Customer Sentiments in Product Reviews: A Comparative Study with GooglePaLM
Abstract
:1. Introduction
Self-Attention Transformers
- A comparison of different NLP tools for sentiment analysis spanning different eras and technologies to deal with the contextual nuances of customer reviews.
- A proposed fine-tuned GooglePaLM large language model for sentiment analysis of online product reviews.
2. Related Works
2.1. Rule Based Approach
2.2. BERT Model
2.3. Large Language Transformer Models
3. Materials and Methods
3.1. DataSet
- reviewerID—the ID of the reviewer, e.g., A2SUAM1J3GNN3B;
- asin—the ID of the product, e.g., 0000013714;
- reviewerName—the name of the reviewer;
- vote—helpful votes of the review;
- style—a dictionary of the product metadata, e.g., “Format” is “Hardcover”;
- reviewText—the text of the review;
- overall—the rating of the product;
- summary—a summary of the review;
- unixReviewTime—the time of the review (unix time);
- reviewTime—the time of the review (raw);
- image—images that users post after they have received the product.
3.2. Data Pre-Processing
3.3. Feature Engineering and Model Tuning
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanaysha, J.R. An examination of the factors affecting consumer’s purchase decision in the Malaysian retail market. PSU Res. Rev. 2018, 2, 7–23. [Google Scholar] [CrossRef]
- Ozcan, K.; Ramaswamy, V. Word-of-mouth as dialogic discourse: A critical review, synthesis, new perspective, and research agenda. Adv. Consum. Res. 2004, 7, 528–532. [Google Scholar]
- Kang, M.; Sun, B.; Liang, T.; Mao, H. A study on the influence of online reviews of new products on consumers’ purchase decisions: An empirical study on JD. com. Front. Psychol. 2022, 13, 983060. [Google Scholar] [CrossRef]
- Devedi, P.; Sujatha, R.; Pathak, R. A study on parameters of online reviews content that influence consumers buying behaviour-an Indian perspective. J. Bus. Retail. Manag. Res. 2017, 11, 12–21. [Google Scholar] [CrossRef]
- Hutchins, W.J. The Georgetown-IBM experiment demonstrated in January 1954. In Proceedings of the Conference of the Association for Machine Translation in the Americas, Washington, DC, USA, 28 September–2 October 2004; pp. 102–114. [Google Scholar]
- Mor, B.; Garhwal, S.; Kumar, A. A systematic review of hidden Markov models and their applications. Arch. Comput. Methods Eng. 2021, 28, 1429–1448. [Google Scholar] [CrossRef]
- Cronin, R.M.; Fabbri, D.; Denny, J.C.; Rosenbloom, S.T.; Jackson, G.P. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Int. J. Med. Inform. 2017, 105, 110–120. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, S.; Huang, Y.; Li, X. Review rating prediction based on user context and product context. Appl. Sci. 2018, 8, 1849. [Google Scholar] [CrossRef]
- Ansari, A.A. Evolution of sentiment analysis: Methodologies and paradigms. In Trends of Data Science and Applications: Theory and Practices; Springer: Singapore, 2021; pp. 147–174. [Google Scholar]
- Yang, L.; Li, Y.; Wang, J.; Sherratt, R.S. Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 2020, 8, 23522–23530. [Google Scholar] [CrossRef]
- Durairaj, A.K.; Chinnalagu, A. Transformer based contextual model for sentiment analysis of customer reviews: A fine-tuned bert. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 474–480. [Google Scholar] [CrossRef]
- Wankhade, M.; Rao, A.C.S.; Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 2022, 55, 5731–5780. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, L.; Xu, R.; Ao, X.; Yang, M. A challenge dataset and effective models for aspect-based sentiment analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 6280–6285. [Google Scholar]
- Mughal, N.; Mujtaba, G.; Kumar, A.; Daudpota, S.M. Comparative Analysis of Deep Natural Networks and Large Language Models for Aspect-Based Sentiment Analysis. IEEE Access 2024, 12, 60943–60959. [Google Scholar] [CrossRef]
- Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.; et al. Palm: Scaling language modelling with pathways. J. Mach. Learn. Res. 2023, 24, 1–113. [Google Scholar]
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [Google Scholar] [CrossRef]
- Chavez, M.R.; Butler, T.S.; Rekawek, P.; Heo, H.; Kinzler, W.L. Chat Generative Pre-trained Transformer: Why we should embrace this technology. Am. J. Obstet. Gynecol. 2023, 228, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Hutto, C.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf. Web Soc. Media 2014, 8, 216–225. [Google Scholar] [CrossRef]
- Smith, J.; Jones, A. Sentiment analysis of product reviews using Natural Language Toolkit (NLTK). J. Appl. Linguist. 2018, 25, 112–125. [Google Scholar]
- Wang, Y.; Zhang, L. Product sentiment analysis using Stanford CoreNLP. Int. J. Comput. Linguist. 2019, 15, 220–235. [Google Scholar]
- Chen, H.; Liu, M. Sentiment analysis in e-commerce: A comparative study of NLTK and SpaCy. J. Nat. Lang. Process. 2020, 32, 321–335. [Google Scholar]
- Patel, R.; Gupta, S. Comparative analysis of sentiment analysis using NLTK, SpaCy, and Gensim in the e-commerce domain. J. Comput. Intell. 2021, 8, 45–56. [Google Scholar]
- Basile, V.; Cauteruccio, F.; Terracina, G. How Dramatic Events Can Affect Emotionality in Social Posting: The Impact of COVID-19 on Reddit. Future Internet 2021, 13, 29. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, W. Aspect-based sentiment analysis of product reviews using TextBlob. J. Inf. Sci. 2019, 36, 180–195. [Google Scholar]
- Kim, S.; Lee, J. Sentiment classification of product reviews using Apache OpenNLP. J. Nat. Lang. Process. Tech. 2018, 21, 305–320. [Google Scholar]
- Gupta, R.; Sharma, V. Comparative study of sentiment analysis tools: NLTK, SpaCy, and Apache OpenNLP. Int. J. Comput. Intell. Appl. 2020, 17, 1450012. [Google Scholar]
- Chen, Y.; Wang, Z. Aspect-based sentiment analysis of customer reviews using Gensim. Expert Syst. Appl. 2019, 45, 256–270. [Google Scholar]
- Park, S.; Kim, M. Sentiment analysis of online reviews using the TextBlob toolkit. J. Inf. Technol. Res. 2020, 27, 78–92. [Google Scholar]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Cao, Y.; Sun, Z.; Li, L.; Mo, W. A study of sentiment analysis algorithms for agricultural product reviews based on improved bert model. Symmetry 2022, 14, 1604. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, J.; Yang, J.; Mao, F. Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax. Math. Biosci. Eng. 2020, 17, 7819–7837. [Google Scholar] [CrossRef]
- Jagdale, R.S.; Shirsat, V.S.; Deshmukh, S.N. Sentiment analysis on product reviews using machine learning techniques. In Cognitive Informatics and Soft Computing: Proceeding CISC; Springer: Singapore, 2019; Volume 2017, pp. 639–647. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Roumeliotis, K.I.; Tselikas, N.D.; Nasiopoulos, D.K. LLMs in e-commerce: A comparative analysis of GPT and LLaMA models in product review evaluation. Nat. Lang. Process. J. 2024, 6, 100056. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q. Product review sentiment analysis using NLTK and Gensim. J. Nat. Lang. Process. Tech. 2018, 20, 412–425. [Google Scholar]
- Anil, R.; Dai, A.M.; Firat, O.; Johnson, M.; Lepikhin, D.; Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; et al. Palm 2 technical report. arXiv 2023, arXiv:2305.10403. [Google Scholar]
- Ni, J.; Li, J.; McAuley, J. Justifying recommendations using distantly labelled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 188–197. [Google Scholar]
- Majdik, Z.P.; Graham, S.S.; Shiva Edward, J.C.; Rodriguez, S.N.; Karnes, M.S.; Jensen, J.T.; Barbour, J.B.; Rousseau, J.F. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study. JMIR AI 2024, 3, e52095. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Shobayo, O.; Zachariah, O.; Odusami, M.O.; Ogunleye, B. Prediction of stroke disease with demographic and behavioural data using random forest algorithm. Analytics 2023, 2, 604–617. [Google Scholar] [CrossRef]
Model | Tokenizer | Model Architecture | Temperature | N-Value |
---|---|---|---|---|
BERT | BertTokenizerFast | BertForSequenceClassification | Default | Default |
Google PaLM | AutoTokenizer | models/text-bison-001 | 0.0 | 1 |
VADER | Word Tokenization | VADER | N/A | N/A |
Model | Evaluation Metrics | |||||
---|---|---|---|---|---|---|
Precision | Recall | Accuracy | F1-Score | Correct Positive | Correct Negative | |
Google PaLM | 0.28 | 0.31 | 0.62 | 0.27 | 0.91 | 0.93 |
BERT | 0.67 | 0.66 | 0.66 | 0.63 | 0.83 | 0.89 |
VADER | 0.50 | 0.47 | 0.46 | 0.41 | 0.93 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shobayo, O.; Sasikumar, S.; Makkar, S.; Okoyeigbo, O. Customer Sentiments in Product Reviews: A Comparative Study with GooglePaLM. Analytics 2024, 3, 241-254. https://doi.org/10.3390/analytics3020014
Shobayo O, Sasikumar S, Makkar S, Okoyeigbo O. Customer Sentiments in Product Reviews: A Comparative Study with GooglePaLM. Analytics. 2024; 3(2):241-254. https://doi.org/10.3390/analytics3020014
Chicago/Turabian StyleShobayo, Olamilekan, Swethika Sasikumar, Sandhya Makkar, and Obinna Okoyeigbo. 2024. "Customer Sentiments in Product Reviews: A Comparative Study with GooglePaLM" Analytics 3, no. 2: 241-254. https://doi.org/10.3390/analytics3020014
APA StyleShobayo, O., Sasikumar, S., Makkar, S., & Okoyeigbo, O. (2024). Customer Sentiments in Product Reviews: A Comparative Study with GooglePaLM. Analytics, 3(2), 241-254. https://doi.org/10.3390/analytics3020014