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Abstract: Metallo-β-lactamases (MBLs) are members of the structurally conserved but functionally
diverse MBL-fold superfamily of metallohydrolases. MBLs are a major concern for global health care
as they efficiently inactivate β-lactam antibiotics, including the “last-resort” carbapenems, and no
clinically suitable inhibitors are currently available. Increasingly, promiscuous β-lactamase activity
is also observed in other members of the superfamily, including from viruses, which represents
an underexplored reservoir for future pathways to antibiotic resistance. Here, two such MBL-
fold enzymes from Bacillus phages, the cyclic mononucleotide-degrading proteins ApycGoe3 and
ApycGrass, are shown to degrade β-lactam substrates efficiently in vitro. In particular, ApycGrass

displays a distinct preference for carbapenem substrates with a catalytic efficiency that is within one
order of magnitude of the clinically relevant MBL NDM-1. Mutagenesis experiments also demonstrate
that the loss of a metal-bridging aspartate residue reduces nuclease activity up to 35-fold but improves
carbapenemase activity. In addition, we hypothesise that the oligomeric state significantly influences
β-lactamase activity by modifying access to the active site pocket. Together, these observations
hint at a possible new avenue of resistance via the spread of phage-borne MBL-fold enzymes with
β-lactamase activity.

Keywords: virus; metallo-beta-lactamase (MBL); MBL-fold superfamily; antimicrobial resistance;
anti-Pycsar; carbapanemase

1. Introduction

Antibiotic resistance has long been recognised as a critical global health concern [1].
The excessive use of antibiotics as preventive and curative measures against infection not
only for human health but also in intensive animal husbandry has resulted in a widespread
rise in antimicrobial resistance [2]. Amongst the varied mechanisms of antibiotic resistance,
the production of β-lactamases, enzymes that break down β-lactam antibiotics, is of par-
ticular concern as they are the most widely used (~65% globally) and include “last-resort”
antibiotics such as carbapenems (Figure 1A) [1,3]. These β-lactamases are classified based
on their structure and mechanism as serine-β-lactamases (SBLs—Ambler classes A, C, and
D; see Bush [4]), which utilise a conserved serine residue to hydrolyse the four-membered
β-lactam ring, and metallo-β-lactamases (MBLs—Ambler class B), which catalyse the same
reaction using a catalytic hydroxide coordinated by one or two zinc ions [3,5]. MBLs
are of particular interest as no clinically useful inhibitors are currently available [3,5–7].
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In contrast, SBLs are targeted by several potent and widely used drugs (e.g., clavulanic
acid) [3,8,9].
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[3,11], named after the first enzyme that was shown to contain the characteristic αββα or 
“MBL”-fold (Figure 1B), the MBL from Bacillus cereus (BcII) [18]. The MBL-fold superfam-
ily is present in all domains of life, and while functionally diverse, they predominantly 
function as hydrolases. The members include, but are not limited to, endo- and exoribo-
nucleases [19–21], phosphatases [22–24], lactonases [25,26], glyoxalases [27–29], dehalo-
genases [30], sulfatases [31,32], oxidases [33], and β-lactamases [11,12,34–38]. Recent stud-
ies have shown that numerous members of this superfamily exhibit catalytic promiscuity 
[39–43]. Promiscuous β-lactamase activity is of concern as the corresponding enzymes 
may represent a cryptic reservoir of antibiotic resistance. For example, two MBL-fold en-
zymes recovered from deep-sea viral metagenomes, i.e., TupBlac and PNGM-1, are nucle-
ases with promiscuous β-lactamase activity [41,44,45]. While these native nucleases were 
likely acquired from a bacterial host, and their β-lactamase activity is currently marginal, 
their presence in a virus raises the question about the possible evolution and dissemina-
tion of antimicrobial resistance through horizontal gene transfer back into bacterial hosts. 

During a sequence-based survey of B3 MBLs [12], we discovered two distantly re-
lated viral MBL-fold enzymes in the genomes of the Bacillus phage vB_Bsum_Goe3 
(KY368640) and Grass virus (KF669652), which both belong to the “Bastille-like” viruses 
within the Spounavirinae subfamily of the Myoviridae [46,47] (note that phages are viruses 

Figure 1. (A) Chemical structure of the backbones of the four major β-lactam antibiotic classes.
(B) Overall structure of ApycGoe3 highlighting the αββα fold. The colouring is a gradient from blue
(N-terminal) to red (C-terminal). The two grey spheres represent Zn(II) ions. The structural model
was predicted using AlphaFold3 [10]. (C) Chemical structures of the following cyclic nucleotides:
cyclic cytidine monophosphate (cCMP) and cyclic uridine monophosphate (cUMP).

MBLs are divided into the B1, B2, and B3 subgroups according to their phylogeny,
active site residues, metal content, and substrate preferences [3,11,12]. The B1 and B2
subgroups contain the majority of the MBLs of current clinical concern [13], whereas
B3 MBLs are primarily associated with environmental microorganisms [11,12,14,15], al-
though some notable B3 members of concern (e.g., AIM-1) have been encountered in
clinical environments [16,17]. The three subgroups belong to the MBL-fold protein super-
family [3,11], named after the first enzyme that was shown to contain the characteristic
αββα or “MBL”-fold (Figure 1B), the MBL from Bacillus cereus (BcII) [18]. The MBL-fold
superfamily is present in all domains of life, and while functionally diverse, they predom-
inantly function as hydrolases. The members include, but are not limited to, endo- and
exoribonucleases [19–21], phosphatases [22–24], lactonases [25,26], glyoxalases [27–29],
dehalogenases [30], sulfatases [31,32], oxidases [33], and β-lactamases [11,12,34–38]. Recent
studies have shown that numerous members of this superfamily exhibit catalytic promiscu-
ity [39–43]. Promiscuous β-lactamase activity is of concern as the corresponding enzymes
may represent a cryptic reservoir of antibiotic resistance. For example, two MBL-fold
enzymes recovered from deep-sea viral metagenomes, i.e., TupBlac and PNGM-1, are nucle-
ases with promiscuous β-lactamase activity [41,44,45]. While these native nucleases were
likely acquired from a bacterial host, and their β-lactamase activity is currently marginal,
their presence in a virus raises the question about the possible evolution and dissemination
of antimicrobial resistance through horizontal gene transfer back into bacterial hosts.

During a sequence-based survey of B3 MBLs [12], we discovered two distantly related
viral MBL-fold enzymes in the genomes of the Bacillus phage vB_Bsum_Goe3 (KY368640)
and Grass virus (KF669652), which both belong to the “Bastille-like” viruses within the
Spounavirinae subfamily of the Myoviridae [46,47] (note that phages are viruses that in-
fect bacterial cells and coerce them to make more phages rather than cells [48]). These
virally-encoded MBL-fold enzymes appear to have been horizontally-acquired from their
bacterial hosts, but no closely-related characterised MBL-fold homologs were reported at
that time. The recent characterisation of anti-Pycsar enzymes [49] sheds light on the likely
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in vivo function of these enzymes. The Pyrimidine Cyclase System for Antiphage Resistance
(Pycsar) is a recently identified but seemingly widespread bacterial defence mechanism
against phages, which is activated by cyclic nucleotide messengers (Figure 1C) [50,51]. In
response, Bacillus phages have evolved an anti-Pycsar system by expressing MBL-fold
proteins that specifically cleave and thus inactivate cyclic nucleotide messengers [49]. One
such anti-Pycsar protein, Apyc1 from the Bacillus phage Bsp38, shares 78.9% and 88.2%
sequence identity with the vB_Bsum_Goe3 and Grass virus MBL-fold enzymes [49]. There-
fore, we predicted that these MBL proteins should possess nuclease activity (i.e., ApycGoe3
and ApycGrass, respectively). However, since virally encoded β-lactamase activity has
been demonstrated in TupBlac and PNGM-1, we evaluated the potential of both enzymatic
properties in ApycGoe3 and ApycGrass. We recombinantly expressed the enzymes in an Es-
cherichia coli host, followed by affinity chromatography purification via either an N-terminal
maltose binding protein (MBP) or hexahistidine tag. (Note that both systems resulted in the
production of soluble, pure enzymes. However, preliminary assays indicated that only the
MBP-tagged enzymes displayed significant β-lactamase activity and hence were used for
more detailed catalytic characterisation. Any attempts to remove the MBP tag by proteolytic
cleavage resulted in the precipitation of the viral MBL proteins. Unless otherwise specified,
the terms ApycGoe3 and ApycGrass correspond to the MBP-tagged constructs.) To assess
their likely nucleolytic function, the RNase activity of these enzymes was quantitatively
assessed using a fluorescence-based activity assay kit (RNase QC Alert kit, Thermo Fisher,
Waltham, MA, USA) [44]. To test their β-lactamase activity, we performed continuous
in vitro UV-Vis assays following the hydrolysis of representative β-lactam antibiotics.

2. Materials and Methods

The genes for ApycGoe3 (A0A217ER65) and ApycGrass (U5PU04), as well as ApycGoe3
(D178S) and ApycGrass (D161S), were cloned into both pMAL-c5x and pET-24a(+) vectors
for subsequent tag-based affinity purification using either Maltose Binding Protein (MBP)
or polyhistidine (6xHis) tags, respectively. The expression vectors containing the relevant
genes were synthesised commercially (pMAL-c5x: Gene Universal Inc., Newark, DE, USA;
pET-24a(+); Twist Biosciences, San Francisco, CA, USA).

The vectors were transferred into chemically competent E. coli Rosetta (DE3) cells
via heat shock at 42 ◦C. Single, isolated colonies were picked and grown in LB medium
supplemented with 100 µg/mL of either ampicillin (pMAL-c5x vectors) or kanamycin
(pET-24a(+) vectors) for selection. These cultures were used to inoculate larger expression
cultures of the LB medium with appropriate antibiotics and were grown under shaking
(200 rpm) at 37 ◦C until they reached an OD600 ≈ 0.6. At this point, protein expression
was induced by adding 500 µM IPTG, reducing the temperature to 18 ◦C, and leaving the
culture to grow for a further 12 h. The cells were harvested by centrifugation (20 min,
5000× g), resuspended in lysis buffer (20 mM Tris buffer, pH 8.0, containing 0.15 M NaCl,
150 µM ZnCl2) supplemented with 1 mg/mL lysozyme, 1 mg/mL DNase I, and 1.5 mg/mL
EDTA-free protease inhibitor cocktail, and lysed on ice by sonication. Cell debris was
removed by centrifugation (40 min, 14,000× g), and the supernatant was loaded onto a
5 mL MBPTrap HP or HisTrap FF column for MBP- and polyhistidine-tagged enzymes,
respectively, pre-equilibrated with purification buffer (20 mM Tris buffer, pH 8.0, containing
0.15 M NaCl, 150 µM ZnCl2). The proteins were eluted against 10 mM maltose (MBPTrap
HP) or 500 mM imidazole (HisTrap FF). Fractions containing the enzyme (determined by
SDS-PAGE analysis; Supplementary Figures S1–S6) were pooled, and excess NaCl was
removed via buffer exchange using EconoPac 10DG desalting columns (Bio-Rad, South
Granville, NSW, Australia). For the polyhistidine-tagged ApycGoe3 and ApycGrass, the
proteins were further purified via size exclusion chromatography by concentrating the
proteins and then loading them onto a Hiprep 16/60 Sephacryl S-300 HR column (Cytiva,
Marlborough, MA, USA) pre-equilibrated with purification buffer (20 mM Tris, pH 8.0).
Both the polyhistidine- and MBP-tagged proteins were stored at 4 ◦C in 20 mM Tris buffer
(pH 8.0).
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To quantify hydrolytic activity towards nucleic acids, the activity of the two viral
enzymes and two mutant enzymes was assessed against a mixed RNA substrate supplied
by a commercially available nuclease activity kit (RNase QC Alert, Thermo Fisher, Waltham,
MA, USA), which had been previously used to assess the nuclease activity of TupBlac [44].
The substrate is composed of ribonucleic acids with both a fluorescent probe and a quencher.
Upon hydrolysis of the substrate, the fluorescent probe is no longer quenched, which allows
for quantitative analysis of the amount of substrate hydrolysed. The assays were conducted
in Costar 96-well flat bottom plates with final volumes of 200 µL at 37 ◦C for 1 h using a
Clariostar TRF plate reader instrument (BMG Labtech, Victoria, Australia) at 490/520 nm
excitation/emission via the time-resolved fluorescence function and analysed using Reader
Control and MARS Data Analysis Software (V6.2, BMG Labtech, Victoria, Australia).
Enzyme concentrations of 50 nM were used for all four tested enzymes. The nucleolytic
activity of each enzyme was determined by comparison to a standard curve generated with
RNase A. The standard curve was produced with 5, 10, 25, and 50 pg of RNase A. Assays
were conducted in three independent experiments (triplicates).

The β-lactamase activity of the wild-type and serine mutant enzymes was tested by
continuous in vitro UV-Vis assays against the following representative substrates from each
major class of β-lactam antibiotics: ampicillin (λ = 235 nm; ε = 900 M−1 cm−1), carbenicillin
(λ = 235 nm; ε= 1190 M−1 cm−1), penicillin G (λ = 235 nm; ε = 936 M−1 cm−1), biapenem
(λ = 293 nm; ε = 8630 M−1 cm−1), imipenem (λ = 295 nm; ε = 9000 M−1 cm−1), meropenem
(λ = 297 nm; ε = 6500 M−1 cm−1), cefaclor (λ = 280 nm; ε = 6410 M−1 cm−1), cefuroxime
(λ = 260 nm; ε = 9320 M−1 cm−1), cephalothin (λ = 265 nm; ε = 8790 M−1 cm−1), and
aztreonam (λ = 318 nm; ε = 660 M−1 cm−1). The assays were run for 1 min at 25 ◦C
in 50 mM Tris (pH 8.0) using enzyme concentrations of 0.5 µM for ApycGoe3, ApycGoe3
(D178S), and ApycGrass and 0.3–0.5 µM for ApycGrass (D161S). The data were measured
in triplicates, and the Michaelis–Meten parameters were determined by nonlinear fitting
using Graphpad Prism 9 (Figure S7). All β-lactamase assays were run on an Agilent Cary
60 UV-Vis Spectrophotometer (Santa Clara, CA, USA).

3. Results and Discussion

As predicted, ApycGoe3 and ApycGrass possess significant RNAse activity (see Figure 2
and the details below), supporting the designation of these enzymes as orthologs of Apyc1.
Concerningly, ApycGoe3 and ApycGrass also display significant levels of β-lactamase activity
(Table 1). For ApycGrass, the catalytic efficiencies (kcat/KM) are greatest for carbapenem sub-
strates (10–15 s−1 mM−1), followed by penicillins (0.5–3 s−1 mM−1), while cephalosporins
are less readily hydrolysed (≥0.1 s−1 mM−1). The preference for carbapenems is due to
both higher catalytic rates and lower KM values when compared with penicillins. Inter-
estingly, cephalosporins bind more strongly to ApycGrass than the other substrates but
are turned over extremely slowly. For ApycGoe3, the catalytic efficiencies are similar for
carbapenems (~1 s−1 mM−1) and penicillins (1–3 s−1 mM−1) and are approximately two-
to ten-fold higher than for cephalosporins (0.1–0.5 s−1 mM−1). Similar to ApycGrass, the
cephalosporins bind significantly tighter than the other substrates but are turned over very
slowly. This suggests that while cephalosporins can bind tightly, they are likely oriented
in a catalytically non-competent conformation. Consistent with this interpretation is the
observation that cephalosporins, but not the other major classes of β-lactams, are com-
petitive inhibitors of other MBL-fold enzymes, namely, SNM1A and SNM1B, two human
MBL-fold enzymes involved in DNA repair, with IC50 values in the low µM range [52].
These results suggest that non-competent binding of cephalosporins or inhibitory effects of
these β-lactams may be a more common characteristic across the MBL-fold superfamily
than previously appreciated and hence warrants further investigation.
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Table 1. Catalytic parameters of the MBP-tagged wild-type and mutant forms of the virally encoded ApycGoe3 and ApycGrass recorded with representative substrates
from all major classes of β-lactam antibiotics. Units of kcat, KM, and kcat/KM are s−1, µM, and s−1 mM−1|N.H.—no hydrolytic activity detected. a Lee et al. [53].
Errors are shown as standard errors from the mean using triplicate measurements.

ApycGoe3 ApycGoe3 (D178S) ApycGrass ApycGrass (D161S) PNGM-1 a

Substrate kcat KM kcat/KM kcat KM kcat/KM kcat KM kcat/KM kcat KM kcat/KM kcat KM kcat/KM

Penicillins

Penicillin G 0.24 ±
4 × 10−2 230 ± 47 1.04 0.45 ±

5 × 10−2 751 ± 158 0.60 0.67 ±
6 × 10−2 231 ± 55 2.90 0.48 ±

3 × 10−2 180 ± 35 2.70 7.5 × 10−2 16 4.7

Ampicillin 1.8 ± 0.1 663 ± 94 2.67 0.72 ±
7 × 10−2 526 ± 91 1.37 0.54 ±

7 × 10−2 418 ± 102 1.29 0.39 ±
5 × 10−2 891 ± 177 0.44 2.7 × 10−2 15 1.8

Carbenicillin 0.32 ±
2 × 10−2 205 ± 39 1.56 0.13 ±

9 × 10−3 157 ± 29 0.83 0.15 ±
2 × 10−2 330 ± 82 0.45 0.24 ±

4 × 10−2 462 ± 148 0.52 - - -

Carbapenems

Meropenem 0.22 ±
2 × 10−2 215 ± 57 1.02 0.43 ±

4 × 10−2 160 ± 32 2.69 1.1 ±
9 × 10−2 98 ± 26 11.2 4.4 ± 0.7 287 ± 83 15.3 8.0 × 10−4 2 0.42

Imipenem 0.27 ±
3 × 10−2 436 ± 33 0.62 - - - 3.1 ± 0.42 200 ± 54 15.5 4.2 ± 0.6 253 ± 56 16.6 1.1 × 10−3 2 0.55

Cephalosporins

Cefuroxime 8.6 × 10−3

± 4 × 10−4 18 ± 3 0.48 8.3 × 10−3

± 3 × 10−4 3.5 ± 0.5 2.37 5.3 × 10−3

± 2 × 10−4 44 ± 9 0.12 6.0 × 10−3

± 9 × 10−4 142 ± 43 0.042 - - -

Cephalothin 3.0 × 10−3

± 2 × 10−4 19 ± 6 0.16 7.0 × 10−3

± 5 × 10−4 23 ± 4 0.30 5.6 × 10−3

± 4 × 10−4 51 ± 11 0.11 1.3 × 10−3

± 1 × 10−4 54 ± 18 0.024 0.13 62 2.1

Monobactams

Aztreonam N.H. N.H. N.H. N.H. N.H. N.H. N.H. N.H. N.H. N.H. N.H. N.H. - - -
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Figure 2. Nuclease activity of ApycGrass, ApycGrass (D161S), ApycGoe3, and ApycGoe3 (D178S) using a 
mixed ribonucleic acid substrate tagged with a fluorescent probe from the RNase QC Alert kit 

Figure 2. Nuclease activity of ApycGrass, ApycGrass (D161S), ApycGoe3, and ApycGoe3 (D178S) using
a mixed ribonucleic acid substrate tagged with a fluorescent probe from the RNase QC Alert kit
(Thermo Fisher, Waltham, MA, USA). Activity was obtained by comparison to a standard curve
generated with an RNase A positive control.

It should be noted that ApycGoe3 and ApycGrass are significantly more efficient as
β-lactamases than other virally encoded enzymes from the MBL-fold superfamily. For
comparison, PNGM-1 has kcat/KM ratios comparable to those of ApycGoe3 and ApycGrass
for penicillins and carbapenems (~0.5–5 s−1 mM−1); however, they all appear to bind
in catalytically non-competent conformations (leading to kcat values of 10−2–10−4 s−1;
Table 1). In particular, the carbapenemase activity of ApycGrass (kcat ~ 1–3 s−1; kcat/KM ~
10–15 s−1 mM−1) is remarkable, even when compared with “true” MBLs such as the B1
MBL NDM-1, an enzyme that is recognised as a globally distributed clinical concern [1,54]
(Table S1). The kcat and kcat/KM values of the NDM-1-catalysed hydrolysis of the car-
bapenems meropenem (12 s−1, 250 s−1 mM−1) and imipenem (20 s−1, 210 s−1 mM−1)
are only one order of magnitude greater than those of ApycGrass. Furthermore, we also
note that the turnover rates of both ApycGoe3 and ApycGrass are comparable and, in some
cases, superior to those of some SBLs such as the clinically relevant AmpC and OXA-48
(Table S1). This may indicate that these enzymes are predisposed to further evolve into
efficient carbapenemases, which could constitute a threat to current treatment options
for infections.

Sequence alignments and AlphaFold3 models suggest that both ApycGoe3 and ApycGrass
contain the canonical HHH/DHH metal-binding motif observed in B3 MBLs and across
the broader MBL-fold superfamily [3,11] (Figures 3 and S8). Notably, they possess the
aspartate residue found in the majority of non-β-lactamase MBL-fold hydrolases, which
bridges the two metal ions in the active site. This aspartate residue has been suggested to
be critical to catalysis in several MBL-fold enzymes [39,55], but it is notably substituted
by non-metal-coordinating residues in all true β-lactamase lineages of the superfamily
(i.e., in the B1, B2, and B3 MBLs), potentially implying a key role for this residue in the
evolution of β-lactamase activity. The replacement of this metal-bridging ligand in class B
β-lactamases may facilitate greater structural flexibility (i.e., reduced rigidity), possibly a
feature that is important to accommodate a large number of diverse β-lactam substrates. To
test this hypothesis, mutant variants of ApycGoe3 and ApycGrass were generated, in which
this aspartate residue was replaced by a serine residue, as is found in B3 MBLs [11].
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Figure 3. (A) Active site of ApycGoe3 showing the aspartate-to-serine mutation observed in ApycGoe3

(D178S), which removes a coordination point for each metal (Zn2+) ion. (B) Overall structure of the
polyhistidine-tagged ApycGoe3 dimer. One monomer is coloured in a gradient from blue (N-terminus)
to red (C-terminus), and the other is coloured grey. (C) Overall structure of the MBP-tagged ApycGoe3

monomer. The ApycGoe3 portion of the fusion protein is coloured in a gradient from blue (N-terminus)
to red (C-terminus), whereas the MBP tag is coloured grey. All structural models were predicted
using AlphaFold 3 [10].

The mutation has, however, minimal impact on the catalytic properties using car-
bapenems and penicillins as substrates. The preference for carbapenems is retained with
kcat/KM values of ~2 s−1 mM−1 and 15 s−1 mM−1 for ApycGoe3 and ApycGrass, respectively
(Table 1). For the penicillin substrates, the corresponding values are 0.5–1.5 s−1 mM−1 and
0.5–3 s−1 mM−1. The cephalosporins are again turned over very slowly, but because of the
very low KM values in ApycGoe3, they reach kcat/KM values similar to that of the other
substrates. While the introduction of the aspartate to serine mutation had a modest impact
on the β-lactamase activity of ApycGoe3 and ApycGrass, it reduced their nuclease activity
by 5- and 35-fold, respectively. The RNase activity of the native forms of ApycGoe3 and
ApycGrass displayed nuclease activities of 4054 mU/min and 10,115 mU/min (equivalent
to ~0.015 µM/min/nM and ~0.035 µM/min/nM; Figure 2), while the mutant enzymes dis-
played activities of 810 mU/min and 289 mU/min, respectively. In comparison, TupBlac, a
dual-activity MBL-fold enzyme from a giant mimivirus, was reported to possess a nuclease
activity of 0.451 mU/min [44]. It thus appears that both the native and mutant forms of
ApycGoe3 and ApycGrass readily degrade β-lactam antibiotics as well as ribonucleic acids
and do so more efficiently than comparable viral MBL-fold nucleases, although nuclease
activity is greatly diminished in the serine mutant enzymes. Hence, our study demonstrates
that while the aspartate residue that is present in the active site of many MBL-fold super-
family members is important for nuclease activity, its contribution to β-lactamase activity
is less significant. The loss of this aspartate residue may thus have been a mechanism to
enable ancestral MBL-fold hydrolases to accelerate their evolution towards β-lactamase,
but other as of yet unknown factors also contribute towards this functional transition.

Interestingly, the hexahistidine-tagged variants of both enzymes display nuclease
but no β-lactamase activity (data not shown). A possible explanation for the observed
discrepancy in the activity profiles of the different variants may be the impact of the tags on
the oligomeric state of these enzymes. We hypothesise that because of its size, the MBP tag
prevents the oligomerisation of ApycGoe3 and ApycGrass, while the histidine-tagged variants
may form dimers or even higher oligomers. Indeed, structural prediction using AlphaFold3
suggested that the native and polyhistidine-tagged variants form dimers, whereas the
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enzymes tagged with the larger MBP tag were monomeric (Figure 3). It is noteworthy
that most of the highly active “true” MBLs (e.g., NDM-1, AIM-1) are monomeric, while
many nucleases such as the RNase Zs are dimeric [19]. In addition, the crystal structure
of PNGM-1 (PDB code: 6J4N) suggests that the protein may be tetrameric [45], while
structural modelling of TupBlac reveals considerable structural similarity to the dimeric
RNase Zs [44]. These results thus raise the possibility that both TupBlac and PNGM-1, as
well as multimeric MBL-fold hydrolases more broadly, may be functionalised into more
efficient β-lactamases by altering their oligomeric states to monomers, which may enhance
the accessibility of the active site for β-lactam substrates.

4. Conclusions

The present study provides evidence that anti-Pycsar proteins from the MBL-fold
superfamily are capable of efficient β-lactam hydrolysis, and notably display a preference
for the “last-resort” carbapenems. However, their β-lactamase activity may be dependent
on their oligomeric state. The metal-bridging aspartate residue present in the large majority
of MBL-fold enzymes, but absent in “true” MBLs, appears to have minimal effect on β-
lactamase activity (Table 1), but its removal greatly impairs nuclease activity (Figure 2).
The evolution of “true” MBLs from an MBL-fold hydrolase precursor could thus have
arisen from a concerted effect of structural changes that may alter the oligomeric state and
the removal of a metal–ligand that leads to a change in the preferred substrate towards
β-lactams. Given that phages can be vectors of horizontal transfer of genes between
bacterial hosts, the possible evolution of an efficient β-lactamase from a phage-encoded
MBL-fold nuclease, in particular, anti-Pycsar enzymes, could represent a new avenue for
the rapid dissemination of antimicrobial resistance and thus pose a significant threat to
human health. It is thus very important to gain insight into the environmental conditions
(e.g., high bacterial density, stress conditions, presence of mobile genetic elements, nutrient
availability) that facilitate or promote horizontal transfer of relevant genes as one avenue
to stem the possible spread of antibiotic resistance. As the number of known enzymes
within the MBL superfamily with cryptic β-lactamase activity grows, it will also become
increasingly more important to design specific inhibition strategies to prevent this activity
from providing novel avenues of antibiotic resistance. It is hoped that studies like the
present one will stimulate a concerted, global effort in this quest.
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