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Abstract: Global optimization is widely adopted presently in a variety of practical and scientific
problems. In this context, a group of widely used techniques are evolutionary techniques. A relatively
new evolutionary technique in this direction is that of Giant-Armadillo Optimization, which is
based on the hunting strategy of giant armadillos. In this paper, modifications to this technique
are proposed, such as the periodic application of a local minimization method as well as the use of
modern termination techniques based on statistical observations. The proposed modifications have
been tested on a wide series of test functions available from the relevant literature and compared
against other evolutionary methods.

Keywords: global optimization; evolutionary methods; stochastic methods

1. Introduction

Global optimization aims to discover the global minimum of an optimization problem
by searching in the domain range of the problem. Typically, a global optimization method
aims to discover the global minimum of a continuous function f : S → R, S ⊂ Rn and
hence the global optimization problem is formulated as follows:

x∗ = arg min
x∈S

f (x). (1)

The set S is defined as:
S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn]

The vectors a and b stand for the left and right bounds, respectively, for the point x.
A review of the optimization procedure can be found in the paper by Rothlauf [1]. Global
optimization refers to techniques that seek the optimal solution to a problem, mainly
using traditional mathematical methods, for example, methods that try to locate either
maxima or minima [2–4]. Every optimization problem contains its decision variables,
a possible series of constraints, and the definition of the objective function [5]. Every
optimization method targets the discovery of appropriate values for the decision variables
to minimize the objective function. The optimization methods are commonly divided
into deterministic and stochastic approaches [6]. The techniques used in most cases for
the first category are the interval methods [7,8]. In interval methods, the set S is divided
through several iterations into subareas that may contain the global minimum using some
criteria. On the other hand, stochastic optimization methods are used in most cases because
they can be programmed faster than deterministic ones, and they do not depend on
any previously defined information about the objective function. Such techniques may
include Controlled Random Search methods [9–11], Simulated Annealing methods [12,13],
Clustering methods [14–16], etc. Systematic reviews of stochastic methods can be located
in the paper by Pardalos et al. [17] or in the paper by Fouskakis et al. [18]. Also, due to the
widespread use of parallel computing techniques, a series of methods have been presented
that exploit such architectures [19,20].
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A group of stochastic programming techniques that have been proposed to tackle
optimization problems are evolutionary techniques. These techniques are biologically
inspired, heuristic, and population-based [21,22]. Some techniques that belong to evolu-
tionary techniques are, for example, Ant Colony Optimization methods [23,24], Genetic
Algorithms [25–27], Particle Swarm Optimization (PSO) methods [28,29], Differential Evo-
lution techniques [30,31], evolutionary strategies [32,33], evolutionary programming [34],
genetic programming [35], etc. These methods have found success in a series of practical
problems from many fields, for example biology [36,37], physics [38,39], chemistry [40,41],
agriculture [42,43], and economics [44,45].

Metaheuristic algorithms, from their appearance in the early 1970s to the late 1990s,
have seen significant developments. Metaheuristic algorithms have gained much attention
in solving difficult optimization problems and are paradigms of computational intelli-
gence [46–48]. Metaheuristic algorithms are grouped into four categories based on their
behavior: evolutionary algorithms, algorithms based on considerations derived from
physics, algorithms based on swarms, and human-based algorithms [49].

Recently, Alsayyed et al. [50] introduced a new bio-inspired algorithm that belongs
to the group of metaheuristic algorithms. This new algorithm is called Giant-Armadillo
Optimization (GAO) and aims to replicate the behavior of giant armadillos in the real
world [51]. The new algorithm is based on the giant armadillo’s hunting strategy of
heading toward prey and digging termite mounds.

Owaid et al. presented a method [52] concerning the decision-making process in orga-
nizational and technical systems management problems, which also uses giant-armadillo
agents. The article presents a method for maximizing decision-making capacity in orga-
nizational and technical systems using artificial intelligence. The research is based on
giant-armadillo agents that are trained with the help of artificial neural networks [53,54],
and in addition, a genetic algorithm is used to select the best one.

The GAO optimizer can also be considered to be a method based on Swarm Intelli-
gence [55]. Some of the reasons why methods based on Swarm Intelligence are used in
optimization problems are their robustness, scalability, and flexibility. With the help of
simple rules, simple reactive agents such as fish and birds exchange information with the
basic purpose of finding an optimal solution [56,57]. This article focuses on enhancing the
effectiveness and the speed of the GAO algorithm by proposing some modifications and,
more specifically:

• The application of termination rules, which are based on asymptotic considerations
and are defined in the recent bibliography. This addition will achieve early termination
of the method and will not waste computational time on iterations that do not yield a
better estimate of the global minimum of the objective function.

• A periodic application of a local search procedure. Using local optimization, the local
minima of the objective function will be found more efficiently, which will also lead to
a faster discovery of the global minimum.

The current method was applied to a series of objective problems found in the literature
of global optimization, and it is compared against an implemented Genetic Algorithm and
a variant of the PSO technique.

The rest of this paper is divided into the following sections: in Section 2, the pro-
posed modifications are fully described. In Section 3, the benchmark functions are listed,
accompanied by the experimental results, and finally, in Section 4, some conclusions and
guidelines for future work are provided.

2. The Proposed Method

The GAO algorithm is based on processes inspired by nature and initially generates a
population of candidate solutions that are possible solutions to the objective problem. The
GAO algorithm aims to evolve the population of solutions through iterative steps. The
algorithm has two major phases: the exploration phase, where the candidate solutions are
updated with a process that mimics the attack of armadillos on termite mounds, and the
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exploitation phase, where the solutions are updated similarly to digging in termite mounds.
The basic steps of the GAO algorithm are presented below:

1. Initialization step

• Define as Nc as number of armadillos in the population.
• Define as Ng the number of allowed iterations.
• Initialize randomly the Nc gi, i = 1, . . . , Nc armadillos in S.
• Set iter=0.
• Set pl the local search rate.

2. Evaluation step

• For i = 1, . . . , Nc do Set fi = f (gi).
• end for

3. Computation step

• For i = 1, . . . , Nc do

(a) Phase 1: Attack on termite mounds

– Create a set that contains the termites as TMi =
{

gki
: fki

< fi and ki ̸= i
}

– Select the termite mound STMi for armadillo i.
– Create a new position gP1

i for the armadillo according to the formula:

gP1
i,j = gi,j + ri,j

(
STMi,j − Ii,jgi,j

)
where ri,j are random numbers in

[0, 1] and Ii,j are random numbers in [1, 2] and j = 1, . . . , n
– Update the position of the armadillo i according to:

gi =

{
gP1

i , f
(

gP1
i

)
≤ fi

gi otherwise

(b) Phase 2: Digging in termite mounds

– Create a new trial position

gP2
i,j = gi,j + (1 − 2ri,j)

bj − aj

iter

where ri,j are random numbers in [0, 1].
– Update the position of the armadillo i according to:

gi =

{
gP2

i , f
(

gP2
i

)
≤ fi

gi otherwise

(c) Local search. Pick a random number r ∈ [0, 1]. If r ≤ pl , then a local
optimization algorithm is applied to gi. Some local search procedures
found in the optimization literature are the BFGS method [58], the Steepest
Descent method [59], the L-Bfgs method [60] for large-scaled optimization,
etc. A BFGS modification proposed by Powell [61] was used in the current
work as the local search optimizer. Using the local optimization technique
ensures that the outcome of the global optimization method will be one
of the local minima of the objective function. This ensures maximum
accuracy in the end result.

• end for

4. Termination check step

• Set iter = iter + 1.
• For the valid termination of the method, two termination rules that have recently

appeared in the literature are proposed here, and they are based on stochastic
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considerations. The first stopping rule will be called DoubleBox in the conducted
experiments, and it was introduced in the work of Tsoulos in 2008 [62]. The steps
for this termination rule are as follows:

(a) Define as σiter the variance of located global miniumum at iteration iter.

(b) Terminate when iter ≥ Ng OR σiter ≤ σkT
2

where kT is the iteration where a new and better estimation for the global mini-
mum was first found.
The second termination rule was introduced in the work of Charilogis et al. [63]
and will be called Similarity in the experiments. In the Similarity stopping rule,
at every iteration k, the absolute difference between the current located global
minimum f (k)min and the previous best value f (k+1)

min is calculated:∣∣∣ f (k)min − f (k−1)
min

∣∣∣
If this difference is zero for a predefined number of consecutive generations Nk,
the method terminates.

• If the termination criteria are not held, then go to step 3.

The steps of the proposed method are also outlined in Figure 1.

Figure 1. A schematic representation of the current method.
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3. Experiments

This section will begin by detailing the functions that will be used in the experiments.
These functions are widespread in the modern global optimization literature and have been
used in many research works. Next, the experiments performed using the current method
will be presented, and a comparison will be made with methods that are commonly used
in the literature of global optimization.

3.1. Experimental Functions

The functions used in the conducted experiments can be found in the related litera-
ture [64,65]. The definitions for the functions are listed as follows.

• Bf1 function, defined as:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1)−

4
10

cos(4πx2) +
7

10

• Bf2 function, defined as:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10

• Branin function, defined as: f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10.

• Camel function defined as:

f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2, x ∈ [−5, 5]2

• Easom defined as:

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
• Exponential function defined as:

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

In the current work, the following values were used for the conducted experiments:
n = 4, 8, 16, 32.

• Gkls function [66]. The f (x) = Gkls(x, n, w) is defined as a function with w local
minima, and the dimension of the function was n. For the conducted experiments, the
cases of n = 2, 3 and w = 50 were used.

• Goldstein and Price function

f (x) =
[
1 + (x1 + x2 + 1)2(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
]×

[30 + (2x1 − 3x2)
2(

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)
]

• Griewank2 function, that has the following definition:

f (x) = 1 +
1

200

2

∑
i=1

x2
i −

2

∏
i=1

cos(xi)√
(i)

, x ∈ [−100, 100]2
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• Griewank10 function defined as:

f (x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+ 1

with n = 10.
• Hansen function. f (x) = ∑5

i=1 i cos[(i − 1)x1 + i]∑5
j=1 j cos[(j + 1)x2 + j], x ∈ [−10, 10]2.

• Hartman 3 function defined as:

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828


• Hartman 6 function given by:

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


• Potential function, the well-known Lennard–Jones potential [67] defined as:

VLJ(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

(2)

is adopted as a test case here with N = 3, 5.
• Rastrigin function defined as:

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2

• Rosenbrock function.

f (x) =
n−1

∑
i=1

(
100
(

xi+1 − x2
i

)2
+ (xi − 1)2

)
, −30 ≤ xi ≤ 30.

For the conducted experiments, the values n = 4, 8, 16 were utilized.
• Shekel 7 function.
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f (x) = −
7

∑
i=1

1
(x − ai)(x − ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


.

• Shekel 5 function.

f (x) = −
5

∑
i=1

1
(x − ai)(x − ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4

.

• Shekel 10 function.

f (x) = −
10

∑
i=1

1
(x − ai)(x − ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


.

• Sinusoidal function defined as:

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π.

For the current series of experiments the values n = 4, 8, 16 and z = π
6 were used.

• Test2N function defined as:

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

The function has 2n local minima, and for the conducted experiments, the cases of
n = 4, 5, 6, 7 were used.

• Test30N function defined as:

f (x) =
1
10

sin2(3πx1)
n−1

∑
i=2

(
(xi − 1)2

(
1+ sin2(3πxi+1)

))
+ (xn − 1)2

(
1+ sin2(2πxn)

)
where x ∈ [−10, 10]. This function has 30n local minima, and for the conducted
experiments, the cases n = 3, 4 were used.
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3.2. Experimental Results

The software used in the experiments was coded in ANSI-C++. Also, the freely
available Optimus optimization environment was incorporated. The software can be down-
loaded from https://github.com/itsoulos/GlobalOptimus/ (accessed on 14 April 2024).
Optimus is entirely written in ANSI-C++ and was prepared using the freely available QT
library. All the experiments were executed on an AMD Ryzen 5950X with 128 GB of RAM.
The operating system used was Debian Linux. In all experimental tables, the numbers in
cells denote average function calls for 30 runs. In each run, a different seed for the random
number generator was used. The decimal numbers enclosed in parentheses represent the
success rate of the method in finding the global minimum of the corresponding function. If
this number does not appear, then the method managed to discover the global minimum
in each run. The simulation parameters for the used optimization techniques are listed
in Table 1. The values for these parameters were chosen to strike a balance between the
expected efficiency of the optimization methods and their speed. All techniques used
uniform distribution to initialize the corresponding population.

Table 1. The experimental values for each parameter used in the conducted experiments.

PARAMETER MEANING VALUE
Nc Number of armadillos or chromosomes 100
Ng Maximum number of performed iterations 200
pl Local Search rate 0.05
ps Selection rate in genetic algorithm 0.10
pm Mutation rate in genetic algorithm 0.05

The results from the conducted experiments are outlined in Table 2. The following
applies to this table:

1. The column PROBLEM denotes the objective problem.
2. The column GENETIC stands for the average function calls for the Genetic algorithm.

The same number of armadillos and chromosomes and particles was used in the
experiments conducted to make a fair comparison between the algorithms. Also, the
same number of maximum generations and the same stopping criteria were utilized
among the different optimization methods.

3. The column PSO stands for the application of a Particle Swarm Optimization method
in the objective problem. The number of particles and the stopping rule in the PSO
method are the same as in the proposed method.

4. The column GWO stands for the application of Gray Wolf Optimizer [68] on the
benchmark functions.

5. The column PROPOSED represents the experimental results for the Gao method with
the suggested modifications.

6. The final row, denoted as SUM, stands for the sum of the function calls and the average
success rate for all the used objective functions.

The statistical comparison for the previous experimental results is depicted in Figure 2.
The previous experiments and their subsequent statistical processing demonstrate that
the proposed method significantly outperforms Particle Swarm Optimization when a
comparison is conducted for the average number of function calls since it requires 20%
fewer function calls on average to efficiently find the global minimum. In addition, the
proposed method appears to have similar efficiency in terms of required function calls to
that of the Genetic Algorithm.

https://github.com/itsoulos/GlobalOptimus/
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Table 2. Experimental results and comparison against other methods. The stopping rule used is the
Similarity stopping rule.

PROBLEM Genetic PSO GWO PROPOSED
BF1 2179 2364 (0.97) 2927 2239
BF2 1944 2269 (0.90) 2893 1864

BRANIN 1177 2088 2430 1179
CAMEL 1401 2278 1533 1450
EASOM 979 2172 2074 (0.93) 886

EXP4 1474 2231 1640 1499
EXP8 1551 2256 2392 1539

EXP16 1638 2165 3564 1581
EXP32 1704 2106 5631 1567

GKLS250 1195 2113 1407 1292
GKLS350 1396 (0.87) 1968 1889 1510

GOLDSTEIN 1878 2497 1820 1953
GRIEWANK2 2360 (0.87) 3027 (0.97) 1914 2657

GRIEWANK10 3474 (0.87) 3117 (0.87) 3427 (0.13) 4064 (0.97)
HANSEN 1761 (0.97) 2780 2290 (0.60) 1885

HARTMAN3 1404 2086 1497 1448
HARTMAN6 1632 2213 (0.87) 1616 (0.53) 1815
POTENTIAL3 2127 3557 1520 1942
POTENTIAL5 3919 7132 2544 3722
RASTRIGIN 2438 (0.97) 2754 1858 2411

ROSENBROCK4 1841 2909 4925 2690
ROSENBROCK8 2570 3382 5662 3573
ROSENBROCK16 4331 3780 6752 5085

SHEKEL5 1669 (0.97) 2700 1297 (0.53) 1911
SHEKEL7 1696 2612 1472 (0.60) 1930
SHEKEL10 1758 2594 1224 (0.57) 1952
TEST2N4 1787 (0.97) 2285 1680 (0.80) 1840 (0.83)
TEST2N5 2052 (0.93) 2368 (0.97) 1791 (0.73) 2029 (0.63)
TEST2N6 2216 (0.73) 2330 (0.73) 1710 (0.53) 2438 (0.80)
TEST2N7 2520 (0.73) 2378 (0.63) 1631 (0.47) 2567 (0.60)

SINU4 1514 2577 1241 (0.70) 1712
SINU8 1697 2527 1184 (0.83) 1992
SINU16 2279 (0.97) 2657 1296 (0.67) 2557

TEST30N3 1495 3302 1527 1749
TEST30N4 1897 3817 2520 2344

SUM 68,953 (0.97) 95,391 (0.97) 82,778 (0.85) 74,982 (0.97)

Figure 2. A statistical comparison using the number of function calls. The test was performed for
three different optimization methods.
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The reliability of the termination techniques was tested with one more experiment,
in which both proposed termination rules were used, and the produced results for the
benchmark functions are presented in Table 3. Also, the statistical comparison for the
experiment is shown graphically in Figure 3.

From the statistical processing of the experimental results, one can find that the
termination method using the Similarity criterion demands a lower number of function
calls than the DoubleBox stopping rule to achieve the goal, which is to effectively find the
global minimum. Furthermore, there is no significant difference in the success rate of the
two termination techniques, as reflected in the success rate in finding the global minimum,
which remains high for both techniques (around 97%).

Moreover, the effect of the application of the local search technique is explored in the
experiments shown in Table 4, where the local search rate increases from 0.5% to 5%.

Table 3. Average number of function calls for the proposed method using the two suggested
termination rules.

PROBLEM Similarity Doublebox
BF1 2239 2604
BF2 1974 1864

BRANIN 1179 1179
CAMEL 1450 1245
EASOM 886 775

EXP4 1499 1332
EXP8 1539 1371

EXP16 1581 1388
EXP32 1567 1384

GKLS250 1292 1483
GKLS350 1510 2429

GOLDSTEIN 1953 2019
GRIEWANK2 2657 5426

GRIEWANK10 4064 (0.97) 4940 (0.97)
HANSEN 1885 4482

HARTMAN3 1448 1458
HARTMAN6 1815 1625
POTENTIAL3 1942 1700
POTENTIAL5 3722 3395
RASTRIGIN 2411 4591

ROSENBROCK4 2690 2371
ROSENBROCK8 3573 3166
ROSENBROCK16 5085 4386

SHEKEL5 1911 1712
SHEKEL7 1930 1722
SHEKEL10 1952 1956
TEST2N4 1840 (0.83) 3103 (0.83)
TEST2N5 2029 (0.63) 3375 (0.67)
TEST2N6 2438 (0.80) 4458 (0.83)
TEST2N7 2567 (0.60) 4425 (0.63)

SINU4 1712 1657
SINU8 1992 1874
SINU16 2557 2612

TEST30N3 1749 1483
TEST30N4 2344 2737

SUM 74,982 (0.97) 87,727 (0.97)



Analytics 2024, 3 235

Figure 3. Comparison of Gao algorithm with two termination rules.

Table 4. Experimental results using different values for the local search rate and the proposed method.

PROBLEM pl = 0.005 pl = 0.01 pl = 0.05
BF1 1531 (0.97) 1559 2239
BF2 1457 (0.97) 1319 1864

BRANIN 921 913 1179
CAMEL 1037 1022 1450
EASOM 871 850 886

EXP4 942 926 1499
EXP8 930 936 1539

EXP16 1020 961 1581
EXP32 1005 982 1567

GKLS250 1197 1106 1292
GKLS350 1256 1221 1510

GOLDSTEIN 1124 1146 1953
GRIEWANK2 1900 (0.93) 1976 (0.97) 2657

GRIEWANK10 1444 (0.40) 1963 (0.70) 4064 (0.97)
HANSEN 1872 1726 (0.93) 1885

HARTMAN3 1005 967 1448
HARTMAN6 976 (0.87) 1052 (0.97) 1815
POTENTIAL3 1018 1081 1942
POTENTIAL5 1313 1439 3722
RASTRIGIN 1614 (0.97) 1687 (0.97) 2411

ROSENBROCK4 1097 1203 2690
ROSENBROCK8 1179 1403 3573
ROSENBROCK16 1437 1801 5085

SHEKEL5 1070 (0.97) 1073 1911
SHEKEL7 1076 (0.93) 1124 1930
SHEKEL10 1152 (0.97) 1170 (0.97) 1952
TEST2N4 1409 (0.80) 1285 (0.87) 1840 (0.83)
TEST2N5 1451 (0.53) 1350 (0.63) 2029 (0.63)
TEST2N6 1417 (0.60) 1529 (0.67) 2438 (0.80)
TEST2N7 1500 (0.47) 1451 (0.33) 2567 (0.60)

SINU4 1210 1199 1712
SINU8 1163 1145 1992
SINU16 1377 1296 2557

TEST30N3 1057 1189 1749
TEST30N4 1897 3817 2344

SUM 43,213 (0.92) 44,331 (0.94) 74,982 (0.97)
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As expected, the success rate in discovering the global minimum increases as the rate
of application of the local minimization technique increases. For the case of the current
method, this rate increases from 92% to 97% in the experimental results. This finding
demonstrates that if this method is combined with effective local minimization techniques,
it can lead to a more efficient finding of the global minimum for the objective function.

Also, to measure the time complexity of the proposed work, the ELP (High Elliptic
Function) function was employed with arbitrary dimensions. The function is defined as:

f (x) =
n

∑
i=1

(
106
) i−1

n−1 x2
i

In this test, the dimension of the function (n) increased from 1 to 15, and the average
execution time was measured. The results obtained for the similarity termination rule are
outlined in Figure 4, and the results for the DoubleBox termination rule are graphically
shown in Figure 5.

Figure 4. Representation of the average execution times for the ELP objective function, using the
similarity stopping rule.

Figure 5. Representation of the average execution times for the ELP objective function, using the
DoubleBox stopping rule.

As expected, the execution time increases as the dimensions of the function increase,
but there are no significant differences between the execution times of the three optimiza-
tion methods.

Furthermore, as a practical application, consider the training of an artificial neural
network for classification or data fitting problems [69,70]. Neural networks are non-linear
parametric tools with many applications in real-world problems [71–73]. Neural networks
can be defined as functions N(−→x ,−→w ). The vector −→x represents the input pattern, while
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the vector −→w represents the weight vector of the neural network that should be estimated.
Optimization methods can be used to estimate the set of weights by minimizing the
following equation:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (3)

The quantity of Equation (3) was minimized using the mentioned algorithm of this work for
the BK dataset [74], which is used to estimate the points in a basketball game. The average
test error using the four methods presented in this article is shown graphically in Figure 6.
To validate the results, the well-known ten-fold cross method was applied. The current
work has the same performance as the PSO algorithm and significantly outperforms the
Genetic algorithm.

Figure 6. Comparison of test error between the mentioned global optimization algorithms for the
BK dataset.

4. Conclusions

Two modifications for the Giant-Armadillo Optimization method were suggested
in this article. These modifications aimed to improve the efficiency and the speed of the
underlying global optimization algorithm. The first modification suggested the periodic
application of a local optimization procedure to randomly selected armadillos from the
current population. The second modification utilized some stopping rules from the recent
bibliography to stop the more efficient optimization method and to avoid unnecessary
iterations when the global minimum was already discovered. The modified global op-
timization method was tested against two other global optimization methods from the
relevant literature and, more specifically, an implementation of the Genetic Algorithm and
a Particle Swarm Optimization variant on a series of well-known test functions. To make
a fair comparison between these methods, the same number of test solutions (armadillo
or chromosomes) and the same termination rule were used. The present technique, after
comparing the experimental results, clearly outperforms particle optimization and has a
similar behavior to that of the genetic algorithm. Also, after a series of experiments, it was
shown that the Similarity termination rule outperforms the DoubleBox termination rule in
terms of function calls without reducing the effectiveness of the proposed method in the
task of locating the global minimum.

Since the experimental results have been shown to be extremely promising, further
efforts can be made to develop the technique in various fields. For example, an extension
could be to develop a termination rule that exploits the particularities of the particular



Analytics 2024, 3 238

global optimization technique. Among the future extensions of the application may be the
use of parallel computing techniques to speed up the optimization process, such as the
incorporation of the MPI [75] or the OpenMP library [76]. For example, in this direction, it
could be investigated to parallelize the technique in a similar way as genetic algorithms
using islands [77,78].
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