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Abstract: Synthetic cannabinoids are a rapidly evolving, diverse class of new psychoactive substances.
Synthetic cannabinoid use results in a higher likelihood of adverse events and hospitalization when
compared to cannabis use. The mechanisms behind synthetic cannabinoid toxicity remain elusive.
Furthermore, poly-substance use may be a significant contributing factor in many cases. This scoping
review aimed to identify the key characteristics of synthetic cannabinoid co-exposure cases and
discuss the potential implications of poly-substance use in humans. There were 278 human cases
involving 64 different synthetic cannabinoids extracted from the databases. Cases involved a total
of 840 individual co-exposures, with an average of four substances involved in each case. The
most common co-exposures were alcohol (11.4%), opioids (11.2%), and cannabis (11.1%). When
analyzed by case outcome, co-exposure to either antipsychotics/antidepressants, alcohol, or tobacco
were significantly associated with mortality as an outcome (p < 0.05). Drug-use history (63.4%),
mental illness (23.7%), and hypertensive and atherosclerotic cardiovascular disease (20.1%) were
prevalent patient histories in the case cohort. There are several potential pharmacodynamic and
pharmacokinetic interactions between co-exposure drugs and synthetic cannabinoids that could
worsen clinical presentation and toxicity in synthetic cannabinoid users. Individuals with substance-
use disorders or psychiatric illness would be especially vulnerable to these multi-drug interactions.
Further research into these complex exposures is needed for the successful prevention and treatment
of synthetic cannabinoid-related harms.
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1. Introduction

Synthetic cannabinoids are one of the fastest growing classes of novel psychoactive
substances worldwide [1]. The high potency of these compounds means they pose a much
greater threat to users when compared to delta-9-tetrahydrocannabinol (∆-9-THC), the
primary phytocannabinoid in the cannabis genus. Correspondingly, the relative risk for
needing emergency medical treatment following synthetic cannabinoid use is 30 times
greater than the risk associated with cannabis use [2]. One theory supporting the difference
in safety profiles between ∆-9-THC and synthetic cannabinoids is explained by pharma-
codynamics, i.e., the affinity and efficacy of the cannabinoids at the human cannabinoid
receptors [3]. As a partial agonist, ∆-9-THC, has lower intrinsic activity at the cannabinoid
CB1 receptor (CB1) and therefore partial efficacy [4–6]. In direct contrast, many synthetic
cannabinoids are full agonists at CB1 and the cannabinoid CB2 receptor (CB2) and have
greater efficacy compared to ∆-9-THC [7–10]. Additionally, ∆-9-THC displays lower affinity
for CB1 (Ki = 16–80 nM) when compared to many synthetic cannabinoid ligands [9,11,12].
The structure of synthetic cannabinoids differ greatly from the classical structure of ∆-9-
THC, where common core structural groups include cyclohexylphenols, naphthoylindoles,

Psychoactives 2024, 3, 365–383. https://doi.org/10.3390/psychoactives3030023 https://www.mdpi.com/journal/psychoactives

https://doi.org/10.3390/psychoactives3030023
https://doi.org/10.3390/psychoactives3030023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psychoactives
https://www.mdpi.com
https://orcid.org/0000-0002-1640-5956
https://orcid.org/0000-0002-5997-6898
https://doi.org/10.3390/psychoactives3030023
https://www.mdpi.com/journal/psychoactives
https://www.mdpi.com/article/10.3390/psychoactives3030023?type=check_update&version=3


Psychoactives 2024, 3 366

benzoylindoles, phenacetylindoles, alkoylindoles, indole carboxylates, indole carboxam-
ides, indazole carboxamides, benzimidazoles, carbazoles, and γ-carbolines [13–15].

Countless cases of adverse events and several hundred mortalities following synthetic
cannabinoid use have been reported worldwide [16]. Synthetic cannabinoid intoxication
does not present with a consistent toxidrome and can mirror the symptoms seen with other
types of recreational drugs [17]. Adverse effects reported range from agitation, hyperten-
sion, and hallucination [18,19] to seizures, cardiac arrythmias, respiratory depression, and
even death [20]. Due to the broad range of quantified synthetic cannabinoid concentrations
found in post-mortem samples [21], the lethal dose threshold for individual synthetic
cannabinoids is unknown.

Synthetic cannabinoids are commonly abused alongside other substances. Within a
cohort of patients undergoing treatment for substance-use disorder, 32% reported using
synthetic cannabinoids to alter the effects of other drugs [22]. Furthermore, among a global
population of recent synthetic cannabinoid users, from data gathered with an anonymous
online survey, alcohol, cannabis, tobacco, and 3,4-methylenedioxy-methamphetamine
(MDMA) were frequently consumed, with use prevalence in the last month of 91%, 88%,
75%, and 26%, respectively [23]. Approximately one-third of these respondents reported
use of mushrooms, benzodiazepines, lysergic acid diethylamide, and/or cocaine in the past
year [23]. In cases involving poly-drug abuse, it is possible that both pharmacodynamic
and pharmacokinetic interactions could impact synthetic cannabinoid toxicity. To date,
these interactions remain largely unexplored.

The mechanisms behind the acute toxicities of synthetic cannabinoid use are poorly
understood. It is likely that prior medical history and drug co-exposure have a signifi-
cant impact on the range of adverse effects associated with synthetic cannabinoid abuse.
Therefore, this scoping review aimed to highlight the key characteristics of human cases of
synthetic cannabinoid intoxication, with a particular focus on cases of multi-drug exposure.

2. Materials and Methods
2.1. Aims and Scope

The main aim of the study was to identify and extract data on human cases involving
synthetic cannabinoid intoxication or mortality, including co-exposure to another drug
of abuse or medication. The scoping review subsequently aimed to highlight likely poly-
substance combinations, provide potential implications, and determine corresponding gaps
in the literature.

2.2. Search Strategy

The search strategy was conducted in early July 2024. The search encompassed articles
published between the 1 January 2010 until the 1 June 2024 and relied on the key terms
“synthetic cannabinoid” and “case” in each database. Case reports needed to be in English
and retrievable in their full text. The search was performed in the following electronic
databases: Medline (PubMed), Scopus, and Web of Science. This study was not registered
in PROSPERO.

After duplicates were removed, titles and abstracts were first screened for exclusion
criteria: off-topic articles (e.g., no synthetic cannabinoid involved or lack of analytical confir-
mation, therapeutic synthetic cannabinoid use, pre-clinical studies, or lack of co-exposure or
quantification/method-based studies without associated case reports), reviews or letters to
the editor, or cases not involving humans. Further full-text review was conducted if needed,
including screening of references cited in selected articles to find additional, relevant case
reports. Additionally, co-exposure clearly stated as a result of medical intervention in hos-
pital/emergency care settings was excluded. Co-exposures to the rodenticide brodifacoum,
as an adulterant to synthetic cannabinoid products, were outside of the scope of this study
and were therefore excluded. In line with current systematic review guidelines [24], the
corresponding PRISMA-led flow diagram (Figure 1) outlines the study review process.
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Figure 1. Flowchart of the study screening and selection process.

2.3. Data Extraction

An initial database with broad case information was created in OneNote® (Microsoft
365, version 2206). Specific data extracted from manuscripts were added to a final database
constructed in Excel® (Microsoft 365, version 2206). For each manuscript, the following
data were collected where present: authors, year published, sex and age of case, syn-
thetic cannabinoids confirmed to be involved in the case, route of synthetic cannabinoid
administration, case presentation and outcome, concentration of synthetic cannabinoid
parent compound in biological samples (in ng/mL) and corresponding sample type, other
substances detected, comorbidities, and medical history.

Synthetic cannabinoids were classified as any synthetically derived compounds known
to bind and activate the cannabinoid CB1 and/or CB2 receptor. Where more than one name
was used across cases for the same synthetic cannabinoid structure, the most prevalent
nomenclature was chosen and was used throughout. Quantification of synthetic cannabi-
noid metabolites within biological samples was not consistently reported, and due to the
non-specificity of some synthetic cannabinoid metabolites, parent compound detection
was analyzed. Due to the rapid metabolism of synthetic cannabinoids, detection of parent
compound may be unobtainable in some cases. Co-exposure included both medications
and other drugs of abuse and was confirmed by analytical detection of substances in bio-
logical samples from patients. In the context of patient medical history, drug-use history
was defined as consistent recreational or problematic drug use, including terms such as
“history of illicit drug use” and “drug experience”.

2.4. Data Analysis

Quality assessment, risk of bias, and meta-analyses of the included studies were not
conducted due to the scoping nature of the review [25]. Descriptive statistics were applied
to continuous data gained from the included cases. Categorical data were analyzed for
variable frequency. A Fisher’s exact test was used to identify significant non-random
associations between case outcome and co-exposure. Statistically significant findings re-
quired p < 0.05. Statistical analyses and data visualization were carried out using GraphPad
Prism 8 software.
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3. Results

There were 278 cases of human intoxication or mortality with confirmed synthetic
cannabinoid involvement and drug co-exposure identified in the literature since 2010
(Table 1) [18,21,26–87].

Table 1. Characteristics of included case reports and case series involving synthetic cannabinoid
toxicity and drug co-exposure.

Author Year Country n Sex
(M/F) Mortalities

Non-Fatal
Intoxica-

tions

Abouchedid et al. [26] 2016 UK 1 F - 1
Adamowicz et al. [27] 2019 Poland 1 M 1 -
Allibe et al. [28] 2017 France 4 M - 4
Angerer et al. [29] 2017 Germany 3 M 3 -
Apirakkan et al. [30] 2021 UK 1 M 1 -
Bäckberg et al. [31] 2017 Sweden 8 7M/1F - 8
Barcelo et al. [32] 2017 Spain 2 1M/1F - 2
Behonick et al. [33] 2014 USA 2 M 2 -
Bertol et al. [34] 2015 Italy 1 M - 1
Brandehoff et al. [35] 2018 USA 4 2M/2F - 4
Chan et al. [36] 2013 UK 1 M - 1
Chan et al. [37] 2019 Singapore 2 M 2 -
Darke et al. [38] 2020 Australia 42 - 42 -
Elena-González et al. [39] 2020 Spain 1 M - 1
Engelgardt et al. [40] 2022 Poland 10 9M/1F - 10
Gaunitz and
Andresen-Streichert [41] 2022 Germany 1 M - 1

Gaunitz et al. [42] 2018 Germany 1 M 1 -
Giorgetti et al. [43] 2020a Germany 4 3M/1F 4 -
Giorgetti et al. [44] 2024 Germany 1 M 1 -
Goncalves et al. [45] 2022 France 8 7M/1F - 8
Hamilton et al. [46] 2017 USA 1 M - 1
Hasegawa et al. [47] 2015 Japan 1 M 1 -
Hasegawa et al. [48] 2018 Japan 1 M 1 -
Hermanns-Clausen et al. [18] 2013a Germany 7 6M/1F - 7
Hermanns-Clausen et al. [49] 2013b Germany 1 M - 1
Hill et al. [50] 2016 UK 4 M - 4
Institóris et al. [51] 2022 Hungary 13 12M/1F - 13
Katz et al. [52] 2016 USA 10 6M/4F 1 9
King et al. [53] 2022 UK 7 6M/1F - 7
Klavz et al. [54] 2016 Slovenia 1 M - 1
Kleis et al. [55] 2020 Germany 9 8M/1F 3 6
Kovács et al. [56] 2019 Hungary 1 M 1 -
Kraemer et al. [57] 2019 Germany 3 2M/1F 3 -
Kusano et al. [58] 2018 Japan 1 M 1 -
Labay et al. [59] 2016 USA 19 15M/4F 19 -
Lam et al. [60] 2017 China 1 M - 1
Langford and Bolton [61] 2018 UK 1 M 1 -
Lapoint et al. [62] 2011 USA 1 M - 1
Larabi et al. [63] 2019 France 1 M - 1
Lonati et al. [64] 2014 Italy 1 M - 1
Morrow et al. [21] 2020 New Zealand 51 - 51 -
Musshoff et al. [65] 2013 Germany 1 M - 1
Nacca et al. [66] 2018 USA 1 M - 1
Neukamm et al. [67] 2024 Germany 1 M 1 -
Pant et al. [68] 2012 USA 1 M - 1
Pieprzyca et al. [69] 2023 Poland 3 3M 3 -
Pucci et al. [70] 2024 UK 6 4M/2F 1 5
Rice et al. [71] 2021 UK 2 1M/1F 2 -
Rojek et al. [72] 2017 Poland 1 M 1 -
Seywright et al. [73] 2022 UK 11 10M/1F 11 -
Shanks et al. [74] 2012 USA 1 M 1 -
Shanks et al. [75] 2015 USA 1 F 1 -
Shanks et al., [76] 2016 USA 1 F 1 -
Simon et al. [77] 2022 Hungary 1 M 1 -
Simon et al. [78] 2023a Hungary 2 2M 2 -
Simon et al. [79] 2023b Hungary 1 M 1 -
Soo et al. [80] 2023 Singapore 1 M - 1
Steele et al. [81] 2022 USA 1 M 1 -
Theofel et al. [82] 2023 Germany 1 M 1 -
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Table 1. Cont.

Author Year Country n Sex
(M/F) Mortalities

Non-Fatal
Intoxica-

tions

Tiemensma et al. [83] 2021 Australia 4 M 4 -
Tokarczyk et al. [84] 2022 Poland 1 M 1 -
Van Rafelghem et al. [85] 2021 Belgium 1 M 1 -
Westin et al. [86] 2016 Norway 1 M 1 -
Yamagishi et al. [87] 2018 Japan 1 M 1 -

Total 278 185 175 103

Of a total 185 cases with known sex, 159 of these were males (86%). There were
103 non-fatal intoxication cases in the dataset, with the majority (63%) being mortali-
ties. There were 26 case series publications, where the remaining 38 manuscripts were
single-case reports.

Of the 181 cases with reported age, the mean age was 32 ±12 years, with a median of
30 years (Table 2). Within this group of human synthetic cannabinoid intoxication cases,
the age range spanned 51 years (13–64). The mean number of substances, including syn-
thetic cannabinoids, involved in both mortality and non-fatal intoxication cases was four
(Table 2). Notably, a mortality case featured the highest number of involved substances, at
18 substances detected. Of the 224 cases with reported medical history, 63.4% had a history
of drug use. History of hypertensive and atherosclerotic cardiovascular disease (HASCVD)
(20.1%) and mental illness (23.7%) were also prevalent. The primary causes of death in
mortality cases were mixed drug toxicity (29.5%) and synthetic cannabinoid toxicity (25.4%).
Heart disease, stroke, and hypoxic brain injury were the next most prevalent causes of
death (Table 2). Other less prevalent causes of death included multi-organ failure, poly-
trauma, and acute respiratory failure. Across biological fluid samples, the overall detected
concentration range for parent synthetic cannabinoid compounds was 0.01–230 ng/mL.
The most common analytical method for detecting synthetic cannabinoids in biological
samples was liquid chromatography coupled with tandem mass spectrometry, followed
by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and
liquid chromatography coupled to tandem-mass spectrometry with electrospray ionization.

Overall, 64 different synthetic cannabinoids were detected across the 278 included
cases. There were 55 synthetic cannabinoids identified in mortality cases (Figure 2). The
primary contributors (combining 43%) within the detected synthetic cannabinoids involved
in mortality cases were AMB-FUBINACA; AB-CHMINACA; 5F-MDMB-PINACA, also
known as 5F-ADB; and JWH-018 (Figure 2).
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Table 2. Study demographics and toxicological findings from included synthetic cannabinoid intoxi-
cation cases.

Case Features Mean Range

Age 32 years 13–64 years
No. of substances 4 2–18

Route of administration n %

Inhalation 152 95.6%
Oral 7 4.4%

Comorbidities n %

Drug-use history 142 63.4%
Mental illness 53 23.7%
HASCVD 1 45 20.1%

Cause of death n %

Mixed drug toxicity 36 29.5%
Synthetic cannabinoid toxicity 31 25.4%
Cardiovascular disease 21 17.2%
Stroke, hypoxic brain injury, or encephalopathy 8 6.6%
Asphyxia 5 4.1%
Other 21 17.2%

Synthetic cannabinoid quantification n Range (ng/mL)

Plasma 6 0.20–44
Serum 29 0.11–230
Urine 7 0.08–24
Whole blood 69 0.01–204

1 Hypertensive and atherosclerotic cardiovascular disease. n = 181 cases with age reported, n = 278 cases with
substance co-exposures, n = 159 cases with route of administration reported, n = 224 cases with comorbidities
reported, n = 122 mortality cases with cause of death reported, and n = 111 cases with parent synthetic cannabinoid
quantified in biological fluids.

There were 840 substance co-exposures, excluding synthetic cannabinoids, detected
across the 278 cases. The substances were classified into broader drug classes, where
appropriate, and the percentage of co-exposure incidence was calculated to find the pri-
mary contributors. The three most common co-exposures were alcohol (96 instances),
opioids (94 instances), and ∆-9-THC (93 instances) (Figure 3). The incidence of antipsy-
chotic/antidepressant and benzodiazepine co-exposure was similar, at 9.6 and 9.4%, re-
spectively. Other frequent co-exposures included “designer” stimulants, such as 18 para-
fluorophenylpiperazine (pFPP) exposures and 15 cathinone (e.g., α-PVP, pentedrone, and
N-ethyl-hexedrone) exposures.
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To further breakdown the substances involved in synthetic cannabinoid poly-pharmacy,
the drugs with the greatest prevalence within each drug class were identified (Table 3).
Methadone was the most frequent opioid co-exposure, followed by morphine and codeine.
The top six most common antipsychotic/antidepressant co-exposures (risperidone, mir-
tazapine, olanzapine, citalopram, fluoxetine, and haloperidol) accounted for 63% of all
antipsychotic/antidepressant co-exposure incidences. Co-exposure to amphetamine or
methamphetamine was also high within this case cohort, with 25 and 18 incidences of
each, respectively.

Table 3. Most frequent co-exposure drugs in each drug class.

Co-Exposure Specific Drug n

Opioids

Methadone 24
Morphine 22
Codeine 14
Tramadol 10
Fentanyl 6

Antipsychotics/antidepressants

Risperidone 13
Mirtazapine 9
Olanzapine 8
Citalopram 7
Fluoxetine 7
Haloperidol 7
Quetiapine 7

Benzodiazepines

Diazepam 9
Alprazolam 7
Lorazepam 7
Midazolam 6
Nordazepam 6

Amphetamines
Amphetamine 25
Methamphetamine 18
MDMA 8

Miscellaneous

pFPP 18
Cocaine 17
Pregabalin 14
Lidocaine 10
Zopiclone 10
Diphenhydramine 7

In order to identify any potential associations between co-exposure groups and out-
comes in synthetic cannabinoid cases, the percentage of cases from each co-exposure
were compared to determine non-random associations. Co-exposure to either antipsy-
chotics/antidepressants, alcohol, or tobacco were significantly associated with mortality
from synthetic cannabinoid use (Table 4). Specifically, there was a significant association be-
tween the prevalence of antipsychotics/antidepressants, alcohol, and tobacco co-exposure
in synthetic cannabinoid mortality cases compared to non-fatal intoxication cases. There
was a similar proportion of mortality and non-fatal synthetic cannabinoid intoxication
cases that involved ∆-9-THC co-exposure at 30.9% and 35.9%, respectively.
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Table 4. Incidence of specific drug co-exposure in synthetic cannabinoid mortality cases versus
non-fatal intoxications.

Co-Exposure Mortalities (n = 175)
n (%)

Non-Fatal Intox. (n = 103)
n (%)

Antipsychotics/antidepressants 60 (34.3%) * 11 (10.7%)
Alcohol 69 (39.4%) * 26 (25.2%)
∆-9-THC 54 (30.9%) 37 (35.9%)
Tobacco 57 (32.6%) * 4 (3.9%)
Benzodiazepines 35 (20.0%) 30 (29.1%)
Opioids 32 (18.3%) 27 (26.2%)
Amphetamines 19 (10.9%) 20 (19.4%)

Data all represented as a percentage of the total case outcome. Significant non-random associations between case
outcome and co-exposure were analyzed using a two-tailed Fisher’s exact test. * significant association between
co-exposure and case outcome (p < 0.05).

4. Discussion

The case characteristics reported from this series are in line with previous studies. The
majority (86%) of cases were male. Earlier studies and case cohorts have reported 88.1%
and 74.3% male biases for cases of synthetic cannabinoid-related deaths and synthetic
cannabinoid exposures reported to US Poison Centers, respectively [20,88]. This bias
does not appear to be linked to increased likelihood of synthetic cannabinoid adverse
effects or deaths in males but rather reflects the pre-existing patterns and demographics
in synthetic cannabinoid users. In Australia, 77% of reported synthetic cannabinoid users
were male [89]. In the Australian cohort, males reported a significantly higher median
number of lifetime use occasions when compared to females [89]. In England, from April
2014 to March 2018, 91.2% of the forensic toxicology cases where synthetic cannabinoids
were detected were males [90].

The emphasis on co-exposure to both synthetic cannabinoids and other substances in
this case series did not impact the age range compared to previous studies. Across a group
of deaths associated with synthetic cannabinoids in the USA, the reported age range was
13 to 56 years [18]. In a systematic review of deaths involving synthetic cannabinoids, the
mean age in the cohort was 32 years, with a median age of 29 (range 14–61) [20]. These
mean and median values are almost identical to those presented in the current study. This
is not surprising, as the likelihood of overlap in case inclusion criteria between this study
and that conducted by Giorgetti et al. [20] is high.

The diversity in synthetic cannabinoids reported in cases from 2010 to 2024 exhibits
the rapid evolution of this class of new psychoactive substances (NPS). The United Na-
tions Office on Drugs and Crime had 899 individual NPS reported to their Early Warning
Advisory from 119 countries between 2008 and 2019 [91]. Legislation covering identified
synthetic cannabinoid products in the early 2010s was consistently out-competed by the
emergence of new, structurally distinct, uncontrolled synthetic cannabinoids [92]. AMB-
FUBINACA, AB-CHMINACA, 5F-MDMB-PINACA (or 5F-ADB), and JWH-018 were the
most frequent synthetic cannabinoids detected in mortality cases. The dangers associated
with these synthetic cannabinoids are well documented. The large number of mortalities
associated with AMB-FUBINACA was influenced by the inclusion of the study by Morrow
et al. [21] that outlined the outbreak of deaths associated with AMB-FUBINACA in New
Zealand. 5F-MDMB-PINACA and AB-CHMINACA were previously associated with fatal
synthetic cannabinoid intoxications in Germany [93]. In and around Munich, from 2014
to 2020, the three most commonly detected synthetic cannabinoids in post-mortem cases
were 5F-MDMB-PINACA, 5F-MDMB-PICA, and AB-CHMINACA [93]. Additionally, in a
recent systematic review of clinical studies and case reports, AB-CHMINACA resulted in
the highest frequency of toxicologic effects and was one of the top two synthetic cannabi-
noids associated with mortality outcomes [94]. As a potential driver of in vivo toxicity,
AMB-FUBINACA, 5F-MDMB-PINACA, and AB-CHMINACA are highly potent synthetic
cannabinoids, with sub-nanomolar EC50 values in vitro [3,10].
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The average number of substances, including synthetic cannabinoids, involved in the
non-fatal intoxication and mortality cases was four. Based on the required involvement
of both a synthetic cannabinoid and co-exposure substance, the minimum number of sub-
stances involved in cases was two. As an extreme case of poly-substance use, a 43-year-old
female was exposed to 18 substances, with 5 synthetic cannabinoids detected in biological
fluids and at least 13 other substances, including drugs of abuse and pharmaceuticals,
present [57]. By excluding alternative causes, mixed drug intoxication was determined
as the cause of death; however, the contribution of each substance to the resulting tox-
icity was unable to be distinguished [57]. Mixed drug toxicity was the cause of death
in a further 35 cases included in the current review. Frequency of poly-substance use is
strongly associated with both morbidity and mortality [95,96]. As an example, the risk of
cardiovascular disease increases as the substance-use number increases [97]. Specifically,
use of four or more recreational substances, including tobacco, alcohol, and illicit drugs
(e.g., amphetamine, cannabis, and cocaine), resulted in a 9-fold greater risk of developing
premature heart disease [97]. It is therefore unsurprising that cardiovascular disease was
the third most common cause of death in this case cohort behind, and likely linked to,
synthetic cannabinoid and mixed drug toxicity.

The four most prevalent co-exposures alongside synthetic cannabinoids in this case co-
hort were alcohol, opioids, ∆-9-THC, and antipsychotics/antidepressants. An international
survey conducted in early 2011 found that alcohol (54%), cannabis (40%), and tobacco (38%)
were the most common co-exposures with synthetic cannabinoid use [98]. The emergence
of psychiatric medication and synthetic cannabinoid poly-drug use appears to be a more
recent trend. The United Nations Office on Drugs and Crime Early Warning Advisory
on NPS Toxicology Portal data from 2018 listed antipsychotics and cannabis as the most
frequently detected substances in synthetic cannabinoid fatalities [91]. Caffeine detection in
the case cohort was likely underreported, as caffeine screening is not routinely performed
in emergency medical or forensic settings despite recommendations for its inclusion in
toxicology screens [99]. As the world’s most widely consumed central nervous system
stimulant, sources of caffeine include dietary consumption [100]; herbal supplements, par-
ticularly those marketed for weight loss [101]; and as an additive to illicit drugs such as
cocaine and MDMA [102].

As a legal substance, it is unsurprising that alcohol is consistently reported as one of
the most prevalent co-exposures with both synthetic cannabinoids and cannabis. Inter-
actions between alcohol and cannabinoids have been extensively documented [103–105].
Each substance can alter the pharmacokinetics of the other. Cannabinoids inhibit gastric
emptying, which leads to slower absorption of alcohol and lowered bioavailability [106].
Alcohol dilates the microcirculation in the lungs, which can increase cannabinoid con-
centrations in the blood following inhalation [107]. Use behaviors and consumption are
also impacted by co-abuse of alcohol and cannabinoids. Simultaneous use of both alcohol
and cannabis is associated with a greater frequency of cannabis and alcohol consumption
and quantity of alcohol use [108]. Moreover, users may be less careful with cannabis
self-titration after alcohol use [109]. There are also functional and pathological interactions
between the two substances, particularly in the liver. The endocannabinoid system and
paracrine activation of CB1 receptors in the liver have been implicated in the development
of alcoholic fatty liver disease [110]. Hepatocyte-specific knockout of CB1 receptors in mice
was protective against toxin-induced liver damage, highlighting the role of CB1 receptors
in acute liver pathogenesis [111]. Exposure to the synthetic cannabinoid XLR-11 at 3 mg/kg
daily, for five days, caused acute hepatic injury in mice [112]. Acute liver injury was also
previously reported in a human case involving synthetic cannabinoid use and a history of
binge alcohol intake [113]. Encompassed in the present case cohort, hepatotoxicity in the
form of fatty liver disease, along with documented history and detection of alcohol and
synthetic cannabinoid use, may have contributed to the death of a 42-year-old female in the
case series reported by Labay et al. [59]. Overall, the combination of alcohol and synthetic
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cannabinoids may lead to changes in substance pharmacokinetics, detrimental effects on
use behaviors, and increased risk of hepatotoxicity.

Cannabis and tobacco are concomitantly used by ~40% of synthetic cannabinoid
users [98]. Both of these substances are often smoked, although the prevalence of vaporiza-
tion is increasing [114,115]. Chronic smoking or vaping of tobacco and cannabis can lead to
lung damage, chronic bronchitis, and the development of emphysema [116]. Specifically,
computerized tomography scans of 56 cannabis smokers and 33 tobacco smokers revealed
that rates of emphysema were 75 and 67% for the respective groups [117]. Furthermore,
concurrent use of cannabis and tobacco was associated with a higher odds ratio (OR of 2.59)
for respiratory symptoms compared to smoking tobacco alone (OR of 1.50) [118]. People
who smoked both tobacco and more than 50 cannabis cigarettes in their lifetime were
2.9 times more likely to develop chronic obstructive pulmonary disease when compared
with non-smokers [119]. As newer substances of abuse, there are fewer studies investigating
the impact of synthetic cannabinoids on lung function. In C57Bl6/J mice, oropharyngeal
administration of the synthetic cannabinoid CP55,940 (2.6 µg/kg) significantly increased
lung weight 4 h post administration; induced the expression of inflammatory cytokines
including tumor necrosis factor-α, interleukin 1β, and interleukin 6; and increased CB1
expression in the lung [120]. Currently, studies evaluating the long-term effects of smoking
or vaping synthetic cannabinoid products in humans are lacking. However, based on the
more severe pulmonary outcomes following combined cannabis and tobacco use [118], the
addition of inhaled synthetic cannabinoid products would likely worsen lung inflammation
and overall pulmonary function. The association between tobacco use and mortality in
the case cohort likely reflects concomitant substance-use tendency. Although the com-
bined use of synthetic cannabinoids and tobacco would increase pulmonary morbidity, this
poly-substance exposure is yet to be mechanistically linked to mortality.

Two prevalent patient histories in the current synthetic cannabinoid case cohort were
drug-use history (63.4%) and mental illness (23.7%). Similar substance dependence and psy-
chiatric history rates were previously reported in synthetic cannabinoid forensic toxicology
cases [90]. The relationship between substance use and psychiatric comorbidity is bidirec-
tional. Psychiatric patients have consistently higher cannabis and synthetic cannabinoid
use prevalence compared to the general population [121–123]. Diagnosis of mental disor-
ders, including both mood and anxiety disorders, was associated with an increased risk of
developing alcohol- and cannabis-use disorders [124]. Conversely, synthetic cannabinoid
use was associated with psychosis, poor outcomes, and increased hospitalization in patients
receiving mental health services in the United Kingdom [125]. Synthetic cannabinoids have
also caused new-onset psychosis in several cases, induced by either synthetic cannabinoids
alone or when combined with cannabis or alcohol [126,127].

To complicate the relationship between substance use and psychiatric comorbidity,
patients can be prescribed a wide variety of medications depending on their mental health
diagnosis and type of substance-use disorder. The most common psychiatric diagnosis as-
sociated with substance-use disorder, at ~50% of all dual diagnoses, is schizophrenia [128].
The first-line pharmacotherapy for the treatment of schizophrenia and comorbid substance
abuse is second-generation antipsychotics such as clozapine, risperidone, and olanzap-
ine [129,130]. Individual substance-use disorders are also treated with a range of pharma-
cotherapies. Tobacco smoking cessation is generally managed with nicotine replacement
therapy, bupropion, or a combination of the two [131]. The current FDA-approved treat-
ments for alcohol-use disorder are disulfiram, naltrexone, and acamprosate [132,133]. In
reality, patients with alcohol-use disorder are much more likely to be prescribed antide-
pressants or quetiapine as treatments, with disulfiram and naltrexone being dispensed to
only a small minority [134]. Naltrexone is also a pharmacotherapy for opioid-use disorder,
as are methadone and buprenorphine [135,136]. The drug-use history, with a prevalence
of antipsychotic, antidepressant, and methadone co-exposure in this cohort, may allude
to a burden of substance-use disorder and psychiatric comorbidity within the population
of synthetic cannabinoid users. The range of prescription medications for dual diagnosis,
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including risperidone, olanzapine, methadone, and buprenorphine, features in the syn-
thetic cannabinoid co-exposures of this case cohort. Poly-drug use is of particular concern
in relation to synthetic cannabinoid use and mortalities [137]. The potential implications of
synthetic cannabinoid use combined with these medications remains largely unexplored.

There are potential pharmacodynamic interactions between antipsychotics and cannabi-
noids. There is known cross-talk between the CB1 and dopamine D2 receptors via het-
eromerization of these G protein-coupled receptors upon concurrent receptor activa-
tion [138–140]. D2 receptors can modulate the transcription of CB1 receptor mRNA through
the ERK1/2 pathway and the CB1 receptor promoter [141]. There are further implications
for these heteromers with the use of cannabinoids alongside antipsychotics. Haloperi-
dol and a nonselective cannabinoid receptor agonist, CP55,940, had opposing effects on
heteromer abundance in the globus pallidus and locomotion as a behavioral measure in
C57Bl/6 mice [140]. Many atypical antipsychotics not only block the D2 receptor but also
have affinity for the serotonin 5-HT2A/2C and 5-HT1A/1C receptors [142]. Both D2 and
CB1 receptors have functional interactions with the 5-HT2A receptor [143,144]. Long-term
administration of the synthetic cannabinoid HU-210 (100 µg/kg) up-regulated 5-HT2A
receptor activity and down-regulated 5-HT1A in rats [145]. Chronic ∆-9-THC exposure
caused functional sensitization to 5-HT2A receptor activation in mice [146]. In humans,
both schizophrenic patients treated with antipsychotics and cannabis-use disorder patients
have increased 5-HT2A receptor protein expression when compared to matched control
subjects [147]. Not only will these pharmacodynamic interactions make it harder to treat
schizophrenia and psychoses, but 5-HT2A up-regulation may make cannabis and synthetic
cannabinoid users more sensitive to the effects of serotonergic agonists and, consequently,
the risk of serotonin syndrome in poly-drug use. Although serotonin syndrome was not
reported in the current case cohort, this scenario may go undiagnosed due to the overlap in
symptoms between synthetic cannabinoid toxicity and serotonin syndrome [148].

Co-exposure to synthetic cannabinoids and several drugs of abuse or prescription
medicines could lead to increased chances of adverse events such as respiratory depression.
This is especially relevant due to the prevalence of opioid (11.2%) and benzodiazepine
(9.4b) co-exposure in this case cohort. Respiratory depression is not an adverse effect that
occurs due to cannabis use but cannot be overlooked in the case of synthetic cannabi-
noid use. Synthetic cannabinoids can cause respiratory depression on their own both
in mice [149] and humans [150,151]. Opioids, alcohol, and benzodiazepines can also
cause respiratory depression alone. The combination of methadone or buprenorphine
with benzodiazepines is known to worsen respiratory depression and increase overdose
risk [152]. In terms of pathophysiology, both synthetic cannabinoids and opioids can re-
duce respiratory frequency in vivo by inhibiting neurons in the medullary pre-Bötzinger
complex [153,154]. The combination of a synthetic CB1 agonist, AM356 (1 mg/kg), and mor-
phine (10 mg/kg) significantly exacerbated morphine-induced respiratory depression in
male CD-1 mice [155]. Pharmacokinetic factors via cytochrome P450 (CYP450) interactions
also impact these drug combinations. Along with general CYP2D6 metabolism of opioids
in the body, methadone is metabolized primarily by CYP3A4, with minor contributions
from CYP2B6, 2C19, and 2C9 [156]. Diazepam can noncompetitively inhibit the metabolism
of methadone by CYP450 enzymes, likely because it is a substrate for CYP3A4 [157]. Cloza-
pine, haloperidol, and risperidone are all substrates for CYP3A4 and 2D6 [158]. Fluoxetine
and quetiapine inhibit CYP3A4 and the 2D6 metabolism of methadone, increasing plasma
concentrations [159–161]. Concurrent benzodiazepine, antidepressant, and antipsychotic
use were all moderately strong risk factors for opioid-induced respiratory depression [162].
The combination of opioids, benzodiazepines, and/or alcohol increases the risk of overdose
lethality, where combined use of pharmaceutical opioids and benzodiazepines was the
leading cause of poly-substance overdose deaths in the USA from 2005–2009 [163]. Given
that synthetic cannabinoid-induced respiratory depression is possible, co-exposure to opi-
oids, alcohol, benzodiazepines, and antipsychotics/antidepressants could all worsen this
outcome. As potential examples of poly-substance-induced respiratory depression, there
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were two cases of mortality, with acute respiratory failure as the cause of death, involving
combinations of synthetic cannabinoids, benzodiazepines, antipsychotics, antidepressants,
and alcohol in the current case cohort. Adamowicz et al. [27] reported acute respiratory
failure in a 27-year-old male with confirmed exposure to two synthetic cannabinoids, al-
cohol, haloperidol, and lorazepam. Similarly, Angerer et al. [29] presented the case of a
41-year-old male who died of acute respiratory failure, with 5F-MDMB-PINACA, alcohol,
trimipramine, and olanzapine all detected in post-mortem samples.

There are numerous limitations of this review. Despite using multiple databases
in the search, human cases are often under-reported in the literature, which introduces
publication bias to the study. Publication of cases is often biased towards more severe
outcomes, such as fatalities, leaving non-fatal intoxications and cases with mild adverse
effects under-represented. Hence, this case cohort may not accurately reflect the wider
population of synthetic cannabinoid intoxication and mortality cases. The impact of study
demographics from particular countries, including the exclusion of articles in languages
other than English, may bias the results, particularly for the larger case series included.
Due to the scoping nature of the review, no risk-of-bias evaluation or meta-analysis was
conducted. Furthermore, the involvement of a synthetic cannabinoid needed to be analyti-
cally confirmed in each case for inclusion. This inclusion criterion likely led to loss of data,
particularly for earlier synthetic cannabinoid case reporting where analytical techniques
and instrumentation were not widely available. Access to analytical methods and variation
in analytical reference libraries may have also limited co-exposure substance detection in
some cases or biased co-exposure reporting towards traditional drugs of abuse or medica-
tions. Lastly, there are a multitude of factors that confound the interpretation of analytical
and forensic toxicology cases. The present review focused on outlining potential drug–
drug interactions between synthetic cannabinoids and additional co-exposure substances.
However, additional factors such as biological fluid sample type and time since last drug
exposure, including post-mortem interval for fatalities, the interplay between drug potency
and potential development of tolerance in individuals, and pharmacogenomic data, should
be considered to fully interpret toxicological reports.

5. Conclusions

In conclusion, the role of drug co-exposure in synthetic cannabinoid intoxication or
mortality cases cannot be overlooked. Vulnerable populations are likely to exist, such
as those with substance-use disorders, psychiatric illness, or a dual diagnosis of the two.
Research aimed at complex, poly-drug exposures with synthetic cannabinoids is needed to
fully understand these cases and formulate appropriate overdose treatment strategies.
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