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Abstract: Animal experiments have long been used as an educational tool in pharma-
cological education; however, from the perspective of animal welfare, it is necessary to
decrease the number of animals used. ingAlthough using of simulators is effective, the
development of these simulators is necessary when there is no existing simulator for animal
experiments. In this review, we describe free, downloadable, and commercial simulators
that are currently used in pharmacological education. Furthermore, we introduce two
strategies to create simulators of animal experiments: (1) bioassay, and (2) experiments that
measure the reaction time. We also describe five sigmoid curves (logistic curve, cumula-
tive distribution function [CDF] of normal distribution, Gompertz curve, von Bertalanffy
curve, and CDF of Weibull curve) to fit the results and their inverse functions. Using this
strategy, it is possible to create a simulator that calculates the reaction time following drug
administration. Moreover, we introduce a statistical model for local anesthetic agents using
hierarchical Bayesian modeling. Considering the correlation among estimated parameters,
we suggest it is possible to create simulators that give results more similar to those of
animal experiments. The pharmacological education will be possible by these simulators at
educational institutions where animal experiments are difficult due to various restrictions.
It is expected that the number of simulator-based education programs will increase in
the future.

Keywords: pharmacological education; animal use alternative; simulator; statistical model;
sigmoid curve

1. Introduction
Currently, animal experiments are performed as part of pharmacological education to

understand the effects of drugs. Representative drugs include general anesthetic agents (in-
halation and intravenous anesthetics), local anesthetic agents, muscle relaxants, autonomic
nervous system drugs (sympathetic and parasympathetic nervous system), antiinflam-
matory drugs, analgesics, hemostatic drugs, and anticoagulants (Table 1). Bioassay is
performed to calculate effective dose 50% (ED50), toxic dose 50% (TD50), and lethal dose
50% (LD50) from the presence or absence of a reaction to the drug. Pharmacokinetic experi-
ments are performed by measuring the blood concentration of administrated reagents.
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Table 1. Examples of animal experiments in pharmacological education.

Drugs/Experiments Measurements Animals

General anesthetic agent induction time and duration mouse
inhalation anesthetics
intravenous anesthetics

Local anesthetic agents * blink reflex to stimulation of cornea by hair rabbit
reaction to stimulation by needle guinea pig

Muscle relaxants * contraction and relaxation of rectus abdominis frog

Autonomic nervous contraction and relaxation of intestinal tract guinea pig
system drugs * Magnus method

Antiinflammatory drugs edema of footpad induced by carrageenin rat
dye leakage from blood vessels in the ear rabbit

Analgesics reaction to stimulation
hot plate test/tail flick test mouse
writhing method/formalin method mouse
tail pinch method mouse

Hemostatic drugs time until bleeding stops from cut tail mouse
anticoagulants similar to Duke method

Bioassay
effective dose 50% (ED50) effect of analgesics mouse
toxic dose 50% (TD50) convulsions induced by pentetorazol or lidocaine mouse

Pharmacokinetics * blood concentration of administrated reagent mouse/rat
* Astarisk means that simulators exist in these experiments (see Tables 2 and 3).

As animal welfare becomes increasingly important, a corresponding decrease in the
number of animals used for experiments is desirable. In identifying animal alternatives,
the 3Rs are an effective strategy: Replacement (directly replace or avoid the use of animals),
Reduction (obtain comparable information levels from fewer animals), and Refinement
(minimize or eliminate animals’ pain and distress, improving their welfare) [1]. From this
perspective, the usage of simulators is preferable. However, there are little simulators
for pharmacological education. Although several existing simulators are summarized in
Tables 2 and 3, the simulators do not exist for most other animal experiments. Therefore, it
is desirable to develop new simulators to reduce the number of animals.

Table 2. Free downloadable simulators in pharmacological education.

Simulator Contents

OBSim [2] organ bath simulator
effect of mainly autonomic nervous drugs on intestinal tract

Virtual Cat [2] simulator of anaesthetized cat
effect of drugs on cardiovascular and skeletal muscle systems

RatCVS [2] simulator of normal and pithed rat
effect of drugs on cardiovascular system

Virtual Twitch [2] simulator of rat phrenic nerve-hemidiaphragm preparation
effect of neuromuscular blocking and reversal agents

Virtual NMJ [2] simulator of electrical potentials at the skeletal neuromuscular junction
effect of various drugs
effect of changes to ionic composition of the extracellular solution

Virtual Nerve [2] simulator of action potential firing of a neuron within a brain slice
effect of anti-epileptic drugs
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Table 3. Commercial simulators in pharmacological education.

Simulator Contents

Pharmaco-PICOS [3] web-based simulator for pharmacodynamics
intestinal motility and blood pressure

BMP-VR (Japanese only) [4] virtual reality simulator of drug-administrated mice
acetaminophen, buprenorphine, diazepam, loxoprofen,
morphine, phenobarbital, phenytoin, rocuronium

Simcyp™ [5] physiologically based pharmacokinetics

PKPlus™ Module compartment and non-compartment analysis
extends GastroPlus® [6]

In this review, we (1) introduce the simulators used in pharmacological education;
(2) review statistical models used for creating simulators when there is no existing simulator,
with a focus on the curves employed in fitting data; and (3) demonstrate the statistical
model and the results by computer simulation based on our recent studies [7,8].

The pharmacological education will be possible by these simulators at educational
institutions where animal experiments are difficult due to various restrictions. If these
simulators are used in a variety of educational institutions, it is expected that the number
of simulator-based education will increase in the future.

2. Simulators Used in Pharmacology Education
In this section, we introduce several simulators for animal experiments. In previous stud-

ies, Ezeala introduced several free downloadable simulators for teaching pharmacology [9],
and Andrews and Barta reviewed several simulators used in clinical pharmacology [10].

2.1. Free Downloadable Simulators

As an alternative to animal use, computer simulations are employed in various fields,
including organ bath systems, cardiovascular systems (such as Strathclyde Pharmacology
Simulations package) [2], and pharmacokinetics [11]. Table 2 summarizes commonly used
simulators that are available for free download. The following information is based on the
information on each simulator’s website and according to the previous study by Ezeala [9].

The Organ-bath Simulator (OBSim) program [2] simulates a classical, in vitro, pharma-
cological experiment using one of four different types of tissue: guinea pig ileum, rabbit
jejunum, chick biventer cervisis, and rat artery. OBSim was also used to characterize the
pharmacological properties of unknown drugs using guinea pig ileum. Students used the
program to determine whether drugs were agonists or antagonists [9].

Virtual Cat [2] is a simulation tool designed to replicate an anesthetized cat experiment,
representing a whole animal preparation. It is commonly used to screen the effects of
pharmaceutical compounds on the cardiovascular and skeletal muscle systems. Virtual Cat
displays the effects of 15 standard drugs and 17 unknown drugs on blood pressure, heart
rate, skeletal muscle, and nictitating membrane contractions. Students used the program
to investigate the effects of agonists, antagonists, and vasodilators on cardiovascular
function [9].

Rat Cardiovascular System, also known as RatCVS [2], is a simulation of a normal
and pithed rat experimental preparation for investigating the actions of 22 standard drugs
and 10 unknown drugs on the cardiovascular system. Using these systems, tutors pro-
vided guidelines according to which the students made inquiries and provided scientific
explanations for the observations [9].
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Virtual Twitch [2] is a simulation of a rat phrenic nerve-hemidiaphragm preparation.
It is used to the study the actions of neuromuscular blocking and reversal agents, and other
drugs that affect neuromuscular transmission.

Virtual NMJ [2] is a simulation of an experiment recording the electrical potentials
associated with neuromuscular transmission at the skeletal neuromuscular junction. The
simulation allows students to observe the muscle action potential (AP) and endplate
potentials (EPPs) evoked by either nerve stimulation or direct current stimulation of the
muscle fiber. The effects of a variety of drugs and of changes to ionic composition of the
extracellular solution on AP and EPPs can be studied.

Virtual Nerve, formerly known as EPSim or Rat Brain Slice Epilepsy Simulation [2],
is a simulated experiment for investigating the effects of anti-epileptic drugs on the AP
firing of a neuron within a brain slice. The intracellular membrane potential of the neuron
is recorded using a patch clamp amplifier via a glass micropipette electrode attached to the
cell body of the neuron and connected to an oscilloscope recording device. The neuron can
also be stimulated via this route. Drugs can be applied to the bath and the concentration of
the Na, Ca, and K ions in the bathing medium changed.

Recently, we reported models based on the results of animal experiments for a local
anesthetic simulator [7,8]. In these animal experiments, several local anesthetic agents are
injected subcutaneously into the shaved backs of guinea pigs, and the number of reactions
when stimulated with a needle were measured. Moreover, we created a simulator to use
in pharmacology education based on this statistical model [12]. This has succeeded in
reducing the number of experimental animals used.

2.2. Commercial Simulators

In this section, we will introduce several commercial simulators (summarized in
Table 3). The representative simulators are Pharmaco-PICOS [3], BMP-VR [4], Simcyp™ [5],
and PKPlus™ Module extends GastroPlus® [6]. The following information is based on the
information on each product’s website.

The Pharmacological Practice of Intestine and Cardiovascular Organ Simulator (Pharmaco-
PICOS) [3] is a web-based simulator for pharmacodynamics. Pharmaco-PICOS simulates the
physiological responses observed in the atrium and ileum when they are stimulated with
biologically active substances and various therapeutic drugs. In addition, Pharmaco-PICOS
simulates the alternation of blood pressure. In the ileum simulator, papaverine, serotonin,
ondansetron, chlorpheniramine, and mosapride can be used. In the blood pressure simulator,
noradrenaline, phenylephrine, angiotensin II, and losartan can be used.

The Basic Medicine Practice-Virtual Reality (BMP-VR) [4] is a simulator that incorpo-
rates VR. Using VR goggles, students can observe the response of mice administrated drugs
such as acetaminophen, buprenorphine, diazepam, loxoprofen, morphine, phenobarbital,
phenytoin, and rocuronium. At present, BMP-VR only supports the Japanese language.

Simcyp™ [5] is a simulator for physiologically based pharmacokinetics. Simcyp™
accurately predicts drug behavior within the human body, aiding in various stages of
drug development. Simcyp™ is used to determine optimal dosing for first-in-human
trials, optimize clinical study designs, evaluate new drug formulations, predict drug-drug
interactions, and conduct virtual bioequivalence analyses. Simcyp™ incorporates extensive
libraries on demographics, developmental physiology, and drug elimination pathways, as
well as advanced mechanistic organ models and compound files.

PKPlus™ Module extends GastroPlus™ [6] is used to rapidly estimate pharmacoki-
netic parameters for noncompartmental analysis, as well as 1-, 2-, and 3-compartment
PK models from pharmacokinetic studies involving intravenous injection (IV) and/or
oral administration. The fitted parameters include PK properties, first order absorption
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rate, bioavailability, and absorption lag time. Compartmental PK models can be fitted to
individual IV or oral data, as well as to multiple plasma concentration versus time profiles.

3. Statistical Models for Computer Simulation
In the following section, we describe the strategy for applying statistical models to

experiments where simulators do not exist. To perform a computer simulation, a process
is required in which random numbers are used to obtain results based on the statistical
models. Simulators are then created using these statistical models.

The animal experiments are divided into at least two categories based on the type of
reaction: (1) those that measure the presence or absence of a reaction to drugs, and (2) those
that measure reaction time to drugs or changes in body size over time.

Bioassay is an example of the former type (Table 1). In bioassay, ED50, TD50, and LD50

are calculated based on reaction rates at various doses. In this case, two parameters
are estimated using probit regression analysis. Using these two parameters, a computer
simulation can be performed (Figure 1B).

Figure 1. Strategies and statistical models for computer simulation. (A,B) Bioassay to estimate
effective dose 50% (ED50) or lethal dose 50% (LD50): Cumulative distribution function (CDF) of
normal distribution is fitted to reaction rate (p) (A). x is logarithm of dose, and Φ is CDF of normal
distribution. The parameters (intercept [α] and slope [β]) are estimated by probit regression analysis.
Using these parameters, the distribution of minimal effective/lethal dose is determined. The mean
(µ) and standard deviation (σ) of this distribution are calculated as −α/β and 1/β, respectively
[solve following simultaneous equations: α + βµ = 0 and α + β(µ + σ) = 1]. In the computer
simulation, minimal effective/lethal dose (threshold) is set using a random number that follows this
normal distribution. The presence or absence of a reaction is determined by comparison between
the administrated dose and this threshold (B). (C,D) Experiments measuring reaction time from
drug administration: The histogram of reaction times. When no reaction was observed within the
measurement period, the data were treated as censored (C). The determination of reaction time in the
computer simulation: The relative cumulative event is calculated by survival analysis (black line).
A sigmoid curve (blue line) is fitted to this result. In the computer simulation, using the inverse
function of this sigmoid curve, reaction time is determined from the random number (p) that follows
to uniform distribution between 0 to 1 (green line) (D).



Appl. Biosci. 2025, 4, 6 6 of 21

The latter examples involve several experiments, such as those involving general anes-
thetic agents (induction time and duration), as well as hemostatic drugs and anticoagulants
(time until bleeding stops) (Table 1). In these cases, sigmoid curves are fitted to the results
by animal experiments. Using the inverse function of these curves, a computer simulation
can be performed (Figure 1D). In the experiments that measure a change of body size, such
as that caused by antiinflammatory drugs, the appropriate curve is fitted to the results by
animal experiments.

Several important details to create a simulator are summarized in Appendix B. In this
review, we do not deal with replicating animal behavior in simulators such as BMP-VR [4].

3.1. Statistical Model for Bioassay

In bioassay, the reaction rates at several doses are investigated. In our university, the
presence or absence of convulsions was assessed within a specified time when lidocaine
(Lid) was intraperitoneally injected into mice. The strategy to simulate probit analysis is
shown in Figure 1A,B. In probit regression analysis, the cumulative distribution function
(CDF) of normal distribution is fitted to these results, and the parameters (intercept [α] and
slope [β]) are estimated (Figure 1A) [13].

In the computer simulation, using these parameters, the distribution of minimal
effective/toxic/lethal dose is determined (Figure 1B). The mean (µ) and standard de-
viation (σ) of this distribution are calculated as −α/β and 1/β, respectively. Minimal
effective/toxic/lethal dose (threshold) is set using a random number that follows this
normal distribution [14]. Next, the presence or absence of response is determined. If the
administrated dose is greater than this threshold, it is determined that there is a response.
If not, it is determined that there is no reaction (Figure 1B). Using this strategy, it is possible
to create a simulator for the probit method.

In pharmacology, ED50, TD50, and LD50 of drugs are calculated by probit method
or logistic method. These values are important values in drug development [15–17]. For
example, these values are used to calculate the therapeutic index. The therapeutic index
is calculated as LD50/ED50 [15] or TD50/ED50 [16,17] and is used as an indicators of
drug safety.

3.2. Statistical Model for Reaction Time

In this section, we introduce a statistical model for previously reported experiments
measuring reaction time following drug administration. This modeling method is adapted
from a previous paper [18]. These experiments include individuals who do not respond
within the observation period (censored data) (Figure 1C). Survival analysis is useful for
handling such censored data. The relative cumulative event is calculated using survival
analysis (black line). When censored data are present, the final relative cumulative event
will be less than 1. A sigmoid curve is then fitted to the results of the survival analysis
(blue line in Figure 1D). Various types of curves are typically fitted to Kaplan-Meier curves;
however, using relative cumulative events instead of survival rates allows for the fitting of
additional sigmoid curves. Selecting the appropriate sigmoid curve to fit the obtained data
is essential, and curve fitting often involves a process of trial and error.

In the computer simulation, a probability is first generated using a random number
that follows a uniform distribution between 0 and 1. This probability is then used to
determine the reaction time through the inverse function of the sigmoid curve (green line
in Figure 1D). If the probability is equal to or greater than the asymptote (k in the Gompertz
curve or L∞ in the von Bertalanffy curve), the reaction time is considered infinite. Using
this strategy, a simulator can be created to obtain reaction time based on these principles.
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3.3. Limitations of These Statistical Models

The most important and common issue is that the accuracy of the statistical model
depends on the quality of the results of the animal experiments. When the measurement
error in animal experiments is large, the parameter values estimated in the statistical model
will deviate from the actual values. As a result, the results obtained by the simulator
become less reliable. It is necessary to improve the accuracy of the experiments.

In the probit method for bioassay, the log dose (minimal effeective/toxic/lethal dose)
is assumed to follow a normal distribution. However, although distribution of values
may be skewed, the shape of the distribution is hard to determine. In statistical model for
reaction time, there is a lack of theoretical background to determine what kind of curve
to fit in many cases. In such cases, the curve that best fits among the multiple curves, as
shown in next section, can be selected.

When creating statistical modeling, it is necessary to consider the extent to which
deviation between the data and the curve is acceptable. It may be useful to compare the
results of animal experiments with those of computer simulations.

4. Sigmoid Curves Used in Statistical Models
In this section, we describe several sigmoid curves used in statistical models and

examples of their application. It is necessary to select an appropriate sigmoid curve to fit the
shape of the obtained data. As described in the previous section, the necessary requirements
for the fitted curve used in the statistical model are that an inverse function exists. Using
this inverse function, reaction time can be calculated from randomly generated probability
(Figure 1D). Herein, we describe five sigmoid curves: logistic curve, CDF of normal
distribution, Gompertz curve, von Bertalanffy curve, and CDF of Weibull distribution
(Tables 4 and 5). Moreover, the formulas for the inverse functions of these curves are
provided, enabling the creation of simulators.

Table 4. Example of statistical model and proposed fitting curve.

Analysis Method Fitting Curve Formula

Logistic regression analysis logistic curve f (x) =
1

1 + e−x

Probit regression analysis CDF of normal distribution f (x) = Φ(x)

Nonlinear regression analysis

Gompertz curve f (x) = kgcx

von Bertalanffy curve L(a) = L∞

(
1 − e−k(a−t0)

)
CDF of Weibull distribution F(x) = 1 − e−(x/λ)k

(x ≥ 0)
F(x) = 0 (x < 0)

Bayesian Hierarchical model any function any formula
Φ: Cumulative distribution function (CDF) of the normal distribution; k in Gompertz curve: asymptote; L∞ in
von Bertalanffy curve: asymptote size.

Table 5. Examples of fitting a curve to data (not limited to pharmacology).

Fitting Curve Contents References

logistic curve
LD50: exposure time where rats die at given temperatures [19]

(logistic method)
LD50: concentration of olefin at which rats die [20]
LD50: Monte Carlo study based on cardiac disorder data [21]

modeling of animal growth curve [22]
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Table 5. Cont.

Fitting Curve Contents References

probit curve radiation resistance values of microorganisms [23]

(probit method) period of rabbit bilateral hind-limb ischemia [24]
effect of vasoconstrictors on local anesthetic toxicity [25]

Gompertz curve

modeling of animal growth curve [22]
skin temperature after removing hand from cold water [26]
population modeling of tumor growth curves [27]
modeling of bacterial growth rate with antibiotics [28]

von Bertalanffy curve

modeling of whelk Dicathais growth curve [29]
modeling of animal growth curve [22,30]
modeling of tumor growth curve [31]
modeling of aquatic invertebrates growth curve [32]
modeling of EEG phase in bipolar disorder with Li3CO3 [33]

CDF of

modeling of incidence, risk factors, and heritability [34]

Weibull distribution

modeling of in-hospital cardiac arrest risk prediction [35]
modeling of failure of chicken embryo [36]
modeling of mechanical properties of dental materials [37]
modeling of drug release profiles from liposome [38]
modeling of drug release profiles in drug delivery system [39]

4.1. Logistic Curve

The logistic method (logistic regression analysis) is a regression analysis that uses the
inverse function of logistic function (logit function). Examples of the use of the logistic
method are shown in Table 5. Using the logistic method, ED50, TD50, and LD50 are calcu-
lated from the presence or absence of a reaction to drugs. In previous studies, LD50 was
calculated based on various factors, including the time of exposure at a given temperature
that resulted in death in 50% of the animals within 24 h after heating [19], the concentration
of olefin (metabolites of sevoflurane) at which 50% of Wistar rats died [20], and a Monte
Carlo study using data from cardiac disorder patients [21]. Moreover, logistic curve fitting
can be performed on the data. In a previous study, a logistic curve was fitted to the body
weight and chest circumference of sheep [22]. The logistic function finds applications in
a range of fields, including biology, biomathematics, chemistry, demography, economics,
geoscience, mathematical psychology, probability, sociology, political science, linguistics,
statistics, and artificial neural networks.

The logistic function was introduced by Pierre-François Verhulst [40]. It is a function
that converts any real number (ranging from −∞ to +∞) to a probability value (ranging
from 0 to 1). Logistic function is the inverse function of logit (logistic unit). The standard
logistic function is expressed by the following formula:

f (x) =
1

1 + e−x (1)

The graph of the standard logistic function is shown in Figure 2 (red line).

Figure 2. Standard logistic curve and cumulative distribution function (CDF) of normal distribution.
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The logit function is expressed by the following formula:

logit(p) =


−∞ (p = 0)

log
(

p
1 − p

)
(0 < p < 1)

∞ (p = 1)

(2)

4.2. CDF of Normal Distribution

The probit method (probit regression analysis) is a regression analysis that uses the
inverse function of CDF of normal distribution (probit function). Examples of the use of the
probit method are shown in Table 5. The probit method is used to analyze the relationship
between pesticide concentration and insect mortality in biology [41]. The probit method is
also used to analyze metal fatigue in the field of materials science [42], radiation resistance
values of microorganisms [23], the period of rabbit bilateral hind-limb ischemia [24], and
the effect of vasoconstrictors on local anesthetic toxicity [25].

CDF of normal distribution is a function that converts any real number (ranging from
−∞ to +∞) to a probability value (ranging from 0 to 1). CDF of the standard normal
distribution (Φ) is expressed by the following formula:

Φ(x) =
1√
2π

∫ x

−∞
e−

y2
2 dy =

1
2

[
1 + erf

(
x√
2

)]
(3)

where erf is the error function (Equations (A1) and (A2)). In practice, when performing calcu-
lations using a computer, several approximate formulas are used (for example, Equation (A3)).
The graph of the CDF of the normal distribution is shown in Figure 2 (blue line). The graph
has a narrower base than that of the standard logistic curve.

The inverse function of the CDF of the standard normal distribution is called the
probability unit (probit) function. Probit converts a probability value (ranging from 0 to
1) to any real number (ranging from −∞ to +∞). The probit function is expressed by the
following formula:

Φ−1(p) =


−∞ (p = 0)
√

2 erf−1(2p − 1) (0 < p < 1)

∞ (p = 1)

(4)

where erf−1 is the inverse error function (Equation (A4)). In practice, several approximate
formulas are used (for example, Equation (A5)).

4.3. Gompertz Curve

The Gompertz curve is a sigmoid function that describes growth as being slowest at
the start and end of a given time period. The right-side or future value asymptote of the
function is approached much more gradually by the curve than the left-side or lower-valued
asymptote. The Gompertz curve was originally designed to describe human mortality as
Lx = kgcx

by Benjamin Gompertz [43]. Winsor demonstrated the mathematical properties of
the Gompertz curve and summarized examples of applying this curve to organism growth,
psychological growth, population growth, and economic growth [44]. Moreover, the
Gompertz curve has been modified for use in biology, with regard to detailing populations.
The Gompertz curve is widely used in physiology, particularly in modeling growth curves.
It is commonly applied to describe the growth patterns of animals. Examples of the use of
the Gompertz curve are shown in Table 5. The Gompertz curve has been fitted to recovery
palm skin temperature data of human subjects, which was collected after removing the hand
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from cold water [26], as well as several growth curves such as those for sheep growth [22]
and tumor growth [27]. In pharmacology, the Gompertz curve has been fitted to bacterial
growth rate in the presence of antibiotics [28].

In R software (version ≥ 1.2.3), the Gompertz curve is defined using the following formula:

f (x) = Asym · e−b2·b3
x

(5)

where Asym is asymptote, b2 is the displacement along the x-axis, and b3 is the growth rate.
A graph of the Gompertz curve is shown in Figure 3.

Figure 3. Gompertz curve: f (x) = Asym · e−b2·b3
x

(Equation (5)). (A) Graph when b2 = 2 and
b3 = 0.2 and Asym is changed, (B) Graph when Asym = 1 and b3 = 0.4 and b2 is changed, (C) Graph
when Asym = 1 and b2 = 2 and b3 is changed.

The inverse function of the Gompertz curve is expressed by the following formula:

f−1(x) =


log
(

log Asym
x

/
b2

)
log b3

(0 < x < Asym)

∞ (x ≥ Asym)

(6)

4.4. Von Bertalanffy Curve

The von Bertalanffy curve (or von Bertalanffy growth function) is a type of growth
curve for a time series. It is named after Ludwig von Bertalanffy [45]. Examples of the
use of the von Bertalanffy curve are shown in Table 5. The von Bertalanffy curve has been
fitted to the data of whelk Dicathais growth [29], sheep growth [22], the growth of chickens
used for meat [30], tumor growth [31], and aquatic invertebrates [32]. In pharmacology, the
von Bertalanffy curve has been fitted to the data of ElectroEncephaloGraphy (EEG) phase
growth in bipolar disorder with lithium carbonate [33].

The von Bertalanffy curve is expressed by the following formula:

L(a) = L∞

(
1 − e−k(a−t0)

)
(7)

where a is age, k is the growth coefficient, t0 is the theoretical age when size is zero, and L∞

is asymptotic size. A graph of the von Bertalanffy curve is shown in Figure 4.

Figure 4. von Bertalanffy curve: L(x) = L∞

(
1 − e−k(x−t0)

)
(Equation (7)). Graph when L∞ = 1 and

t0 = 0 and k is changed.
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The inverse function of the von Bertalanffy curve is expressed by the following formula:

f−1(x) =

t0 −
log
(

1 − x
L∞

)
k

(0 ≤ x < L∞)

∞ (x ≥ L∞)

(8)

4.5. CDF of the Weibull Distribution

The Weibull distribution is named after Waloddi Weibull [46]. It was first applied to
describe a particle size distribution by Rosin and Rammler [47]. A Weibull curve describes
a broad range of random variables, especially those related to the time to failure or the
time between events. Examples of its use are shown in Table 5. The CDF of the Weibull
distribution has been applied to investigate various subjects including the failure of chicken
embryos to survive incubation [36]; incidence, risk factors, and heritability estimates of
hind limb lameness caused by hip dysplasia [34]; in-hospital cardiac arrest [35]; and the
mechanical properties of dental materials affected by gastric acid [37]. In pharmacology,
the CDF of the Weibull distribution has been fitted to the data of drug release profiles from
liposome [38] and drug release profiles in drug delivery system [39].

The CDF of the Weibull distribution is expressed by the following formula:

F(x) =

1 − e−(x/λ)k
(x ≥ 0)

0 (x < 0)
(9)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.
The graph of the CDF of the Weibull distribution is shown in Figure 5.

Figure 5. CDF of Weibull distribution: F(x) = 1 − e−(x/λ)k
(x ≥ 0) (Equation (9)). Graph when

λ = 1 and k is changed.

The inverse function of the CDF of the Weibull distribution is expressed by the
following formula:

F−1(p) =

λ(− log(1 − p))
1
k (0 ≤ p < 1)

∞ (p = 1)
(10)

4.6. Comparison of Sigmoid Curves

Both the logistic curve and the CDF of the normal distribution are point-symmetry
centered at y = 0.5 (Figure 2). In contrast, because the Gompertz curve and CDF of the
Weibull curve are asymmetric sigmoid curves (Figures 3 and 5); these curves are considered
to be widely applicable compared to logistic curves and CDFs of normal distribution.
Moreover, because the von Bertalanffy curve is not a sigmoid curve, its application is
thought to be limited.
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When there is no theoretical background for the distribution of data, it is recommended
to perform NLS on the experimental data to fit multiple curves and then adopt the curve
that best fits using the values such as the coefficient of determination (R2) [22,36,38,39] and
Akaike Information Criterion (AIC) [27].

5. Hierarchical Bayesian Model
If the statistical model is too complex to perform a regression analysis, hierarchical

Bayesian model is available. The hierarchical Bayesian model can be used instead of
generalized linear model (GLM) or generalized linear mixed model (GLMM), and nonlinear
regression analysis. Moreover, more flexible modeling is possible in a hierarchical Bayesian
model. Then, the posterior distributions of parameters are estimated by Hamiltonian Monte
Carlo (HMC) simulation.

Hierarchical Bayesian models are used in many areas such as clinical trials [48–51],
animal experiments [52–54], and genetics [55,56]. Regarding the creation of statistical models
for simulators, there are models for reproducing the movement of the myocardium [54,57].
In this section, we will introduce the statistical models of our recent studies [7,8], and the
simulator [12].

5.1. Advantages of Using the Hierarchical Bayesian Model in a Computer Simulation

In a computer simulation (including the simulator for pharmacological education), the
parameters for each individual are generated by random number generators. Therefore, the
distribution of the parameters must be specified. In GLM, GLMM, and nonlinear regression
analysis, the mean and standard error of these parameters can be estimated. However, the
distribution of these estimated parameters is unknown, although a normal distribution
is assumed.

The distribution of parameters can be assumed by the researchers and the hyperpa-
rameters that determine the shape of this distribution can be estimated in a hierarchical
Bayesian model. The parameters can be generated using the appropriate random number
generator that follows this distribution and hyperparameters in the computer simulation.
This is one of the advantages of the hierarchical Bayesian model.

5.2. Example of a Statistical Model Using Hierarchical Bayesian Model

Recently, we reported the statistical models and the results of computer simulation for
local anesthetic agents [7,8]. Here, we explain their theoretical background and assumed
model (Figure 6).

5.2.1. Statistical Model for Local Anesthetic Agents and Parameter Estimation

The methods of animal experiments for local anesthetic agents are described below.
This is a modified description based on a previous study [7].

(1) Shave the hair on the back of the guinea pig
(2) Inject 0.1 mL of saline and 5 drugs intradermally: procaine (Pro), lidocaine (Lid),

mepivacaine (Mep), bupivacaine (Bup), and Lid + adrenaline
(3) Mark each injection site papule enclosed in a circle using a magic marker
(4) Stimulate six times at each papule with a needle. Count the number of skin contrac-

tions. This number is defined as the score. The score value is 0 to 6.
(5) Stimulate at 5 min intervals up to 120 min. When a score of 6 is obtained three times

in a row, the stimulation is finished, and that time is defined as the duration

From this animal experiment, the score values are obtained. The CDF of the normal
distribution is fitted to these results for each drug and individual (Figure 6A). Thereafter,
the parameter values (µ and σ) are estimated for each drug and individual. To estimate
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these parameters, the statistical model is assumed, and the hyperparameters that determine
the distribution of µ and log σ (µ0 and sµ for µ; log σ0 and slog σ for log σ) are estimated by
the Hamiltonian Monte Carlo simulation (Figure 6B).

Figure 6. Strategy used in the simulation for local anesthetic agents using a hierarchical Bayesian
model. (A) Fitting the sigmoid curve (CDF of normal distribution) to each result of animal exper-
iments. The curve shows the probability of responding to a stimulus at any time. The parameters
that determine the shape of the curve are the mean (µ) and standard deviation (σ). (B) Estimation of
parameters: The distributions of these parameters (µ and σ) are estimated by hierarchical Bayesian
model and Hamiltonian Monte Carlo (HMC) simulation. Estimated hyperparameters are µ0 and
sµ for the distribution of µ, and log σ0 and slog σ for the distribution of σ. In addition, correlation
coefficients among these parameters are calculated. (C,D) Computer simulation procedure: The
parameters for simulation (µi and σi) are set using the random number generator that follows to mul-
tivariate normal distribution. The shape of cumulative normal distribution curve for each individual
is determined by the values of generated µ and σ (C). The number of reactions to a stimulus (score
value) are determined by the random number generator that follows to binomial distribution (D).
This strategy is modification of previous studies [7,8].

These hyperparameters are required to generate parameters of each drug and individ-
ual in the computer simulation. Therefore, it is desirable to assume simple distributions
for µ and σ. In our previous study, we assumed that µ follows a normal distribution and σ

follows a lognormal distribution (i.e., log σ follows a normal distribution) [7].
The statistical model for this experiment is assumed as follows (modified and corrected

the description in reference [7]):

(1) Drug concentration in local tissue decreases exponentially. This concentration is
determined by elapsed time (t) and the presence or absence of adrenaline (adr × Vadr)
(Equation (11)). When adrenaline is present, the rate of decrease in local concentration
becomes smaller (the slope is decreased). Initial log concentration and slope were set
to 100 and −1, respectively.

Concentration = 100 − (1 − adr × Vadr)t (11)

where

t is time (minute)
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Vadr is the dummy variable for adrenaline
(0 when adrenaline is absent, 1 when adrenaline is present).

(2) The probability of reacting to needle stimulation (p) is determined as the upper probabil-
ity of normal distribution (mean is µ[i, j] and SD is σ[i, j]) based on drug concentration
at stimulation time (Equation (12)). The number of reactions to stimulation (score value,
Score[i, j]) follows a binomial distribution at this probability (Equation (13)).

p = 1 − Φ
(

Concentration − µ[i, j]
σ[i, j]

)
(12)

Score[i, j] ∼ Bi(p, 6) (13)

where

i = 1, 2, 3, 4 (drug number; 1: Pro; 2, Lid: 3, Mep, 4: Bup)
j = 1, 2, · · · , 51 (individual number)
Bi is the probability mass function for the binomial distribution.

(3) The parameters (µ[i, j] and σ[i, j]) for distribution of each drug and individual fol-
low normal and lognormal distributions, respectively (Figure 6B). µ[i, j] follows a
normal distribution (mean is µ0 and SD is sµ) (Equation (14)). As σ[i, j] must be
positive, σ[i, j] was assumed to follow a lognormal distribution (mean is log σ0[i] and
SD is slog σ[i]) (Equation (15)).

µ[i, j] ∼ Normal
(
µ0[i], sµ[i]

)
(14)

σ[i, j] ∼ LogNormal
(

log σ0[i], slog σ[i]
)

(15)

(4) The following distributions are assumed for the prior distribution of parameters.
µ0[i] follows a Cauchy distribution (Equation (16)). sµ[i] follows a half Cauchy
distribution (Equation (17)). log sµ[i] follows a normal distribution (Equation (18)).
slog σ[i] and adr follow uniform distributions (Equations (19) and (20)).

µ0[i] ∼ Cauchy(50, 20) (16)

sµ[i] ∼ HalfCauchy(0, 1) (17)

log σ0[i] ∼ Normal(2.5, 1) (18)

slog σ[i] ∼ Uniform(> 0) (19)

adr ∼ Uniform(0, 1) (20)

5.2.2. Computer Simulation for Local Anesthetic Agents

Using the hyperparameters estimated by HMC simulation, the parameters (µ and σ)
in each drug and individual were generated by a random number generator (Figure 6C).
Since the shape of the CDF of the normal distribution is determined by these generator
parameters, the probability can be calculated at any time. Then, the number of reactions
to a stimulus (score values) is determined by a random number generator that follows
a binomial distribution at specified time intervals (Figure 6C). From the obtained score
values, the duration of the drug is determined.

In the simulator, the reaction is determined by accounting to a random number that
follows a Bernoulli distribution based on the calculated probability:

The computer simulation is performed as follows (modified from the description in a
previous study [7]):
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(1) the parameters (µ[i, j] and σ[i, j]) are generated by a random number generator fol-
lowing a normal or lognormal distribution, respectively.

• i = 1, 2, 3, 4 (drug number; 1: Pro; 2, Lid: 3, Mep, 4: Bup)
• j = 1, 2, · · · , 100 (individual number)

(2) score values are determined by a random number generator following a binomial
distribution for this probability

• determine how many responses occur when stimulated six times

(3) repeat this operation 100 times (for 100 individuals)
(4) determine the duration of each drug and individual

• compare the median of duration among drugs by survival analysis
• evaluate the differences in duration among drugs and the effect of a vasocon-

strictor (adrenaline) on duration

In the survival analysis, the results obtained from the computer simulation were similar
to those from the animal experiments (Figure 7) since the parameter values were properly
adjusted [7]. These findings suggest that the simulator, utilizing this statistical model, can
serve as a viable alternative to animal experiments in pharmacological education.

Figure 7. A comparison of the results by survival analysis between animal experiments and computer
simulation. These results are modifications of previous study [7].

5.2.3. Improved Statistical Model Considering the Correlation Among Parameters

The simulation described in the previous section does not consider the correlation
among parameters—the parameter values were generated by random numbers with the
correlation coefficients between drugs set to zero (Figure 8: upper panel). However,
individuals who tend to respond to one local anesthetic agent are likely to respond to other
drugs, and the duration of drugs is also correlated. Therefore, it is desirable to consider
this correlation when creating a simulator.

In our recent study [8], the correlations among estimated parameters were investigated:
(1) correlation among µ in all drugs (rij), (2) correlation among log σ in all drugs (sij), and
(3) correlation between µ and log σ in each drug (ui). In the computer simulation, the
parameters in each individual were generated using a random number generator that
follows the multivariate normal distribution. For generating parameters, the correlation
matrix is set using these correlation coefficients (Figure 8: lower left). Next, the score
values and duration were determined. By accounting for the correlation among drugs,
the correlation in duration among drugs was enhanced (Figure 8: lower right). These
results suggest that parameter generation considering the correlation among parameters is
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important to reproduce the results of animal experiments in the computer simulation and
the simulator.

Figure 8. The strategy used in the simulation for local anesthetic agents. (Left) Correlation matrix
among parameters estimated by animal experiments is shown. In this case, the correlations (1) among
µ of drugs (rij in blue box), (2) among log σ of drugs (sij in green box), and (3) between µ and
log σ (ui in red box) are set. Using this correlation matrix, the parameters are set by generating
random numbers that follow the multivariate normal distribution. (Middle) The distributions of
generated parameters are shown. A case without considering these correlations is shown in the upper
panel, and a case considering these correlations is shown in the lower panel. (Right) Correlations of
drug duration obtained by the computer simulation are shown for the case without considering the
correlations (Upper panel) and for the case considering the correlations (Lower panel).

Recently, we created a simulator for local anesthetic agents based on this improved
statistical model as a web-based simulator [12]. We hope that this simulator is an effective
alternative to animal experiments in pharmacological education.

6. Conclusions
In this review, we introduced the simulators used in pharmacological education, as

well as two types of strategies (bioassay and experiments that measure reaction time) for
creating simulators of animal experiments. We also described five sigmoid curves (for
fitting the relative cumulative event by survival analysis) and their inverse functions. Using
this strategy, it is possible to develop a simulator that predicts reaction times following
drug administration. Additionally, a statistical model for local anesthetic agents, utilizing a
hierarchical Bayesian approach, was demonstrated. Considering the correlation among
estimated parameters, it is possible to create simulators that give results more similar to
those of animal experiments. We hope this review will be useful when creating a simulator
in pharmacological education. The pharmacological education will be possible by these
simulators at educational institutions where animal experiments are difficult due to various
restrictions. If these simulators are used in a variety of educational institutions, it is expected
that the number of simulator-based education programs will increase in the future.
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Appendix A. Approximate Formulas
Appendix A.1. CDF of the Standard Normal Distribution

• Error function [58]

erf(x) =
2√
π

∫ x

0
e−t2

dt (A1)

• Error function (Taylor series) [58,59]

erf(x) =
2√
π

∞

∑
n=0

(−1)nx2n+1

n!(2n + 1)
=

2√
π

(
z − z3

3
+

z5

10
− z7

42
+

z9

216
− · · ·

)
(A2)

• Approximation formula of normal probability function in Abramowitz and Stegun
26.2.17 [60]

P(x) = 1 − Z(x)(b1t1 + b2t2 + b3t3 + b4t4 + b5t5) + ϵ(x) (A3)

Z(x) =
1√
2π

e−
x2
2 , t =

1
1 + px

|ϵ(x)| < 7.5 × 10−8

p = 0.2316419
b1 = 0.319381530, b2 = −0.356563782, b3 = 1.781477937
b4 = −1.821255978 b5 = 1.330274429

Appendix A.2. Probit Function

• Inversed Error function (Taylor series) [61]

erf−1(x) =
√

π

2

(
z +

π

12
z3 +

7π2

480
z5 +

127z7

42
+

4369π4

5806080
z9 +

34807π5

182476800
z11 + · · ·

)
(A4)
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• Approximation formula of probit function by Toda [62]

u(p) ∼=
[
y(b0 + b1y + b2y2 + · · ·+ b10y10)

] 1
2

y = − log 4p(1 − p)
(A5)

b0 = 0.1570796288, b1 = 0.3706987906 × 10−1

b2 = −0.8364353589 × 10−3, b3 = −0.2250947176 × 10−3

b4 = 0.6841218299 × 10−5, b5 = 0.5824238515 × 10−5

b6 = −0.1045274970 × 10−5, b7 = 0.8360937017 × 10−7

b8 = −0.3231081277 × 10−8, b9 = 0.3657763036 × 10−10

b10 = 0.69362339826 × 10−12

Appendix B. Things to Consider When Creating a Simulator
There are several things to consider when creating a simulator for pharmacological education:

(1) Distribution of parameters—Which distribution do parameters follow?
(2) Selection of program language including execution environment
(3) Function to generate random numbers including the usage of extra packages

(1) As previously described, the distribution of parameters is the most important
factor. Since the parameters are generated using this distribution, the distribution must be
simple enough to be generated by a computer program. In many cases, the parameters are
assumed to follow a normal distribution or lognormal distribution.

(2) The selection of program language should be considered. If the simulator is
written using R or Python programing languages, these languages must be installed in
the computer or bundled with the simulator. If the simulator is written using C/C++
languages, this simulator must be compiled in each operating system indluding Windows,
Mac, and Linux. Therefore, these simulators are environment dependent. If the simulator
is written by JavaScript/TypeScript languages, the simulator is environment-independent
since it runs on a web browser.

(3) It is important to confirm whether the functions to generate random numbers—
including the usage of extra packages—exist or not. In many cases, it is sufficient to have
functions for a random numbers that follow uniform distribution for the probability and
normal distribution and lognormal distribution for the parameters. However, the function
for a random number generator that follows a multivariate normal distribution may be
required [8]. For reference, the packages/library for generating random numbers that
follow the multivariate normal distribution are detailed in the following section.

External Packages for Multivariate Normal Distribution

The following list is some representative packages/libraries for generating random
numbers that follow multivariate normal distribution in various languages:

• C++: EigenMultivariateNormal function in Eigen library [63]
• R: rmvnorm function in mvtnorm package [64]
• Python: random.multivariate_normal function in numpy package [65]
• JavaScript/TypeScript: MultivariateNormal function in multivariate-normal

package [66]
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