Hereditary Optic Neuropathies: An Updated Review
Abstract
:1. Introduction
2. Leber’s Hereditary Optic Neuropathy
3. Dominant Optic Atrophy
4. Charcot–Marie–Tooth Disease
5. Wolfram Syndrome
6. Friedreich Ataxia
7. Other Hereditary Optic Neuropathies
8. Genetic Counseling
9. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Newman, N.J.; Yu-Wai-Man, P.; Biousse, V.; Carelli, V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: Towards improved diagnosis and management. Lancet Neurol. 2023, 22, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Burté, F.; Carelli, V.; Chinnery, P.F.; Yu-Wai-Man, P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015, 11, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.I.; Mackintosh, G.I.; Howe, J.W.; Mitchell, K.W. Autosomal Recessive ‘Optic Atrophy’with Late Onset and Evidence of Ganglion Cell Dysfunction: A Sibship of Two Females. Ophthalmologica 1993, 206, 89–93. [Google Scholar] [CrossRef]
- Katz, B.J.; Zhao, Y.; Warner, J.E.; Tong, Z.; Yang, Z.; Zhang, K. A family with X-linked optic atrophy linked to the OPA2 locus Xp11. 4-Xp11. 2. Am. J. Med. Genet. A 2006, 140, 2207–2211. [Google Scholar] [CrossRef]
- Rocatcher, A.; Desquiret-Dumas, V.; Charif, M.; Ferré, M.; Gohier, P.; Mirebeau-Prunier, D.; Verny, C.; Milea, D.; Lenaers, G.; Bonneau, D.; et al. The top 10 most frequently involved genes in hereditary optic neuropathies in 2186 probands. Brain 2023, 146, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Mansukhani, S.A.; Mehta, D.G.; Renaud, D.L.; Whealy, M.A.; Chen, J.J.; Bhatti, M.T. Nuclear DNA Mutation Causing a Phenotypic Leber Hereditary Optic Neuropathy Plus. Ophthalmology 2021, 128, 628–631. [Google Scholar] [CrossRef]
- Le Roux, B.; Lenaers, G.; Zanlonghi, X.; Amati-Bonneau, P.; Chabrun, F.; Foulonneau, T.; Caignard, A.; Leruez, S.; Gohier, P.; Procaccio, V.; et al. OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database. Orphanet J. Rare Dis. 2019, 14, 214. [Google Scholar] [CrossRef]
- Graefe, V. Ein ungewohnlicher fall von hereditare amaurose. Graefes Arch. Ophthalmol. 1858, 4, 266–268. [Google Scholar]
- Leber, T. Ueber hereditäre und congenital-angelegte Sehnervenleiden. Albrecht Von Graefes Arch. Ophthalmol. 1871, 17, 249–291. [Google Scholar] [CrossRef]
- Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.S.; Elsas, L.J.; Nikoskelainen, E.K. Mitochondrial DNA Mutation Associated with Leber’s Hereditary Optic Neuropathy. Science 1988, 242, 1427–1430. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Griffiths, P.G.; Brown, D.T.; Howell, N.; Turnbull, D.M.; Chinnery, P.F. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am. J. Hum. Genet. 2003, 72, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.I.G.L.; Kearns, L.S.; Staffieri, S.E.; Clarke, L.; McGuinness, M.B.; Meteoukki, W.; Samuel, S.; Ruddle, J.B.; Chen, C.; Fraser, C.L.; et al. Establishing risk of vision loss in Leber hereditary optic neuropathy. Am. J. Hum. Genet. 2021, 108, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Sundaramurthy, S.; SelvaKumar, A.; Ching, J.; Dharani, V.; Sarangapani, S.; Yu-Wai-Man, P. Leber hereditary optic neuropathy—New insights and old challenges. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2461–2472. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Chinnery, P.F. Chapter 7—Leber Hereditary Optic Neuropathy. In Mitochondrial Case Studies; Saneto, R.P., Parikh, S., Cohen, B.H., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 55–64. [Google Scholar]
- Lenaers, G.; Beaulieu, C.; Charif, M.; Gerber, S.; Kaplan, J.; Rozet, J.-M. Autosomal recessive Leber hereditary optic neuropathy, a new neuro-ophthalmo-genetic paradigm. Brain 2023, 146, 3156–3161. [Google Scholar] [CrossRef] [PubMed]
- Gerber, S.; Ding, M.G.; Gérard, X.; Zwicker, K.; Zanlonghi, X.; Rio, M.; Serre, V.; Hanein, S.; Munnich, A.; Rotig, A. Compound heterozygosity for severe and hypomorphic NDUFS2 mutations cause non-syndromic LHON-like optic neuropathy. J. Med. Genet. 2017, 54, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Stenton, S.L.; Tesarova, M.; Sheremet, N.L.; Catarino, C.B.; Carelli, V.; Ciara, E.; Curry, K.; Engvall, M.; Fleming, L.R.; Freisinger, P.; et al. DNAJC30 defect: A frequent cause of recessive Leber hereditary optic neuropathy and Leigh syndrome. Brain 2022, 145, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Pandya, B.U.; Margolin, E.A.; Micieli, J.A. Nuclear DNA Mutation in KIF5A Causing Autosomal Dominant Phenotypic Leber Hereditary Optic Neuropathy. J. Neuroophthalmol. 2024, 44, e17–e19. [Google Scholar] [CrossRef] [PubMed]
- Stramkauskaitė, A.; Povilaitytė, I.; Glebauskienė, B.; Liutkevičienė, R. Clinical Overview of Leber Hereditary Optic Neuropathy. Acta Med. Litu. 2022, 29, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Carelli, V.; La Morgia, C.; Yu-Wai-Man, P. Mitochondrial optic neuropathies. Handb. Clin. Neurol. 2023, 194, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Sugisaka, E.; Ohde, H.; Shinoda, K.; Mashima, Y. Clinical Case Notes: Woman with atypical unilateral Leber’s hereditary optic neuropathy with visual improvement. Clin. Experiment. Ophthalmol. 2007, 35, 868–870. [Google Scholar] [CrossRef]
- Barboni, P.; La Morgia, C.; Cascavilla, M.L.; Hong, E.H.; Battista, M.; Majander, A.; Caporali, L.; Starace, V.; Amore, G.; Di Renzo, A.; et al. Childhood-Onset Leber Hereditary Optic Neuropathy-Clinical and Prognostic Insights. Am. J. Ophthalmol. 2023, 249, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Giraudet, S.; Lamirel, C.; Amati-Bonneau, P.; Reynier, P.; Bonneau, D.; Miléa, D.; Cochereau, I. Never too old to harbour a young man’s disease? Br. J. Ophthalmol. 2011, 95, 887. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.P.; Chen, A.; Rizzo, J.F., 3rd. Leber’s Hereditary Optic Neuropathy in a Nonagenarian. J. Neuroophthalmol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Chinnery, P.F. Leber Hereditary Optic Neuropathy. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Carelli, V.; Carbonelli, M.; de Coo, I.F.; Kawasaki, A.; Klopstock, T.; Lagrèze, W.A.; La Morgia, C.; Newman, N.J.; Orssaud, C.; Pott, J.W.R.; et al. International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy. J. Neuroophthalmol. 2017, 37, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Spruijt, L.; Kolbach, D.N.; de Coo, R.F.; Plomp, A.S.; Bauer, N.J.; Smeets, H.J.; de Die-Smulders, C.E. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am. J. Ophthalmol. 2006, 141, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Qin, D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 2019, 16, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Y.; Jiang, Y.; Wang, J.; Li, S.; Xiao, X.; Sun, W.; Wang, P.; Zhang, Q.; Jia, X. Variant and clinical landscape of Leber hereditary optic neuropathy based on 1516 families with mtDNA variants in a tertiary centre. Br. J. Ophthalmol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nikoskelainen, E.K.; Marttila, R.J.; Huoponen, K.; Juvonen, V.; Lamminen, T.; Sonninen, P.; Savontaus, M.L. Leber’s “plus”: Neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J. Neurol. Neurosurg. Psychiatry 1995, 59, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, H.; Modabber, M.; Wilson, N.; Al-Hertani, W.; Toffoli, D. Infantile Presentation of Leber Hereditary Optic Neuropathy “Plus” Disease. J. Neuroophthalmol. 2019, 39, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Sunshine, A.; Mandle, Q.J.; Herrera, A.M.C.; Zapanta, B.; Varma, H.; Magaña, S. Pearls & Oy-sters: Leber Hereditary Optic Neuropathy-Plus Masquerading as Neuromyelitis Optica Spectrum Disorder in a 2-Year-Old Child. Neurology 2023, 101, e2585–e2588. [Google Scholar] [CrossRef]
- Jun, A.S.; Brown, M.D.; Wallace, D.C. A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc. Natl. Acad. Sci. USA 1994, 91, 6206–6210. [Google Scholar] [CrossRef]
- Frye, R.E. Leber’s hereditary optic neuropathy mutations associated with infantile-onset myoclonic epilepsy. J. Child Neurol. 2011, 26, 782–785. [Google Scholar] [CrossRef]
- Nakaso, K.; Adachi, Y.; Fusayasu, E.; Doi, K.; Imamura, K.; Yasui, K.; Nakashima, K. Leber’s Hereditary Optic Neuropathy with Olivocerebellar Degeneration due to G11778A and T3394C Mutations in the Mitochondrial DNA. J. Clin. Neurol. 2012, 8, 230–234. [Google Scholar] [CrossRef]
- Vital, C.; Julien, J.; Martin-Negrier, M.; Lagueny, A.; Ferrer, X.; Vital, A. Parkinsonism in a patient with Leber hereditary optic neuropathy (LHON). Rev. Neurol. 2015, 171, 679–680. [Google Scholar] [CrossRef]
- La Morgia, C.; Achilli, A.; Iommarini, L.; Barboni, P.; Pala, M.; Olivieri, A.; Zanna, C.; Vidoni, S.; Tonon, C.; Lodi, R.; et al. Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus. Neurology 2008, 70, 762–770. [Google Scholar] [CrossRef]
- Gilhuis, H.J.; Schelhaas, H.J.; Cruysberg, J.R.; Zwarts, M.J. Demyelinating polyneuropathy in Leber hereditary optic neuropathy. Neuromuscul. Disord. 2006, 16, 394–395. [Google Scholar] [CrossRef]
- Blakely, E.L.; de Silva, R.; King, A.; Schwarzer, V.; Harrower, T.; Dawidek, G.; Turnbull, D.M.; Taylor, R.W. LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation. Eur. J. Hum. Genet. 2005, 13, 623–627. [Google Scholar] [CrossRef]
- Finsterer, J.; Zarrouk-Mahjoub, S. Leber’s hereditary optic neuropathy is multiorgan not mono-organ. Clin. Ophthalmol. 2016, 10, 2187–2190. [Google Scholar] [CrossRef]
- Rüther, K. [Hereditary Optic Neuropathies]. Klin. Monbl. Augenheilkd. 2018, 235, 747–763. [Google Scholar] [CrossRef]
- O’Neill, K.A.; Dugue, A.; Abreu, N.J.; Balcer, L.J.; Branche, M.; Galetta, S.; Graves, J.; Kister, I.; Magro, C.; Miller, C.; et al. Relapsing White Matter Disease and Subclinical Optic Neuropathy. Neurol. Neuroimmunol. Neuroinflamm. 2024, 11, e200194. [Google Scholar] [CrossRef]
- Bargiela, D.; Chinnery, P.F. Mitochondria in neuroinflammation—Multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci. Lett. 2019, 710, 132932. [Google Scholar] [CrossRef]
- Hage, R.; Vignal-Clermont, C. Leber Hereditary Optic Neuropathy: Review of Treatment and Management. Front. Neurol. 2021, 12, 651639. [Google Scholar] [CrossRef]
- Klopstock, T.; Yu-Wai-Man, P.; Dimitriadis, K.; Rouleau, J.; Heck, S.; Bailie, M.; Atawan, A.; Chattopadhyay, S.; Schubert, M.; Garip, A. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011, 134, 2677–2686. [Google Scholar] [CrossRef]
- Klopstock, T.; Metz, G.; Yu-Wai-Man, P.; Büchner, B.; Gallenmüller, C.; Bailie, M.; Nwali, N.; Griffiths, P.; Von Livonius, B.; Reznicek, L. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain 2013, 136, e230. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Carelli, V.; Newman, N.J.; Silva, M.J.; Linden, A.; Van Stavern, G.; Szaflik, J.P.; Banik, R.; Lubiński, W.; Pemp, B.; et al. Therapeutic benefit of idebenone in patients with Leber hereditary optic neuropathy: The LEROS nonrandomized controlled trial. Cell Rep. Med. 2024, 5, 101437. [Google Scholar] [CrossRef]
- Chen, B.S.; Yu-Wai-Man, P.; Newman, N.J. Developments in the Treatment of Leber Hereditary Optic Neuropathy. Curr. Neurol. Neurosci. Rep. 2022, 22, 881–892. [Google Scholar] [CrossRef]
- Pemp, B.; Kircher, K.; Reitner, A. Visual function in chronic Leber’s hereditary optic neuropathy during idebenone treatment initiated 5 to 50 years after onset. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2751–2757. [Google Scholar] [CrossRef]
- Aleo, S.J.; Del Dotto, V.; Romagnoli, M.; Fiorini, C.; Capirossi, G.; Peron, C.; Maresca, A.; Caporali, L.; Capristo, M.; Tropeano, C.V.; et al. Genetic variants affecting NQO1 protein levels impact the efficacy of idebenone treatment in Leber hereditary optic neuropathy. Cell Rep. Med. 2024, 5, 101383. [Google Scholar] [CrossRef]
- Amore, G.; Romagnoli, M.; Carbonelli, M.; Barboni, P.; Carelli, V.; La Morgia, C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021, 81, 57–86. [Google Scholar] [CrossRef]
- Kogachi, K.; Ter-Zakarian, A.; Asanad, S.; Sadun, A.; Karanjia, R. Toxic medications in Leber’s hereditary optic neuropathy. Mitochondrion 2019, 46, 270–277. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Newman, N.J.; Carelli, V.; Moster, M.L.; Biousse, V.; Sadun, A.A.; Klopstock, T.; Vignal-Clermont, C.; Sergott, R.C.; Rudolph, G. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci. Transl. Med. 2020, 12, eaaz7423. [Google Scholar] [CrossRef]
- Newman, N.J.; Yu-Wai-Man, P.; Subramanian, P.S.; Moster, M.L.; Wang, A.-G.; Donahue, S.P.; Leroy, B.P.; Carelli, V.; Biousse, V.; Vignal-Clermont, C.; et al. Randomized trial of bilateral gene therapy injection for m.11778G>A MT-ND4 Leber optic neuropathy. Brain 2023, 146, 1328–1341. [Google Scholar] [CrossRef]
- Gammage, P.A.; Moraes, C.T.; Minczuk, M. Mitochondrial genome engineering: The revolution may not be CRISPR-Ized. Trends Genet. 2018, 34, 101–110. [Google Scholar] [CrossRef]
- Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.; Radey, M.C.; Peterson, S.B.; Mootha, V.K. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020, 583, 631–637. [Google Scholar] [CrossRef]
- Jackson, C.B.; Turnbull, D.M.; Minczuk, M.; Gammage, P.A. Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective. Trends Mol. Med. 2020, 26, 698–709. [Google Scholar] [CrossRef]
- Liu, Y.; Eastwood, J.D.; Alba, D.E.; Velmurugan, S.; Sun, N.; Porciatti, V.; Lee, R.K.; Hauswirth, W.W.; Guy, J.; Yu, H. Gene therapy restores mitochondrial function and protects retinal ganglion cells in optic neuropathy induced by a mito-targeted mutant ND1 gene. Gene Ther. 2022, 29, 368–378. [Google Scholar] [CrossRef]
- Batten, B. A family suffering from hereditary optic atrophy. Trans. Ophthalmol. Soc. UK 1896, 16, 125. [Google Scholar]
- Jaeger, W. Hereditary optic atrophy with dominant transmission; with special reference to the associated color-sense disorder. Albrecht Von Graefe’s Arch. Ophthalmol. 1954, 155, 457–484. [Google Scholar] [CrossRef]
- Kjer, P. Infantile optic atrophy with dominant mode of inheritance: A clinical and genetic study of 19 Danish families. Acta Ophthalmol. Suppl. 1959, 164, 1–147. [Google Scholar]
- Nochez, Y.; Arsene, S.; Gueguen, N.; Chevrollier, A.; Ferré, M.; Guillet, V.; Desquiret, V.; Toutain, A.; Bonneau, D.; Procaccio, V.; et al. Acute and late-onset optic atrophy due to a novel OPA1 mutation leading to a mitochondrial coupling defect. Mol. Vis. 2009, 15, 598–608. [Google Scholar] [PubMed]
- Fournier, A.V.; Damji, K.F.; Epstein, D.L.; Pollock, S.C. Disc excavation in dominant optic atrophy: Differentiation from normal tension glaucoma. Ophthalmology 2001, 108, 1595–1602. [Google Scholar] [CrossRef]
- Weisschuh, N.; Schimpf-Linzenbold, S.; Mazzola, P.; Kieninger, S.; Xiao, T.; Kellner, U.; Neuhann, T.; Kelbsch, C.; Tonagel, F.; Wilhelm, H. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS ONE 2021, 16, e0253987. [Google Scholar] [CrossRef]
- Arruti, N.; Rodríguez-Solana, P.; Nieves-Moreno, M.; Guerrero-Carretero, M.; Del Pozo, Á.; Montaño, V.E.F.; Santos-Simarro, F.; Rikeros-Orozco, E.; Delgado-Mora, L.; Vallespín, E.; et al. OPA1 Dominant Optic Atrophy: Diagnostic Approach in the Pediatric Population. Curr. Issues Mol. Biol. 2023, 45, 465–478. [Google Scholar] [CrossRef]
- Lenaers, G.; Neutzner, A.; Le Dantec, Y.; Jüschke, C.; Xiao, T.; Decembrini, S.; Swirski, S.; Kieninger, S.; Agca, C.; Kim, U.S. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog. Retin. Eye Res. 2021, 83, 100935. [Google Scholar] [CrossRef]
- Fiorini, C.; Ormanbekova, D.; Palombo, F.; Carbonelli, M.; Amore, G.; Romagnoli, M.; D’agati, P.; Valentino, M.L.; Barboni, P.; Cascavilla, M.L.; et al. The Italian reappraisal of the most frequent genetic defects in hereditary optic neuropathies and the global top 10. Brain 2023, 146, e67–e70. [Google Scholar] [CrossRef]
- Charif, M.; Gueguen, N.; Ferré, M.; Elkarhat, Z.; Khiati, S.; LeMao, M.; Chevrollier, A.; Desquiret-Dumas, V.; Goudenège, D.; Bris, C.; et al. Dominant ACO2 mutations are a frequent cause of isolated optic atrophy. Brain Commun 2021, 3, fcab063. [Google Scholar] [CrossRef]
- Charif, M.; Chevrollier, A.; Gueguen, N.; Bris, C.; Goudenège, D.; Desquiret-Dumas, V.; Leruez, S.; Colin, E.; Meunier, A.; Vignal, C.; et al. Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy. Neurol. Genet. 2020, 6, e428. [Google Scholar] [CrossRef]
- Amore, G.; Romagnoli, M.; Carbonelli, M.; Cascavilla, M.L.; De Negri, A.M.; Carta, A.; Parisi, V.; Di Renzo, A.; Schiavi, C.; Lenzetti, C.; et al. AFG3L2 and ACO2-linked Dominant Optic Atrophy: Genotype-phenotype characterization compared to OPA1 patients. Am. J. Ophthalmol. 2024, 262, 114–124. [Google Scholar] [CrossRef]
- Neumann, M.A.-C.; Grossmann, D.; Schimpf-Linzenbold, S.; Dayan, D.; Stingl, K.; Ben-Menachem, R.; Pines, O.; Massart, F.; Delcambre, S.; Ghelfi, J.; et al. Haploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy. Sci. Rep. 2020, 10, 16736. [Google Scholar] [CrossRef]
- Weisschuh, N.; Mazzola, P.; Zuleger, T.; Schaeferhoff, K.; Kühlewein, L.; Kortüm, F.; Witt, D.; Liebmann, A.; Falb, R.; Pohl, L.; et al. Diagnostic genome sequencing improves diagnostic yield: A prospective single-centre study in 1000 patients with inherited eye diseases. J. Med. Genet. 2024, 61, 186–195. [Google Scholar] [CrossRef]
- Leruez, S.; Milea, D.; Defoort-Dhellemmes, S.; Colin, E.; Crochet, M.; Procaccio, V.; Ferré, M.; Lamblin, J.; Drouin, V.; Vincent-Delorme, C. Sensorineural hearing loss in OPA1-linked disorders. Brain 2013, 136, e236. [Google Scholar] [CrossRef] [PubMed]
- Meire, F.; De Laey, J.; Bie, S.D.; Staey, M.V.; Matton, M. Dominant optic nerve atrophy with progressive hearing loss and chronic progressive external ophthalmoplegia (CPEO). Ophthalmic Paediatr. Genet. 1985, 5, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Hudson, G.; Amati-Bonneau, P.; Blakely, E.L.; Stewart, J.D.; He, L.; Schaefer, A.M.; Griffiths, P.G.; Ahlqvist, K.; Suomalainen, A.; Reynier, P.; et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: A novel disorder of mtDNA maintenance. Brain 2008, 131, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Carelli, V.; Musumeci, O.; Caporali, L.; Zanna, C.; La Morgia, C.; Del Dotto, V.; Porcelli, A.M.; Rugolo, M.; Valentino, M.L.; Iommarini, L. Syndromic parkinsonism and dementia associated with OPA 1 missense mutations. Ann. Neurol. 2015, 78, 21–38. [Google Scholar] [CrossRef]
- Lynch, D.S.; Loh, S.H.; Harley, J.; Noyce, A.J.; Martins, L.M.; Wood, N.W.; Houlden, H.; Plun-Favreau, H. Nonsyndromic Parkinson disease in a family with autosomal dominant optic atrophy due to OPA1 mutations. Neurol. Genet. 2017, 3, e188. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Griffiths, P.G.; Gorman, G.; Lourenco, C.; Wright, A.; Auer-Grumbach, M.; Toscano, A.; Musumeci, O.; Valentino, M.; Caporali, L. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010, 133, 771–786. [Google Scholar] [CrossRef]
- Ham, M.; Han, J.; Osann, K.; Smith, M.; Kimonis, V. Meta-analysis of genotype-phenotype analysis of OPA1 mutations in autosomal dominant optic atrophy. Mitochondrion 2019, 46, 262–269. [Google Scholar] [CrossRef]
- Rendtorff, N.D.; Lodahl, M.; Boulahbel, H.; Johansen, I.R.; Pandya, A.; Welch, K.O.; Norris, V.W.; Arnos, K.S.; Bitner-Glindzicz, M.; Emery, S.B. Identification of p. A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment. Am. J. Med. Genet. A 2011, 155, 1298–1313. [Google Scholar] [CrossRef] [PubMed]
- Rouzier, C.; Bannwarth, S.; Chaussenot, A.; Chevrollier, A.; Verschueren, A.; Bonello-Palot, N.; Fragaki, K.; Cano, A.; Pouget, J.; Pellissier, J.-F. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 2012, 135, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Sergouniotis, P.I.; Perveen, R.; Thiselton, D.L.; Giannopoulos, K.; Sarros, M.; Davies, J.R.; Biswas, S.; Ansons, A.M.; Ashworth, J.L.; Lloyd, I.C. Clinical and molecular genetic findings in autosomal dominant OPA3-related optic neuropathy. Neurogenetics 2015, 16, 69–75. [Google Scholar] [CrossRef]
- Bonneau, D.; Colin, E.; Oca, F.; Ferré, M.; Chevrollier, A.; Guéguen, N.; Desquiret-Dumas, V.; N’Guyen, S.; Barth, M.; Zanlonghi, X.; et al. Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. Brain 2014, 137, e301. [Google Scholar] [CrossRef]
- Wong, D.C.S.; Harvey, J.P.; Jurkute, N.; Thomasy, S.M.; Moosajee, M.; Yu-Wai-Man, P.; Gilhooley, M.J. OPA1 Dominant Optic Atrophy: Pathogenesis and Therapeutic Targets. J. Neuroophthalmol. 2023, 43, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Valentin, K.; Georgi, T.; Riedl, R.; Aminfar, H.; Singer, C.; Klopstock, T.; Wedrich, A.; Schneider, M. Idebenone Treatment in Patients with OPA1-Dominant Optic Atrophy: A Prospective Phase 2 Trial. Neuroophthalmology 2023, 47, 237–247. [Google Scholar] [CrossRef]
- Sarzi, E.; Seveno, M.; Piro-Mégy, C.; Elzière, L.; Quilès, M.; Péquignot, M.; Müller, A.; Hamel, C.P.; Lenaers, G.; Delettre, C. OPA1 gene therapy prevents retinal ganglion cell loss in a dominant optic atrophy mouse model. Sci. Rep. 2018, 8, 2468. [Google Scholar] [CrossRef]
- Venkatesh, A.; Zhiyu, L.; Anne, C.; Huat, L.K.; Jacob, K.; Robert, H. Antisense oligonucleotide mediated increase of OPA1 expression using TANGO technology for the treatment of autosomal dominant optic. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2755. [Google Scholar]
- Züchner, S. MFN2 Hereditary Motor and Sensory Neuropathy. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Pipis, M.; E Feely, S.M.; Polke, J.M.; Skorupinska, M.; Perez, L.; Shy, R.R.; Laura, M.; Morrow, J.M.; Moroni, I.; Pisciotta, C.; et al. Natural history of Charcot-Marie-Tooth disease type 2A: A large international multicentre study. Brain 2020, 143, 3589–3602. [Google Scholar] [CrossRef]
- Hamedani, A.G.; Wilson, J.A.; Avery, R.A.; Scherer, S.S. Optic Neuropathy in Charcot-Marie-Tooth Disease. J. Neuroophthalmol. 2021, 41, 233–238. [Google Scholar] [CrossRef]
- Chacko, J.A.; Phillips, P.H.; Ramakrishnaiah, R.H.; Schaefer, G.B.; Uwaydat, S.H. Diagnosis of Charcot–Marie–Tooth Disease in a Patient With Decreased Vision From Optic Atrophy and No Other Neurological Symptoms. J. Neuroophthalmol. 2023, 43, e146–e148. [Google Scholar] [CrossRef]
- Babu, K.; Seamon, K.; Jewell, A.; Harrison, A.; Harper, A.; Al Saif, H.; Couser, N. Hereditary motor and sensory neuropathy type VIA with optic nerve pallor in two sisters with pathologic myopia: A case series and review. Ophthalmic Genet. 2023, 44, 379–384. [Google Scholar] [CrossRef]
- Cipriani, S.; Guerrero-Valero, M.; Tozza, S.; Zhao, E.; Vollmer, V.; Beijer, D.; Danzi, M.; Rivellini, C.; Lazarevic, D.; Pipitone, G.B.; et al. Mutations in MYO9B are associated with Charcot-Marie-Tooth disease type 2 neuropathies and isolated optic atrophy. Eur. J. Neurol. 2023, 30, 511–526. [Google Scholar] [CrossRef]
- Wolfram, D.J.; Wagener, H.P. Diabetes mellitus and simple optic atrophy among siblings: Report of 4 cases. Mayo Clin. Proc. 1938, 13, 715–718. [Google Scholar]
- Lombardo, F.; Salzano, G.; Di Bella, C.; Aversa, T.; Pugliatti, F.; Cara, S.; Valenzise, M.; De Luca, F.; Rigoli, L. Phenotypical and genotypical expression of Wolfram syndrome in 12 patients from a Sicilian district where this syndrome might not be so infrequent as generally expected. J. Endocrinol. Investig. 2014, 37, 195–202. [Google Scholar] [CrossRef]
- Ganie, M.; Laway, B.; Nisar, S.; Wani, M.; Khurana, M.; Ahmad, F.; Ahmed, S.; Gupta, P.; Ali, I.; Shabir, I. Presentation and clinical course of Wolfram (DIDMOAD) syndrome from North India. Diabet. Med. 2011, 28, 1337–1342. [Google Scholar] [CrossRef]
- Rigoli, L.; Caruso, V.; Salzano, G.; Lombardo, F. Wolfram Syndrome 1: From Genetics to Therapy. Int. J. Environ. Res. Public Health 2022, 19, 3225. [Google Scholar] [CrossRef]
- Majander, A.; Jurkute, N.; Burté, F.; Brock, K.; João, C.; Huang, H.; Neveu, M.M.; Chan, C.M.; Duncan, H.J.; Kelly, S.; et al. WFS1-Associated Optic Neuropathy: Genotype-Phenotype Correlations and Disease Progression. Am. J. Ophthalmol. 2022, 241, 9–27. [Google Scholar] [CrossRef]
- Mishra, R.; Chen, B.S.; Richa, P.; Yu-Wai-Man, P. Wolfram syndrome: New pathophysiological insights and therapeutic strategies. Ther. Adv. Rare Dis. 2021, 2, 26330040211039518. [Google Scholar] [CrossRef]
- Barboni, P.; Amore, G.; Cascavilla, M.L.; Battista, M.; Frontino, G.; Romagnoli, M.; Caporali, L.; Baldoli, C.; Gramegna, L.L.; Sessagesimi, E.; et al. The Pattern of Retinal Ganglion Cell Loss in Wolfram Syndrome is Distinct From Mitochondrial Optic Neuropathies. Am. J. Ophthalmol. 2022, 241, 206–216. [Google Scholar] [CrossRef]
- Jauregui, R.; Abreu, N.J.; Golan, S.; Panarelli, J.F.; Sigireddi, M.; Nayak, G.K.; Gold, D.M.; Rucker, J.C.; Galetta, S.L.; Grossman, S.N. Neuro-Ophthalmologic Variability in Presentation of Genetically Confirmed Wolfram Syndrome: A Case Series and Review. Brain Sci. 2023, 13, 1030. [Google Scholar] [CrossRef]
- de Muijnck, C.; Brink, J.B.T.; Bergen, A.A.; Boon, C.J.F.; van Genderen, M.M. Delineating Wolfram-like syndrome: A systematic review and discussion of the WFS1-associated disease spectrum. Surv. Ophthalmol. 2023, 68, 641–654. [Google Scholar] [CrossRef]
- Bababeygy, S.R.; Wang, M.Y.; Khaderi, K.R.; Sadun, A.A. Visual Improvement With the Use of Idebenone in the Treatment of Wolfram Syndrome. J. Neuroophthalmol. 2012, 32, 386–389. [Google Scholar] [CrossRef]
- Abreu, D.; Urano, F. Current Landscape of Treatments for Wolfram Syndrome. Trends Pharmacol. Sci. 2019, 40, 711–714. [Google Scholar] [CrossRef]
- Fortuna, F.; Barboni, P.; Liguori, R.; Valentino, M.L.; Savini, G.; Gellera, C.; Mariotti, C.; Rizzo, G.; Tonon, C.; Manners, D. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009, 132, 116–123. [Google Scholar] [CrossRef]
- Rojas, P.; de Hoz, R.; Cadena, M.; Salobrar-García, E.; Fernández-Albarral, J.A.; López-Cuenca, I.; Elvira-Hurtado, L.; Urcelay-Segura, J.L.; Salazar, J.J.; Ramírez, J.M.; et al. Neuro-Ophthalmological Findings in Friedreich’s Ataxia. J. Pers. Med. 2021, 11, 708. [Google Scholar] [CrossRef]
- Keita, M.; McIntyre, K.; Rodden, L.N.; Schadt, K.; Lynch, D.R. Friedreich ataxia: Clinical features and new developments. Neurodegener. Dis. Manag. 2022, 12, 267–283. [Google Scholar] [CrossRef]
- Hamedani, A.G.; Hauser, L.A.; Perlman, S.; Mathews, K.; Wilmot, G.R.; Zesiewicz, T.; Subramony, S.; Ashizawa, T.; Delatycki, M.B.; Brocht, A.; et al. Longitudinal analysis of contrast acuity in Friedreich ataxia. Neurol. Genet. 2018, 4, e250. [Google Scholar] [CrossRef]
- Noval, S.; Contreras, I.; Sanz-Gallego, I.; Manrique, R.K.; Arpa, J. Ophthalmic features of Friedreich ataxia. Eye 2012, 26, 315–320. [Google Scholar] [CrossRef]
- Harding, A.E. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981, 104, 589–620. [Google Scholar] [CrossRef]
- Porter, N.; Downes, S.M.; Fratter, C.; Anslow, P.; Németh, A.H. Catastrophic Visual Loss in a Patient With Friedreich Ataxia. Arch. Ophthalmol. 2007, 125, 273–274. [Google Scholar] [CrossRef]
- Lynch, D.R.; Chin, M.P.; Delatycki, M.B.; Subramony, S.; Corti, M.; Hoyle, J.C.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Mathews, K.D. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe study). Ann. Neurol. 2021, 89, 212–225. [Google Scholar] [CrossRef]
- Lynch, D.R.; Chin, M.P.; Boesch, S.; Delatycki, M.B.; Giunti, P.; Goldsberry, A.; Hoyle, J.C.; Mariotti, C.; Mathews, K.D.; Nachbauer, W.; et al. Efficacy of Omaveloxolone in Friedreich’s Ataxia: Delayed-Start Analysis of the MOXIe Extension. Mov. Disord. 2023, 38, 313–320. [Google Scholar] [CrossRef]
- Lynch, D.R.; Perlman, S.; Schadt, K. Omaveloxolone for the treatment of Friedreich ataxia: Clinical trial results and practical considerations. Expert Rev. Neurother. 2024, 24, 251–258. [Google Scholar] [CrossRef]
- Hanein, S.; Perrault, I.; Roche, O.; Gerber, S.; Khadom, N.; Rio, M.; Boddaert, N.; Jean-Pierre, M.; Brahimi, N.; Serre, V. TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy. Am. J. Hum. Genet. 2009, 84, 493–498. [Google Scholar] [CrossRef]
- Metodiev, M.D.; Gerber, S.; Hubert, L.; Delahodde, A.; Chretien, D.; Gérard, X.; Amati-Bonneau, P.; Giacomotto, M.-C.; Boddaert, N.; Kaminska, A. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J. Med. Genet. 2014, 51, 834–838. [Google Scholar] [CrossRef]
- Angebault, C.; Guichet, P.-O.; Talmat-Amar, Y.; Charif, M.; Gerber, S.; Fares-Taie, L.; Gueguen, N.; Halloy, F.; Moore, D.; Amati-Bonneau, P. Recessive mutations in RTN4IP1 cause isolated and syndromic optic neuropathies. Am. J. Hum. Genet. 2015, 97, 754–760. [Google Scholar] [CrossRef]
- Hartmann, B.; Wai, T.; Hu, H.; MacVicar, T.; Musante, L.; Fischer-Zirnsak, B.; Stenzel, W.; Gräf, R.; van den Heuvel, L.; Ropers, H.-H. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. eLife 2016, 5, e16078. [Google Scholar] [CrossRef]
- Jin, H.; May, M.; Tranebjærg, L.; Kendall, E.; Fontán, G.; Jackson, J.; Subramony, S.; Arena, F.; Lubs, H.; Smith, S. A novel X–linked gene, DDP, shows mutations in families with deafness (DFN–1), dystonia, mental deficiency and blindness. Nat. Genet. 1996, 14, 177–180. [Google Scholar] [CrossRef]
- Oertel, F.C.; Zeitz, O.; Rönnefarth, M.; Bereuter, C.; Motamedi, S.; Zimmermann, H.G.; Kuchling, J.; Grosch, A.S.; Doss, S.; Browne, A.; et al. Functionally Relevant Maculopathy and Optic Atrophy in Spinocerebellar Ataxia Type 1. Mov. Disord. Clin. Pract. 2020, 7, 502–508. [Google Scholar] [CrossRef]
- Spagnoli, C.; Frattini, D.; Gozzi, F.; Rizzi, S.; Salerno, G.G.; Cimino, L.; Fusco, C. Infantile-Onset Spinocerebellar Ataxia Type 5 (SCA5) with Optic Atrophy and Peripheral Neuropathy. Cerebellum 2021, 20, 481–483. [Google Scholar] [CrossRef]
- Engvall, M.; Kawasaki, A.; Carelli, V.; Wibom, R.; Bruhn, H.; Lesko, N.; Schober, F.A.; Wredenberg, A.; Wedell, A.; Träisk, F. Case Report: A Novel Mutation in the Mitochondrial MT-ND5 Gene Is Associated With Leber Hereditary Optic Neuropathy (LHON). Front. Neurol. 2021, 12, 652590. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone marrow derived stem cells in the treatment of Dominant Optic Atrophy. Stem Cell Investig. 2019, 6, 41. [Google Scholar] [CrossRef]
Number of Cases | Age at First Diagnosis of OA Symptoms | Extraocular SYMPTOMS | Reference |
---|---|---|---|
50 individuals | 0–63 | Yes, 12% | Charif [68] (2021) |
1 individual | 26 | No | Neumann [71] (2020) |
1 individual | Unknown | No | Weisschuh [72] (2024) |
23 individuals * | 34.7 (mean) | Yes, 13% | Amore [70] (2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.K.; Mura, C.; Abreu, N.J.; Rucker, J.C.; Galetta, S.L.; Balcer, L.J.; Grossman, S.N. Hereditary Optic Neuropathies: An Updated Review. J. Clin. Transl. Ophthalmol. 2024, 2, 64-78. https://doi.org/10.3390/jcto2030006
Lee SK, Mura C, Abreu NJ, Rucker JC, Galetta SL, Balcer LJ, Grossman SN. Hereditary Optic Neuropathies: An Updated Review. Journal of Clinical & Translational Ophthalmology. 2024; 2(3):64-78. https://doi.org/10.3390/jcto2030006
Chicago/Turabian StyleLee, Samuel K., Caroline Mura, Nicolas J. Abreu, Janet C. Rucker, Steven L. Galetta, Laura J. Balcer, and Scott N. Grossman. 2024. "Hereditary Optic Neuropathies: An Updated Review" Journal of Clinical & Translational Ophthalmology 2, no. 3: 64-78. https://doi.org/10.3390/jcto2030006
APA StyleLee, S. K., Mura, C., Abreu, N. J., Rucker, J. C., Galetta, S. L., Balcer, L. J., & Grossman, S. N. (2024). Hereditary Optic Neuropathies: An Updated Review. Journal of Clinical & Translational Ophthalmology, 2(3), 64-78. https://doi.org/10.3390/jcto2030006