2Seq architecture is introduced as a dialogue and machine translation system
model [9]. It consists of two RNNs, an encoder and a decoder. An encoder takes a sequence
as an input and processes one symbol at each time step. Its goal is to convert a sequence
of characters into a context vector representing the intent of the sequence. The decoder
generates another output sequence from the context.

More recently, transformer architecture has been introduced, which uses attention
mechanisms to allow models to consider the full context when they are generating text.
Transformer models, such as Bidirectional Encoder Representations from Transformers
(BERT) [15] and Generative Pre-trained Transformers (GPT) [16], have significantly im-
proved performance in various NLP tasks, including developing conversational agents, for
instance, the development of ChatGPT based on GPT3 [16].

In the next section, we present a practical approach used to develop a conversational
agent using the Seq2Seq model with LSTM cells in the process of encoder decoder, in which
the encoder is used to understand the question and the decoder to provide the answer.

3. Approach

Our approach in this study consists of five steps. First, we import data we want to use
(label 1 in Figure 3). In the second step, we preprocess data (label 2). In the third step, data
are divided into two sets, one for training and the other for testing the model (label3). In
the fourth step, a Seq2Seq model is built using encoder–decoder architecture, with LSTM
cells for both components (label 4). An encoder is used to understand the user’s message,
while a decoder is used to generate a response. Finally, the model is trained and saved
(label 6) and used to converse with users (labels 7, 8, and 9).

Comput. Sci. Math. Forum 2023, 6, 3 4 of 7

Figure 3. Overview of our approach.

4. Experiment and Results
4.1. Dataset

The dataset used for building the conversational agent called “Cornell Movie Dia-
logue Corpus” was extracted from the Cornell University website [17]. This corpus con-
tains a large, metadata-rich collection of conversations. There are mainly two text files in
the dataset: the first file contains the conversation id, person id, movie id, and the actual
conversation, and the second file contains the mapping of conversations between different
users. Generally, this corpus includes 221,616 conversation exchanges between 10,292
pairs of movie characters. It involves 83,098 dialogues between 9035 characters from 617
movies. There are 304,714 utterances in total.

4.2. Data Preprocessing
Preprocessing is a significant step in preparing data for training the Seq2Seq model,

and it involves several substeps. First, we created a dictionary that associates each conver-
sation line with its ID from the first file. We made a nested list of all conversations in the
second file. Then, we separated all data into two lists that contain questions and answers.
Moreover, all capital letters, punctuation marks, and some characters (-, #, $, etc.) are re-
moved from the question-and-answer lists to obtain clean data. Our process required
fixed-length questions and answers by omitting longer ones and padding for the shorter
ones using a specific token. Then, we created a vocabulary list of all the words in the da-
taset. Finally, we converted the words in the question-answer lists to train our model into
vectors. We call this process vectorization. It can be achieved either by using a localist
representation, such as one-hot, or a distributed representation, such as GloVe or
Word2Vec. In our case, we used GloVe to obtain vector representations for words in our
corpus.

4.3. Splitting Data
Splitting data refers to dividing a dataset into three subsets: a training set, a validation

set, and a testing set. The training set is a subset of data used to train the model. The
validation set was used to tune the model’s hyperparameters. In contrast, the testing eval-
uates the model’s performance after training and tuning the hyperparameters.

In our experiment, we divided our dataset into 90% for training data, 5% for valida-
tion data, and 5% for testing data.

Figure 3. Overview of our approach.

Comput. Sci. Math. Forum 2023, 6, 3 4 of 6

4. Experiment and Results
4.1. Dataset

The dataset used for building the conversational agent called “Cornell Movie Dialogue
Corpus” was extracted from the Cornell University website [17]. This corpus contains
a large, metadata-rich collection of conversations. There are mainly two text files in the
dataset: the first file contains the conversation id, person id, movie id, and the actual
conversation, and the second file contains the mapping of conversations between different
users. Generally, this corpus includes 221,616 conversation exchanges between 10,292 pairs
of movie characters. It involves 83,098 dialogues between 9035 characters from 617 movies.
There are 304,714 utterances in total.

4.2. Data Preprocessing

Preprocessing is a significant step in preparing data for training the Seq2Seq model,
and it involves several substeps. First, we created a dictionary that associates each con-
versation line with its ID from the first file. We made a nested list of all conversations
in the second file. Then, we separated all data into two lists that contain questions and
answers. Moreover, all capital letters, punctuation marks, and some characters (-, #, $,
etc.) are removed from the question-and-answer lists to obtain clean data. Our process
required fixed-length questions and answers by omitting longer ones and padding for the
shorter ones using a specific token. Then, we created a vocabulary list of all the words in
the dataset. Finally, we converted the words in the question-answer lists to train our model
into vectors. We call this process vectorization. It can be achieved either by using a localist
representation, such as one-hot, or a distributed representation, such as GloVe or Word2Vec.
In our case, we used GloVe to obtain vector representations for words in our corpus.

4.3. Splitting Data

Splitting data refers to dividing a dataset into three subsets: a training set, a validation
set, and a testing set. The training set is a subset of data used to train the model. The
validation set was used to tune the model’s hyperparameters. In contrast, the testing
evaluates the model’s performance after training and tuning the hyperparameters.

In our experiment, we divided our dataset into 90% for training data, 5% for validation
data, and 5% for testing data.

4.4. Building the Model

Keras [18] and TensorFlow [19] are open-source software libraries for building and
training deep learning models, which are used for building Seq2Seq models using encoder–
decoder architecture with LSTM cells. Keras is a high-level neural network API written in
Python and runs on top of TensorFlow. It provides a set of pre-built layers, including LSTM
layers. Figure 4 shows the architecture of our model that we built using these APIs. It consists
of an encoder and a decoder, usually RNNs such as LSTMs, which we used in our experiment.
The encoder takes an input sequence, such as an English sentence, and converts it into a
context vector representing the information in the input sequence. A decoder uses this context
vector to generate an output sequence, such as a response to a user’s message.

Comput. Sci. Math. Forum 2023, 6, 3 5 of 7

4.4. Building the Model
Keras [18] and TensorFlow [19] are open-source software libraries for building and

training deep learning models, which are used for building Seq2Seq models using en-
coder–decoder architecture with LSTM cells. Keras is a high-level neural network API
written in Python and runs on top of TensorFlow. It provides a set of pre-built layers,
including LSTM layers. Figure 4 shows the architecture of our model that we built using
these APIs. It consists of an encoder and a decoder, usually RNNs such as LSTMs, which
we used in our experiment. The encoder takes an input sequence, such as an English sen-
tence, and converts it into a context vector representing the information in the input se-
quence. A decoder uses this context vector to generate an output sequence, such as a re-
sponse to a user’s message.

Figure 4. Architecture of the Seq2Seq model (adapted from Ref. [9]).

4.5. Training the Model
We trained the model on the preprocessed dataset with different values for the hy-

perparameters: the learning rate, number of epochs, batch size, and number of LSTM cells.
We took categorical cross-entropy as our loss function, the metric was accuracy, and the
optimizer used was adam. Table 1 shows three configurations of these hyperparameters
that we used to train the model.

Table 1. Different values for the hyperparameters of our models.

Hyperparameter Configuration 1 Configuration 2 Configuration 3 Configuration 4
LSTM cells 256 256 512 512
Batch size 32 32 32 64

Epochs 11 50 75 100
Learning rate 0.001 0.001 0.001 0.001
Loss function categorical_crossentropy

Metric accuracy
Optimizer adam

4.6. Results
In this experience, we obtained our best results with the following values: 0.001

(learning rate), 11 epochs, a batch size of 32, and 256 LSTM cells. Upon training, the model
achieved a training accuracy of around 83.80%, while the validation accuracy was approx-
imately 83.03%. We tested our model on the test set, and we obtained an accuracy of
83.50%. The results of our experiment are shown in Table 2.

Figure 4. Architecture of the Seq2Seq model (adapted from Ref. [9]).

Comput. Sci. Math. Forum 2023, 6, 3 5 of 6

4.5. Training the Model

We trained the model on the preprocessed dataset with different values for the hyper-
parameters: the learning rate, number of epochs, batch size, and number of LSTM cells.
We took categorical cross-entropy as our loss function, the metric was accuracy, and the
optimizer used was adam. Table 1 shows three configurations of these hyperparameters
that we used to train the model.

Table 1. Different values for the hyperparameters of our models.

Hyperparameter Configuration 1 Configuration 2 Configuration 3 Configuration 4

LSTM cells 256 256 512 512

Batch size 32 32 32 64

Epochs 11 50 75 100

Learning rate 0.001 0.001 0.001 0.001

Loss function categorical_crossentropy

Metric accuracy

Optimizer adam

4.6. Results

In this experience, we obtained our best results with the following values: 0.001
(learning rate), 11 epochs, a batch size of 32, and 256 LSTM cells. Upon training, the
model achieved a training accuracy of around 83.80%, while the validation accuracy was
approximately 83.03%. We tested our model on the test set, and we obtained an accuracy of
83.50%. The results of our experiment are shown in Table 2.

Table 2. Accuracies of the models in the four configurations.

Configuration Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%)

1 83.80 83.03 83.50

2 87.08 82.18 83.40

3 89.87 81.60 82.12

4 90.65 81.39 82.55

Generally, the results of our models appear to be overfitted since we observed good
accuracy on the training data, but a poor performance on the validation data. Several
techniques can be used to avoid overfitting, including regularization techniques such as
dropout, early stop, and feeding the model more data.

5. Conclusions

This paper presents an example of a question–answer conversational agent and how it
can be developed using techniques in deep learning and natural language processing. For
our implementation, we used Seq2Seq architecture with LSTM cells. We have also shown
the results of our training of this model.

Author Contributions: Conceptualization, C.O., L.B., I.K. and A.J.; methodology, C.O. and L.B.;
software, C.O. and L.B.; validation, I.K. and A.J.; formal analysis, C.O., L.B., I.K. and A.J.; investiga-
tion, C.O. and L.B.; resources, C.O. and L.B.; data curation, C.O. and L.B.; writing—original draft
preparation, C.O. and L.B.; writing—review and editing, I.K. and A.J.; visualization, C.O., L.B., I.K.
and A.J.; supervision, I.K. and A.J.; project administration, I.K. and A.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Center for Scientific and Technical Research
(CNRST) under a Moroccan project called “Al-Khawarizmi Project in AI and its Applications”.

Comput. Sci. Math. Forum 2023, 6, 3 6 of 6

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data have been presented in the main text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brandtzaeg, P.B.; Følstad, A. Why people use chatbots. In Internet Science: 4th International Conference, INSCI 2017, Thessaloniki,

Greece, November 22–24, 2017, Proceedings 4; Springer: Berlin/Heidelberg, Germany, 2017; pp. 377–392.
2. Lebeuf, C.; Storey, M.-A.; Zagalsky, A. Software bots. IEEE Software 2017, 35, 18–23. [CrossRef]
3. Dialogflow. Available online: https://dialogflow.com/ (accessed on 10 January 2022).
4. Watson Assistant. Available online: https://www.ibm.com/cloud/watson-assistant/ (accessed on 5 January 2022).
5. Microsoft Bot Framework. Available online: https://dev.botframework.com/ (accessed on 20 April 2022).
6. Amazon Lex. Available online: https://aws.amazon.com/en/lex/ (accessed on 20 February 2022).
7. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
8. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.
9. Sojasingarayar, A. Seq2seq ai chatbot with attention mechanism. arXiv 2020, arXiv:2006.02767.
10. Sarikaya, R. The technology behind personal digital assistants: An overview of the system architecture and key components.

IEEE Signal Process. Mag. 2017, 34, 67–81. [CrossRef]
11. Adamopoulou, E.; Moussiades, L. An overview of chatbot technology. In Artificial Intelligence Applications and Innovations:

16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part II 16; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 373–383.

12. Kusal, S.; Patil, S.; Choudrie, J.; Kotecha, K.; Mishra, S.; Abraham, A. AI-based Conversational Agents: A Scoping Review from
Technologies to Future Directions. IEEE Access 2022, 10, 92337–92356. [CrossRef]

13. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
14. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
15. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
16. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Amodei, D. Language models are few-shot learners. Adv.

Neural Inf. Process. Syst. 2020, 33, 1877–1901.
17. Dataset. Available online: https://www.cs.cornell.edu/cristian/CornellMovieDialogsCorpus.htm (accessed on 2 January 2022).
18. Keras. Available online: https://keras.io/api/ (accessed on 2 February 2023).
19. Tensorflow. Available online: https://www.tensorflow.org/guide (accessed on 2 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MS.2017.4541027
https://dialogflow.com/
https://www.ibm.com/cloud/watson-assistant/
https://dev.botframework.com/
https://aws.amazon.com/en/lex/
https://doi.org/10.1109/MSP.2016.2617341
https://doi.org/10.1109/ACCESS.2022.3201144
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.cs.cornell.edu/cristian/CornellMovieDialogsCorpus.htm
https://keras.io/api/
https://www.tensorflow.org/guide

	Introduction
	Related Work
	Approach
	Experiment and Results
	Dataset
	Data Preprocessing
	Splitting Data
	Building the Model
	Training the Model
	Results

	Conclusions
	References

