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Abstract: The cryptocurrency market is characterized by extreme volatility, with events such as the
Terra-LUNA crash of 2022 raising significant questions about the resilience of algorithmic stablecoins.
This paper investigates the collapse of LUNA Classic during the USTC depeg, focusing on the role of
trading volumes and collateral assets like Bitcoin in amplifying the price crash. Using a Vector Logistic
Smooth Transition AutoRegressive (VLSTAR) model, we analyze daily data from October 2020 to
November 2022 to uncover how exogenous volumes influenced LUNA’s price trajectory during the
crisis. Our findings reveal that high trading volumes, particularly during regime two (the post-depeg
period), significantly exacerbated the price decline, validating the impact of large-scale liquidations
on LUNA’s price path. Additionally, Bitcoin volumes played a critical role in destabilizing the system,
confirming that the liquidity of underlying collateral assets is pivotal in maintaining price stability.
These insights contribute to understanding the systemic vulnerabilities in algorithmic stablecoins
and offer implications for future stablecoin design and risk management strategies. They are relevant
for investors, policymakers, and researchers seeking to be aware of market volatility and prevent
future crises in stablecoin ecosystems.

Keywords: LUNA; stablecoin; TerraUSD; depeg; smooth transition VAR; Bitcoin; cryptocurrency
market crash

1. Introduction

The cryptocurrency market has witnessed several high-profile crashes over the past
decade [1], each revealing unique vulnerabilities within digital assets [2]. Is it a Ponzi
scheme, a speculative event similar to “tulip mania”, or the outcome of a technological
shift in decentralized finance that might lead central banks to develop a digital currency?
Researchers will tell. However, the Terra-LUNA crash of 2022 stands out due to its systemic
impact on the market [3] and its roots in the collapse of an algorithmic stablecoin, TerraUSD
(USTC) [4]. Unlike traditional stablecoins, which are typically backed by reserves [5], USTC
was designed to maintain its dollar peg through an algorithmic arbitrage mechanism with
its sister token, LUNA [6]. When USTC lost its peg in May 2022 [7], this mechanism failed
to stabilize it [8], leading to a self-reinforcing downward spiral that ultimately wiped out
over USD 40 billion in market value [9]. This event exposed inherent risks in algorithmic
stablecoin designs [2], raising important questions for investors and policymakers regarding
liquidity [10], transparency [11], and systemic risk in digital asset ecosystems [4].

The Terra-LUNA collapse differs from previous cryptocurrency downturns, which
were often driven by external shocks, such as regulatory uncertainty (i.e., the 2018 Bitcoin
crash [12]) driven by regulatory uncertainty) or speculative bubbles [8]. Instead, this crash
was a result of an internal mechanism failure within the stablecoin’s algorithmic framework,
marking it as an unprecedented case of systemic risk originating from within the digital
asset itself [13]. Given the vulnerabilities exposed by the Terra-LUNA crash, this study
addresses the following research question:
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“How did the USTC depeg influence the price crash of LUNA, and what role did trading
volumes and collateral assets like Bitcoin play in amplifying the crisis?”

We examine the mechanisms of this collapse by applying a Vector Logistic Smooth
Transition AutoRegressive (VLSTAR) model to analyze daily data from October 2020 to
November 2022, and we investigate the dynamic interactions between USTC’s depeg and
LUNA’s price crash, offering insights into the nonlinear dependencies that characterize
algorithmic stablecoin failures. The choice of time period in the analysis is guided by the
fact that the Terra Luna crash occurred in 2022, and the key events (the USTC depeg and
LUNA price collapse) are already captured in the dataset up to November 2022. Extending
the data beyond this period would not add value to understanding the crash since the asset
is no longer actively traded in a way that is meaningful to my study. And also, after Terra
Luna’s collapse, the coin’s market activity became insignificant or irrelevant to the broader
crypto ecosystem. Updating the dataset would not capture meaningful market behavior, as
the post-2022 period reflects the aftermath of a failed asset, rather than any significant price
or volume dynamics.

While the Terra-LUNA collapse is largely attributed to the failure of its internal
algorithmic stabilizing mechanism, some alternative viewpoints suggest that external
market conditions played a significant role in exacerbating the crisis [4]. One hypothesis
is that the crash was primarily driven by internal algorithmic issues—specifically, the
design flaw in Terra’s arbitrage mechanism, which could not maintain USTC’s dollar peg
under high sell-off pressure [6]. This internal instability triggered a feedback loop, where
the collapse of the stablecoin led to a rapid devaluation of its collateral, LUNA, further
intensifying the sell-off and eroding investor confidence [14]. An alternative hypothesis
emphasizes the impact of external market conditions, including broader instability in
the cryptocurrency market and liquidity constraints, which may have intensified the
effects of the internal algorithmic failure [15]. Proponents of this view argue that the
“crypto winter” of 2022 created a context of high volatility and reduced liquidity, making
Terra’s algorithmic design more vulnerable than it might have been under stable market
conditions [16]. According to this perspective, external shocks, such as rising interest
rates and macroeconomic instability, could have precipitated or accelerated the failure of
USTC’s peg.

By examining the role of both internal and external factors, this study acknowledges
the complexity of the Terra-LUNA collapse and seeks to clarify the mechanisms by which
the USTC depeg specifically impacted LUNA’s price trajectory while accounting for the
broader market context.

Despite the growing literature on cryptocurrency volatility and stablecoins, there
remains a research gap regarding the specific risks posed by algorithmic stablecoins like
USTC. Prior studies have largely focused on traditional stablecoins or other cryptocurren-
cies, often attributing price instability to external shocks. This study aims to address this
gap by analyzing how endogenous mechanisms, such as algorithmic stabilization failures,
can amplify price volatility and create systemic risks within the cryptocurrency market. For
the statistical analysis, we use a vector smooth transition regression model, the VLSTAR
model, as proposed by [17], which enhances our understanding of forecasting dynamics.
This study extends recent work on linear model selection and adequacy tests for univariate
smooth transition regression models to a multivariate context. Using these tests, the study
examines the nonlinear forecasting abilities of the conference board’s composite index
of leading indicators in predicting both output growth and business cycle phases of the
US economy in real time. Similarly, ref. [18] utilized a nonlinear vector autoregression
model that incorporated variables such as output, prices, and money supply to analyze
the asymmetric effects of monetary policy. The estimation strategy used in this study is
consistent with various structural macroeconomic models.

Our analysis using the VLSTAR model captures these nonlinear dynamics, revealing
that high trading volumes, particularly those involving Bitcoin, significantly exacerbated
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LUNA’s price decline in the post-depeg period. This finding underscores the critical role of
collateral liquidity in maintaining stablecoin prices, especially during market downturns.

These insights hold relevance for investors, who need to understand the unique risks
associated with algorithmic stablecoins, and for policymakers, who face the challenge of
developing regulatory frameworks that address the liquidity and transparency risks posed
by such assets. By highlighting how algorithmic mechanisms within stablecoins can
amplify market instability, this study provides practical implications for risk management
and regulatory oversight in digital asset markets.

The remainder of this paper is structured as follows: Section 2 presents the data
and methods used in the analysis, including the application of econometric and time
series models tailored to capture volatility dynamics in the Terra-LUNA market. Section 3
discusses the empirical results, followed by Section 4, which addresses robustness checks
and further model testing. Section 5 concludes with a discussion of key findings, policy
implications, and potential directions for future research.

2. LUNA Classic Univariate Analysis
2.1. Quantitative Analysis

CUSUM is a sequential analysis technique used to detect significant structural changes
in time series data. It works by calculating the cumulative sum of deviations from a
reference value (e.g., the mean or target value of the series). In this study, CUSUM is
applied to LUNA’s price data to identify structural breaks in its price dynamics before and
after the crash. The steps involved include the following:

1. Establishing a Baseline: a reference mean or target price for LUNA is calculated based
on historical data prior to the crash.

2. Computing Deviations: at each time point, the difference between the observed price
and the reference value is computed.

3. Cumulative Summation: these deviations are accumulated over time to track signifi-
cant trends or abrupt shifts.

CUSUM is particularly valuable in this context because it visualizes the timing and
magnitude of price deviations that align with critical market events, such as the start of the
crash. This makes it a powerful tool for diagnosing the moment when market conditions
deteriorated and helps identify early warning signs of instability. According to [19], the
CUSUM procedure signaled that the shift occurred the first time:

Sn =
n

∑
i=1

log
fB(xi)

fG(xi)
− min

k⩽n

k

∑
i=1

log
fB(xi)

fG(xi)
> L,

where fB and fG are densities corresponding to FB and FG, respectively, L is a constant
that determines the operating characteristics of the procedure, and log means the natural
logarithm. As with the usual sequential probability ratio test, the constant L does not
depend on n. The statistic Sn can be calculated recursively in the following way:

Sn = max
(

Sn−1 + log
fB(xn)

fG(xn)
, 0
)

.

We may “rescale” the equation by dividing the log of fB(xn)/ fG(xn) and L by the
same constant. Rescaling results in an equivalent procedure that is easier to use. The initial
value for CUSUM, S0, is some number between 0 and L. The careful choice of S0 gives a
CUSUM with improved properties. The value of the preceding formula is that for several
common distributions, having been reduced to a very simple procedure.

Figure 1 presents the price dynamics of LUNA, showcasing its trajectory before, during,
and after the crash. The economic significance of this visualization lies in identifying the
stages of market behavior:
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1. Pre-Crash Stability: reflects market confidence in LUNA as part of the Terra ecosystem,
driven by its role in maintaining USTC’s peg.

2. Crash Onset: highlights the initial depeg of USTC and its immediate effects on LUNA’s
value, signaling a loss of confidence among investors.

3. Post-Crash Recovery or Decline: provides insights into market responses, such
as whether speculative investors attempted to “buy the dip” or if confidence was
entirely eroded.

From an economic perspective, this figure illustrates how price movements reflect
broader systemic vulnerabilities, such as a dependence on algorithmic stabilization and
susceptibility to panic-driven sell-offs.

Figure 1. Cusum of LUNC.

According to [20], time series can be decomposed into cyclical trend and seasonal
decompositions (see [21] for a review). Trend decomposition is used to break down LUNA’s
price movements into three main components:

1. Trend Component: captures the long-term directional movement of LUNA’s price,
reflecting its fundamental value over time.

2. Cyclical Component: represents short- to medium-term fluctuations caused by market
sentiment, speculation, or external shocks.

3. Residual Noise: accounts for random, unexplained variations in the price data.

The method used for decomposition in this analysis involves a smoothing technique
(e.g., moving averages or the Hodrick–Prescott filter) to isolate these components. By
separating the trend and cycle, the analysis highlights the shift in LUNA’s market behav-
ior—from stability to extreme volatility—providing clear evidence of the crash’s timing
and underlying drivers.

Figure 2 shows changes in trading volumes, which are critical for understanding
market sentiment:

1. High Volumes During Crash: a surge in trading volumes during the crash period
indicates panic selling, as investors rapidly liquidate positions.

2. Volatility After the Crash: fluctuations in trading volumes post crash may indicate
speculative trading or attempts to stabilize the market through coordinated buying.

The relationship between price and trading volume provides valuable economic
insights into liquidity dynamics and investor behavior during periods of market stress. For
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instance, a simultaneous price decline and high trading volume during the crash indicates
heavy liquidation, reflecting a systemic crisis of confidence.

Figure 2. Decomposition of LUNC.

Table 1 presents descriptive statistics such as the mean, standard deviation, minimum,
and maximum values for LUNA and USTC prices and trading volumes. The standard devi-
ation highlights the extreme price and volume fluctuations characteristic of cryptocurrency
markets. For LUNA and USTC, high volatility underscores the inherent risks of algorithmic
stablecoins. The minimum and maximum values illustrate the dramatic swings during
the crash, emphasizing the impact of the systemic failure on investor wealth. Compar-
ing LUNA and USTC statistics reveals the interplay between the stablecoin’s depeg and
the associated collateral asset’s collapse. For example, if USTC’s average price deviates
significantly from its USD peg, it signals prolonged instability, with repercussions for
LUNA’s value.

Table 1. Descriptive statistics for LUNC.

LUNC Open High Low Close Adj Close Volume Returns LogRet

count 1100.00 1100.00 1100.00 1100.00 1100.00 1100.00 1100.00 1100.00
mean 17.23 18.16 16.31 17.23 17.23 684.11 0.01 −0.01

std 28.53 29.86 27.18 28.52 28.52 1218.69 0.15 0.24
min 0.00 0.00 0.00 0.00 0.00 0.17 −1.00 −5.55
10% 0.00 0.00 0.00 0.00 0.00 3.13 −0.08 −0.08
25% 0.19 0.20 0.19 0.19 0.19 6.96 −0.04 −0.04
50% 0.43 0.47 0.39 0.43 0.43 168.74 0.00 0.00
75% 18.76 19.68 18.12 18.79 18.79 860.40 0.04 0.04
90% 67.34 73.36 62.71 67.37 67.37 2142.97 0.10 0.09
max 116.42 119.18 114.11 116.41 116.41 15,924.39 3.50 1.50
var 813.77 891.57 738.97 813.55 813.55 1,485,204.11 0.02 0.06

2.2. Trading Analysis

Traders employ machine learning models to monitor the trajectory of LUNA contract
prices, utilizing technical indicators such as exponential moving averages (EMAs). This
indicator is commonly utilized in trading practices to evaluate the price trends of assets.
Exponential moving averages (EMAs) are significant in volatile markets like cryptocurren-
cies because they give greater weight to recent data points, making them highly responsive
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to sudden price changes. This characteristic makes EMAs ideal for capturing short- to
medium-term trends in volatile markets, where price movements can shift rapidly. By
smoothing out noise and emphasizing the most recent price movements, EMAs help traders
identify potential entry and exit points with greater accuracy, which is crucial in markets
like crypto, where prices can fluctuate dramatically within hours.

For example, during the LUNA crash, EMAs would have quickly highlighted the
accelerating downward trend in prices, signaling a bearish market sentiment and providing
insights into the timing and severity of the collapse. An EMA is a type of moving average
that assigns greater importance to recent data points, enabling traders to gauge how an
asset’s price has fluctuated over a specific time frame.

According to [22], the EWMA is very easily plotted and may be graphed simultane-
ously with the data appearing on a Shewhart chart. The EWMA is best plotted one time
position ahead of the most recent observation. A later discussion will show the EWMA may
be viewed as the forecast for the next observation, but that need not bother us here. Our
immediate purpose is only to plot the statistic. The EWMA equals the present predicted
value plus λ times the present observed error of prediction. Thus,

EWMA = ŷt+1 = ŷt + λet

= ŷt + λ(yt − ŷt)

where
ŷt+1 = predicted value at time t + 1 (the new EWMA);

yt = observed value at time t;

ŷt = predicted value at time t (the old EWMA);

et = yt − ŷt = observed error at time t.

λ is a constant (0 < λ < 1) that determines the depth of memory of the EWMA. The
equation can be written as

ŷi+1 = λyi + (1 − λ)ŷi.

The 10-day EMA is highly responsive to recent price changes because it assigns greater
weight to the most recent prices. In volatile markets like cryptocurrencies, where rapid
price fluctuations occur, this sensitivity makes it a valuable tool for detecting early changes
in market trends. The 10-day EMA is represented by the red line in Figure 3. This line
indicates an upward trend in the LUNC price from 11 January 2021 to 12 May 2021. Since
the EMA indicator for shorter periods is more sensitive to price changes, it is a useful tool
for investors seeking to enter or exit trades.

On-balance volume (OBV) is an indicator that predicts changes in stock price by using
volume flow (see [23] for a technical review). It reflects market sentiment by tracking the
flow of volume into and out of an asset. OBV adds the trading volume on up days and
subtracts it on down days, creating a cumulative measure that shows whether buying or
selling pressure dominates.

During the LUNA crash, OBV highlighted the significant increase in selling pressure as
panic set in among investors. A sharp decline in OBV indicated a loss of confidence and the
massive liquidation of positions, illustrating the broader market sentiment. The divergence
between price and OBV (e.g., a declining OBV alongside collapsing prices) underscored
the overwhelming sell-off driven by fear and distrust in the algorithmic stablecoin’s ability
to maintain its peg. The formula for OBV is

OBV = OBVprev +


volume , if close > closeprev

0, if close = closeprev

− volume, if close < closeprev

where OBV = current on-balance volume level; OBVprev = previous on-balance volume
level; and volume = latest trading volume amount.
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Figure 3. EMA of LUNC.

Figure 4 visualizes the cumulative buying and selling pressure based on trading
volume, offering a sentiment-driven perspective of market behavior. We note a rise in
the price of LUNC on 11 January 2022 and mid-May that indicates that investors were
accumulating LUNA, reflecting confidence in its stability and future growth. Then, as
is seen with a peak in the volumes exchanged, with the depeg of the USTC to date, the
LUNC suddenly loses all of its value, which is gradually cancelled. This corresponds to
widespread sell-offs, driven by fear and a loss of trust in the Terra ecosystem, demonstrating
the intensity of panic selling and the liquidity drain from the market. By this way, the OBV
captures the systemic risk of algorithmic stablecoins by showing how quickly liquidity can
drain during a crisis.

Figure 4. OBV of LUNC.

According to [24], the volume-weighted average price is one of the most common
benchmarks used for judging the execution quality of a trading strategy by institutional
investors, pension funds, or mutual funds. The volume-weighted average price (VWAP) is
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an indicator used by professional traders. It is calculated by totaling the dollars traded for
every transaction (price multiplied by the volume) and then dividing by the total shares
traded. The VWAP is calculated using the following formula:

VWAPt =
∑t

i=1(Pi × Vi)

∑t
i=1 Vi

where Pi is the LUNC price at time i, Vi is the LUNC volume at time i, t represents the
current time period, and the summation runs from 1 to t, the length of the time series.

In the VWAP, the numerator is conveniently the cumulative sum of the product of
price and volume, whereas the denominator is the cumulative sum of the volume. This
gives the VWAP at each time t, which can be used to analyze price movements weighted by
volume, offering a better understanding of price trends when large volume spikes occur.

In Figure 5, the VWAP reaches a climax in May 2022, the moment from which it falls
with its depeg. The VWAP represents the average price of LUNC, weighted by trading
volume, and offers insights into fair value during market turmoil. It provides a baseline for
assessing whether LUNC was trading above or below its average price during the crash. A
price below the VWAP during the collapse confirms intense selling pressure. Its peaking
in May 2022 aligns with the peak in trading activity during USTC’s depeg, marking the
climax of panic-driven liquidations.

Figure 5. VWAP of LUNC.

2.3. Prediction

Recurrent neural networks (RNNs) are a type of neural network that retain a memory
of what it has already been processed and thus can learn from previous iterations during its
training. RNNs are particularly suited for cryptocurrency predictions due to their ability to
model sequential dependencies in time series data. Cryptocurrencies exhibit high volatility
and nonlinear dynamics, where price trends often depend on past behaviors. RNNs,
with their feedback loops, can “remember” these temporal relationships, making them
effective for capturing patterns in historical data and predicting future price movements.
The functioning recurrent neural network (RNN) model used in this paper is described
thoroughly in [25].
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Recall that RNNs are a class of neural networks that allow previous outputs to be used
as inputs while having hidden states. Formally, for each timestep t, the activation a<t> and
the output y<t> are expressed as follows:

a<t> = g1

(
Waaa<t−1> + Waxx<t> + ba

)
and y<t> = g2

(
Wyaa<t> + by

)
where Wax, Waa, Wya, ba, and by are coefficients that are shared temporally and g1, g2 activa-
tion functions.

k-nearest neighbors (k-NN), on the other hand, is a simpler yet robust algorithm that
performs well for cryptocurrency price trends by leveraging historical patterns. Its instance-
based approach allows it to handle nonlinear data distributions by finding similarities
between new data points and historical observations. This makes k-NN an effective baseline
for a comparison against more complex models like the RNN.

As for Table 2, we evaluate predictive performance metrics of both recurrent neural
networks (RNN) and k-NN for LUNC price movements. Here, the RNN displays a mean
squared error (MSE) of 399.1785, a root mean squared error (RMSE) of 19.9795, and values
indicating moderate accuracy in trend tracking, particularly from early 2021 to the signifi-
cant crash in 2022. The k-NN model shows lower error rates (MSE: 268.13, RMSE: 16.3746),
suggesting better robustness in price prediction for this period. However, this paper notes
that while both models effectively capture trend shifts, k-NN excels in short-term accuracy
by leveraging historical patterns in volatile crypto markets like LUNC.

Table 2. RNN and k-NN forecast statistics for LUNC.

LUNC MSE RMSE Mean Per-Class Error Log-Loss

RNN 399.17845 19.97945
k-NN 2.6813 × 102 1.637461 × 101 1.727558 × 106

For a test point, x, consider the set of the k nearest neighbors of x as Sx. Formally Sx is
defined as Sx ⊆ D s.t. |Sx| = k and ∀(x′, y′) ∈ D\Sx,

dist
(
x, x′

)
≥ max

(x′′ ,y′′)∈Sx
dist

(
x, x′′

)
,

(i.e., every point in D but not in Sx is at least as far away from x as the furthest point in Sx ).
We can then define the classifier h() as a function returning the most common label in Sx:

h(x) = mode
({

y′′ :
(
x′′, y′′

)
∈ Sx

})
,

where mode (·) means to select the label of the highest occurrence.
The k-nearest neighbor classifier fundamentally relies on a distance metric. The better

the metric reflects label similarity, the better the classifier will be. The most common choice
is the Minkowski distance

dist(x, z) =

(
d

∑
r=1

|xr − zr|p
)1/p

Ref. [26] provide an overview of the k-NN unsupervised machine learning algorithm.
As for Table 2, the same comment applies for k-NN.

In brief, RNNs excel in capturing temporal relationships in sequential data, while
k-NN serves as a strong benchmark for nonlinear pattern detection without requiring
complex training. Using these models together provides a balance between simplicity
(k-NN) and the ability to model dynamic dependencies (RNN). However, if computational
resources permit, LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Units)
might outperform RNNs for handling longer-term dependencies due to their ability to
mitigate the vanishing gradient problem.
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3. USTC Univariate Analysis
3.1. Quantitative Analysis

Figure 6 illustrates the decomposition of USTC’s price movements into long-term
trends, cyclical components, and residual noise. The steady value of USTC before May 2022
reflects its algorithmic peg to the US dollar, maintaining stability as intended. However, the
sharp decline post May 2022 signifies a collapse of confidence in the algorithmic mechanism
underlying the peg. This decomposition highlights two economic aspects:

1. Long-term stability pre-collapse: indicates the system’s perceived reliability, attracting
deposits and fostering investor trust in a low-volatility environment.

2. Systemic failure post depeg: the sharp decline reflects the structural fragility of
algorithmic stablecoins, where small shocks (e.g., large withdrawals or a loss of
confidence) can lead to catastrophic, self-reinforcing feedback loops.

This decomposition helps isolate these dynamics, offering a clearer understanding of
the transition from stability to collapse and the underlying economic behaviors driving
these changes.

Figure 6. Decomposition of USTC.

CUSUM tracks cumulative changes in USTC’s value, providing a statistical method
to detect shifts in price dynamics. In Figure 7, the flat line pre-collapse indicates stability,
while the steep drop during the depeg event reflects a sudden structural break in USTC’s
price. Economically, this sharp shift captures the following:

1. Investor Panic: the rapid decline in the CUSUM line aligns with widespread liquida-
tions as trust in the stablecoin evaporates.

2. Market Feedback Loops: the feedback between USTC’s depegging and LUNA’s
hyperinflation caused a cascading collapse in both assets, as reflected in the CUSUM
line’s dramatic change.

The CUSUM visualization emphasizes the systemic vulnerabilities in algorithmic
stablecoins and the speed at which trust can unravel, highlighting the economic risks of
inadequate stabilization mechanisms.
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Figure 7. CUSUM of USTC.

3.2. Trading Analysis

The EMA highlights the speed at which market sentiment deteriorates in response to
structural weaknesses. It serves as a visual tool for identifying critical turning points in
market confidence, particularly in algorithmically governed systems.

Regarding the exponential moving average analysis, Figure 8 shows us that the 10-day
EMA line tracks USTC’s stock price movements, providing a smoothed, short-term trend
line. This figure is critical for understanding the dynamics before and during the USTC
depeg event. During the pre-depeg event, the EMA closely follows USTC’s stable price
around USD 1, reflecting the success of the algorithmic peg mechanism during normal
market conditions. During the crash in 2022’s Spring, the 10-day EMA sharply trends
downward, lagging slightly behind the actual price but effectively signaling a breakdown
in stability. The two series equalize to zero afterwards. This rapid decline reflects the
algorithm’s inability to maintain the peg under stress, driven by investor panic and large-
scale liquidations.

Figure 8. EMA of USTC.
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The OBV tracks cumulative volume changes, offering a sentiment-driven perspective
on market behavior. Regarding on-balance volume analysis, we note in Figure 9 the
constancy of the price of USTC between 11 January 2022 and mid-May (the date of its
depeg), indicating balanced buying and selling activity as the USTC price remains pegged.
Then, it suddenly loses all of its value with its depeg, highlighting widespread liquidation.
The steep drop reflects panic selling as investors lost confidence in USTC’s ability to
maintain its peg.

The decline in OBV signals a systemic loss of trust, where investor behavior drives a
feedback loop of falling prices and heightened liquidation. The OBV’s trends capture the
scale and intensity of the sell-off.

Figure 9. OBV of USTC.

The VWAP reflects the average price of USTC, weighted by trading volume, providing
insights into the fair value during the depeg crisis. Regarding the volume-Weighted average
price analysis, in Figure 10 the USTC price is stable and equates to USD since November
2020 mirroring the stable price of USTC and reflecting the algorithmic peg’s success during
normal conditions. Then in May 2022 a significant divergence occurs as USTC’s price falls
far below the VWAP. This indicates intense selling pressure and the erosion of fair value, as
panic trading activity dominates.

Figure 10. VWAP of USTC.
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The divergence between price and VWAP illustrates the breakdown in price discovery
mechanisms during the crisis. VWAP highlights how large trading volumes exacerbated
price distortions, reflecting the market’s inability to stabilize.

3.3. Prediction

In Table 3 the RNN predictions are perfect following the evolution of the USTC price
trend, with a considerable increase from January 2021 to completely cancel out with the
depeg event of the Luna crash in May of the same year. We evaluate, in this table, the
predictive performance metrics of both recurrent neural networks (RNNs) with the H2O
package and k-NN with the Caret package for USTC price movements. Here, the RNN
displays a mean squared error (MSE) of 0.2515, a root mean squared error (RMSE) of 0.5015,
and log values indicative of effective trend tracking from early 2021 to the significant
depeg event in 2022. The k-NN model shows slightly lower error rates (MSE: 0.1447,
RMSE: 0.3804), suggesting its robustness in price prediction for the period. However,
both models adeptly capture trend changes, with k-NN showing particular accuracy by
historical pattern recognition in crypto markets like USTC.

Table 3. RNN and k-NN forecast statistics for USTC

USTC MSE RMSE Mean Per-Class Error Log-Loss

RNN 0.2515 0.5015
k-NN 0.1447 0.3804 577.0863

4. STAR Multivariate Analysis of LUNA Classic with Volumes as Exogenous Variables
and USTC as Transition Variable
4.1. Database

As shown in Table 4, the database is composed of the previous variables, LUNC and
USTC closing prices in daily frequency, accompanied by their volumes exchanged. To these
series, we also add the volume of BTC as suggested by [1]. The period goes from 2 October
2020 to 15 November 2022.

Table 4. Database of the ST-VAR.

Variable Mean Median Minimum Maximum

LUNC 24.373 6.7102 4.67 × 10−6 116.46
VOL_LUNC 8.98 × 108 4.38 × 108 1.06 × 106 1.65 × 1010

USTC 0.76905 1.0009 0.006502 1.0392
VOL_USTC 1.82 × 108 6.87 × 107 16.194 5.98 × 109

VOL_BTC 3.85 × 1010 3.19 × 1010 1.17 × 1010 4.29 × 1011

Variable St. Dev. C.V. Skewness Kurtosis

LUNC 31.373 1.2872 1.1626 0.046461
VOL_LUNC 1.25 × 109 1.3955 4.3674 38.441

USTC 0.41261 0.53652 −1.2101 −0.52588
VOL_USTC 3.86 × 108 2.1198 7.726 88.937
VOL_BTC 3.02 × 1010 0.78367 7.468 80.833

Variable PC 5% PC 95% IQ Missing

LUNC 9.70 × 10−5 90.581 42.69 0
VOL_LUNC 4.53 × 106 2.93 × 109 1.23 × 109 0

USTC 0.025549 1.0094 0.033036 0
VOL_USTC 67132 7.57 × 108 1.44 × 108 0
VOL_BTC 1.61 × 1010 7.20 × 1010 2.10 × 1010 0

Note: LUNC is the raw time series of the LUNA stablecoin. VOL_LUNC is the time series of volumes exchanged
for LUNA. USTC is the raw time series of the USTC stablecoin. VOL_USTC is the time series of volumes
exchanged for USTC. and VOL_BTC is the time series of volumes exchanged for Bitcoin. St.Dev. is the standard
deviation. PC5% and PC95% are, respectively, the 5% and 95% percentiles. IQ is the interquartile amplitude, and
Missing is the number of missing values.
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4.2. VLSTAR Model

The multivariate smooth transition model is an extension of the smooth transition
regression model introduced by [27] (see also [28]). We chose it for its ability to capture
nonlinear relationships between variables (like trading volumes) and price movements,
which are essential in market crashes. The general model is

yt = µ0 +
p

∑
j=1

Φ0,jyt−j + A0xt · Gt(st; γ, c)

[
µ1 +

p

∑
j=1

Φ1,jyt−j + A1xt

]
+ εt

where µ0 and µ1 are the ñ × 1 vectors of intercepts, Φ0,j and Φ1,j are square ñ × ñ matrices
of the parameters for lags j = 1, 2, . . . , p, A0 and A1 are ñ × k matrices of the parameters, xt
is the k × 1 vector of exogenous variables and εt is the innovation. Finally, Gt(st; γ, c) is an
ñ × ñ diagonal matrix of the transition function at time t, such that

Gt(st; γ, c) = {G1,t(s1,t; γ1, c1), G2,t(s2,t; γ2, c2), . . . , Gñ,t(sñ,t; γñ, cñ)}

Each diagonal element Gr
i,t is specified as a logistic cumulative density functions, i.e.,

Gr
i,t
(
sr

i,t; γr
i , cr

i
)
=
[
1 + exp

{
−γr

i
(
sr

i,t − cr
i
)}]−1

for latex and r = 0, 1, . . . , m− 1, so that the first model is a Vector Logistic Smooth Transition
AutoRegressive (VLSTAR) model. The ML estimator of θ is obtained by solving the
optimization problem

θ̂ML = arg max
θ

log L(θ)

where log L(θ) is the log-likelihood function of the VLSTAR model, given by

ll(yt | It; θ) = −Tñ
2

ln(2π)− T
2

ln |Ω| − 1
2

T

∑
t=1

(
yt − G̃tBzt

)′Ω−1(yt − G̃tBzt
)

The NLS estimators of the VLSTAR model are obtained by solving the optimization problem

θ̂NLS = arg min
θ

T

∑
t=1

(
yt − Ψ′

tB
′xt
)′(yt − Ψ′

tB
′xt
)
.

Generally, the optimization algorithm may converge to some local minimum. For this
reason, providing valid starting values of θ is crucial. If there is no clear indication on the
initial set of parameters, θ, this can be carried out by implementing a grid search. Thus,
a discrete grid in the parameter space of Γ and C is created to obtain the estimates of B
conditionally on each point in the grid. The initial pair of Γ and C producing the smallest
sum of squared residuals is chosen as the initial values, and then the model is linear in
parameters. The algorithm is the following:

1. A construction of the grid for Γ and C, computing Ψ for each point in the grid;
2. An estimation of B̂ in each equation, calculating the residual sum of squares, Qt;
3. Finding the pair of Γ and C providing the smallest Qt;
4. Once the starting values have been obtained, an estimation of parameters, B, via

nonlinear least squares (NLS);
5. An estimation of Γ and C, given the parameters found in step 4;
6. Repeat steps 4 and 5 until convergence.

4.3. Model Estimation

We specify the model estimated with our variables.
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(
yl,t
yu,t

)
= φ

(
yl,t−1
yu,t−1

)
+ A

 xvl,t
xvu,t
xvb,t

 ≡
(

r lunc t
r ustc t

)
= φ

(
r lunc ct−1
r ustc ct−1

)
+ A

 r vol.lunc t
r vol.ustc t
r vol. btc t

 (1)

yl,t = rlunc t = returns LUNC;

yu,t = rustc t = returns USTC;

yl,t−1 = rlunct−1 = lagged returns of LUNC;

yu,t−1 = rustc t−1 = lagged returns of l’USTC;

xvl,t = rvol. lunc t = returns of LUNC volumes;

xvu,l = rvol. ustct = returns of USTC volumes;

xvb,t = rvol. btct = returns of Bitcoin volumes.

(2)

After experimenting, st is set as the squared log-differenced LUNC series. Regarding
the starting values of the Gamma and C parameters, we proceed to a grid-search by setting
the number of combinations for the searching grid to 3, and the number of iterations is
equal to 500.

The ST-VAR model was applied to a comprehensive dataset comprising volatility
series from our three variables over October 2020 to November 2022 to analyze the inter-
dependencies and dynamics between these factors. The ST-VAR model results provide
valuable insights into the relationships and behaviors of the volatilities under investigation.
The following observations and interpretations can be drawn from the analysis:

In Table 5, we highlight several important findings. The LUNA price crash in regime
two reports higher coefficients than in regime one (at 1% statistical error). This finding
applies to the volumes of LUNA as well. This confirms that the firesale of LUNA with
heavy volumes dramatically impacted its price path during regime two.

Table 5. VLSTAR model estimate of LUNC-USTC pair with volumes as exogenous variables.

Model VLSTAR with 2 regimes
Full sample size: 773
Number of estimated parameters: 32
Multivariate log-likelihood: 6097.746

Equation y1

Coefficient regime one
const lunc.r ustc.r vol.lunc.r vol.USTC.r vol.btc.r
0.443 0.003 0.005 0.071 *** −0.005 −0.040

Coefficient regime two
const lunc.r ustc.r vol.lunc.r vol.USTC.r vol.btc.r
−83.791 *** 0.391 *** −0.759 *** 1.040 *** -0.467 *** 0.078 **

Gamma: 1.3112 c: 1002.592
AIC: 5470.98 BIC: 5526.79 LL: −2723.49

Equation y2

Coefficient regime one
const lunc.r ustc.r vol.lunc.r vol.USTC.r vol.btc.r
−0.411 0.072 *** −0.112 *** 0.022 *** 0.002 −0.009

Coefficient regime two
const lunc.r ustc.r vol.lunc.r vol.USTC.r vol.btc.r
−6.371 *** 0.121 *** −0.176 *** 0.063 *** 0.105 *** −0.007

Gamma: 42.92 c: 189.629
AIC: 3960.34 BIC: 4016.14 LL: −1968.17

Note: const stands for the constant term, lunc.r for LUNA log-returns, ustc.r for USTC log-returns, vol.lunc.r for
the volumes exchanged of LUNA, vol.USTC.r for the volumes exchanged of USTC, and vol.btc.r for the volumes
exchanged of Bitcoin. LL stands for log-likelihood. ***: statistically highly significant (p < 0.01); **: statistically
significant (p < 0.05).
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Interestingly, the volumes of USTC are also significant at the 1% level during regime
two. The stablecoin drops and the pyramid falls.

It is noteworthy to remark that, similarly to [1], we uncover the statistically significant
effect of Bitcoin volumes on the LUNA price crash during regime two.

The significance tests conducted on the coefficient estimates indicate that the ma-
jority of the coefficients are statistically significant at the 1% level, providing confidence
in the estimated relationships between the variables. However, some coefficients did
not reach statistical significance, implying a need for a cautious interpretation of these
specific relationships.

The ST-VAR model assumes stationarity, exogeneity, and the absence of serial correla-
tions among the residuals [17]. While the stationarity assumption appears reasonable based
on preliminary tests, further analysis is required to confirm the exogeneity assumption and
explore any potential serial correlation in the residuals (see Section 4.4).

In conclusion, the ST-VAR model results provide valuable insights into the interde-
pendencies and dynamics between the variables under investigation. The positive and
significant coefficients for BTC and the inverse relationship observed for USTC highlight
the importance of these variables in the system. These important findings have implications
for investors, crypto market’s professionals and researchers who seek to understand the
impacts of these variables on the fall of the Terra platform. However, it is important to
acknowledge the limitations and assumptions of the model and consider further analysis to
validate and refine the conclusions with more datasets and potential extensions to account
for other relevant factors.

We describe the graph output from the VLSTAR model with two endogenous variables
(LUNC and USTC) and three exogenous variables (the volumes of LUNC, USTC and
Bitcoin). All variables have been transformed into stationarity by taking first the log
differences.

Figure 11 illustrates the daily percentage returns of LUNC. We witness the explosive
nature of the LUNC asset toward May 2022, as reproduced by the VLSTAR model. This pro-
nounced volatility, particularly during the crash, highlights the asset’s sensitivity to market
events. Short-term spikes reflect speculative trading and potential market inefficiencies,
while the drastic drop during the crash emphasizes systemic risk. This underscores the
importance of analyzing how algorithmic failures, coupled with external factors, amplify
volatility in cryptocurrency markets.

Figure 12 of USTC returns showcases a dramatic shift in market dynamics around the
depeg with the US dollar period (May 2022), as reproduced by the VLSTAR model. The
high-frequency oscillations during and after the depeg event signify heightened uncertainty
and speculative behavior. This figure supports the narrative that stablecoin instability
can destabilize interconnected assets, demonstrating the fragility of algorithmic models
underpinning such systems.

In Figure 13, the volume analysis for LUNC provides a measure of market activity
and liquidity over time, as reproduced by the VLSTAR model. The heightened volume of
exchange for the LUNA asset during the crash signifies panic selling and herd behavior,
aligning with periods of maximum uncertainty. Such trends indicate that market par-
ticipants respond disproportionately to negative shocks, leading to feedback loops that
exacerbate price declines.

In Figure 14, we find that similar to LUNC, the trading volume for USTC reflects
significant spikes during critical periods of instability, as reproduced by the VLSTAR model.
This pattern underscores the role of USTC as a central piece in the Terra ecosystem, where
its instability directly affected investor sentiment and trading behavior, leading to cascading
effects on LUNC.
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Figure 11. VLSTAR estimate of endogenous LUNA Classic.

Figure 12. VLSTAR estimate of endogenous USTC stablecoin.
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Figure 13. VLSTAR estimate of exogenous impact of LUNA volumes on LUNC.

Figure 14. VLSTAR estimate of exogenous impact of USTC volumes on LUNC.
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In Figure 15, we can confirm the hypothesis by [1] that the volumes of Bitcoin (es-
pecially short positions) have also played a role during the first phase of the underlying
disengagement of LUNA Classic, as reproduced by the VLSTAR model. We know that
the LUNA Foundation established a BTC reserve with the intention of burning it to help
stabilize the USTC’s depeg. Indeed, including BTC as a benchmark allows for a compar-
ative understanding of systemic spillover effects. The relatively subdued volume spikes
in BTC suggest that while the crash of USTC and LUNC was significant within the Terra
ecosystem, its broader impact on the crypto market was limited. This aligns with BTC’s
position as a relatively stable and mature asset in the cryptocurrency hierarchy.

Figure 15. VLSTAR estimate of exogenous impact of Bitcoin volumes on LUNC.

The application of the STAR (Smooth Transition AutoRegressive) model to the LUNA
price crash reveals important nonlinear dynamics between trading volumes and price
movements during different market regimes, particularly in the aftermath of the USTC
depeg. The model’s regime-switching mechanism highlights the fact that the market
behaved differently in the two distinct phases: pre depeg and post depeg. During regime
two (post depeg), the model identifies significantly higher coefficients, particularly in
relation to trading volumes, indicating that the massive volume of trades—driven by
investor panic and fire sales—had a much more pronounced and nonlinear impact on
LUNA’s price decline than in the earlier regime. This shift underscores the critical role
of liquidity in cryptocurrency markets, where a sudden loss of confidence can trigger
cascading price collapses, magnified by large-scale liquidations. We can highlight some
practical implications:

1. Liquidity Crises in Crypto Markets: The findings offer valuable insights into how
liquidity crises unfold in highly volatile and speculative markets like cryptocurrency.
Specifically, they show that the interaction between trading volumes and price dynam-
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ics is not linear; rather, once certain thresholds are crossed—such as the USTC losing
its peg—the market enters a regime where liquidity evaporates, leading to extreme
price fluctuations. This is particularly relevant for investors and market participants,
as it highlights the fragile nature of liquidity in these markets and the potential for a
price collapse to be triggered or exacerbated by large trading volumes.

2. Risk Management for Stablecoin Ecosystems: For stablecoin ecosystems, which rely on
the algorithmic maintenance of pegs (such as the Terra-LUNA system), the nonlinear
impact of trading volumes revealed by the model points to the need for robust risk
management mechanisms that can prevent or mitigate large-scale liquidations. The
Terra-LUNA crash demonstrates that when liquidity is constrained, even small disrup-
tions can lead to disproportionate effects on the price, underscoring the importance of
designing stablecoin systems that can absorb shocks more effectively.

3. Implications for Algorithmic Stablecoins: The findings also have broader implica-
tions for the design and regulation of algorithmic stablecoins. The collapse of LUNA
highlights the vulnerability of stablecoins that rely on algorithmic adjustments and
collateral reserves, particularly in volatile markets. The sharp transition between
regimes in the STAR model suggests that algorithmic stablecoins are prone to insta-
bility under certain market conditions, calling for improved design features that can
better manage liquidity and maintain peg stability in times of market stress.

4. Policy and Regulatory Considerations: From a policy perspective, the insights drawn
from the STAR model’s estimation results could inform regulatory frameworks for
stablecoins and other digital assets. Regulators may consider imposing safeguards
that ensure better liquidity management and transparency in collateral reserves,
reducing the risk of market crashes driven by large-scale liquidations. This is partic-
ularly pertinent in light of the systemic risks that such crashes pose to the broader
cryptocurrency market.

5. Future Risk Models: For researchers and practitioners, the model’s findings suggest
that future risk models for stablecoins and other digital assets should account for
nonlinearities in trading volume and price dynamics. The STAR model’s ability to
capture these nonlinear shifts provides a more accurate tool for understanding and
predicting the conditions under which digital assets might experience extreme price
volatility and should be integrated into the risk models used by market participants,
exchanges, and financial institutions dealing with cryptocurrencies.

By demonstrating the transition between different market regimes and the heightened
sensitivity to trading volumes during the post-depeg phase, the STAR model offers a
valuable framework for analyzing and predicting the behavior of digital assets in crisis
situations. This can ultimately contribute to the development of more resilient stablecoin
ecosystems and risk mitigation strategies in cryptocurrency markets.

4.4. Robustness Checks
4.4.1. A Linearity Test

As a robustness check, we implement a joint linearity test. Given a VLSTAR model
with a unique transition variable, s1t = s2t = . . . = snt = st, a generalization of the linearity
test presented in [29,30] may be implemented. We assume a two-state VLSTAR model,
such that

yt = B1zt + GtB2zt + εt

where the null H0 : γj = 0, j = 1, . . . , ñ, is such that Gt ≡ (1/2)/ñ and the previous
equation is linear. When the null cannot be rejected, an identification problem of the
parameter cj in the transition function emerges, which can be solved through a first-order
Taylor expansion around γj = 0. The approximation of the logistic function with a first-
order Taylor expansion is given by
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G
(
st; γj, cj

)
=(1/2) + (1/4)γj

(
st − cj

)
+ rjt

= ajst + bj + rjt

where aj = γj/4, bj = 1/2 − ajcj and rj is the error of the approximation. If Gt is specified
as follows

Gt = diag{a1st + b1 + r1t, . . . , añst + bñ + rñt}
= Ast + B + Rt

where A = diag(a1, . . . , añ), B = diag(b1, . . . , bñ) e Rt = diag(r1t, . . . , rñt), yt can be
written as

yt = B1zt + (Ast + B + Rt)B2zt + εt

= (B1 + BB2)zt + AB2ztst + RtB2zt + εt

= Θ0zt + Θ1ztst + ε∗t

where Θ0 = B1 + B′
2B, Θ1 = B′

2 A and ε∗t = RtB2 + εt. Under the null, Θ0 = B1 and Θ1 = 0,
while the previous model is linear, with ε∗t = εt. It follows that the Lagrange multiplier test,
under the null, is derived from the score

∂ log L(θ̃)
∂Θ1

=
T

∑
t=1

ztst

(
yt − B̃1zt

)′
Ω̃−1 = S

(
Y − ZB̃1

)
Ω̃−1

where

S = z′1s1
...z′tst

and where B̃1 and Ω̃ are estimated from the model in H0. If PZ = Z(Z′Z)−1Z′ is the
projection matrix of Z, the LM test is specified as follows

LM = tr
{

Ω̃−1
(

Y − ZB̃1

)′
S
[
S′(It − PZ)S

]−1S′
(

Y − ZB̃1

)}
Under the null, the test statistics is distributed as χ2 with ñ(p · ñ + k) degrees of freedom.

Table 6 contains the results of the procedure detailed above regarding the adequacy of
the VLSTAR model.

To test the robustness of the results, alternative lag orders and variable combinations
were examined by a joint linearity test [17]. The main conclusions drawn from the ST-VAR
model remained consistent across these variations, indicating the reliability of the findings.
Table 6 reveals that the VLSTAR specification is the most accurate model to model jointly
the nonlinearities at stake between the variation in the LUNC and USTC, on the one hand,
and the volumes associated with LUNC, USTC and BTC on the other hand.

Table 6. Joint linearity test.

Joint Linearity Test Decision

p-value 0.0001 VLSTAR

Diagnostics
LM 839
Critical value for alpha 23.3

4.4.2. GARCH Model with Dummy

The model used is a standard GARCH(1,1) model with one external regressor (the
crash dummy variable) to capture the impact of the Terra-LUNA crash event. GARCH
with the dummy model provides a clear view of volatility clustering and persistence
during the LUNA crash, capturing how volatility was strongly influenced by recent shocks
(alpha1) and remained elevated over time (beta1). The model shows that volatility during
the crash period was driven primarily by endogenous market responses rather than by
isolated shocks, evidenced by the insignificance of the dummy variable. However, while



Commodities 2024, 3 452

GARCH with the dummy model captures general volatility clustering and persistence in the
LUNA price series during the USTC depeg, diagnostic tests (e.g., residual autocorrelation,
goodness of fit) suggest it may miss certain finer points, like the asymmetric impact of
negative news, typical during crises. Indeed, it does not consider asymmetric effects (i.e.,
different impacts of positive vs. negative shocks). The Table 7 shows the summary of the
GARCH with dummy models results.

The log-likelihood (−2824.132) is an important fit measure, though it is slightly lower
compared to more complex models (e.g., TGARCH). This suggests that the model captures
general volatility patterns but may not fully account for asymmetrical responses in volatility
during crashes.

The information criteria Akaike (AIC = 7.3078) and Bayesian (BIC = 7.3319) values
provide a basis for comparing model performance; here, they indicate a reasonable fit, but
further refinement might be achieved by exploring asymmetry in volatility (e.g., TGARCH).

Omega (ω = 5.3875, p = 0.0078) represents the baseline volatility level, which is
significant and elevated, reflecting a generally high-volatility environment around the time
of the crash. This aligns with the heightened uncertainty and rapid price swings seen in
LUNA’s market as USTC’s peg failed.

Alpha (α1 = 0.6619, p < 0.001) shows that recent shocks have a strong, immediate
impact on volatility. This means that each new price drop or sudden trading volume
increase directly spikes volatility, which is typical during crisis periods with cascading
panic sell-offs.

Beta (β1 = 0.5410, p < 0.001) reflects the persistence of high volatility, indicating that
once volatility rises, it remains elevated for an extended period. In the context of the
LUNA crash, this implies prolonged market instability following the initial depeg event, as
investors continued to react to an uncertain environment.

The dummy variable’s (vxreg1 = 0.0000, p = 1.0000) insignificance implies that the
market volatility following the depeg event may have been driven endogenously rather
than by a single discrete external shock. This suggests a feedback loop where market
responses to price changes continuously spurred volatility, rather than volatility being tied
directly to the USTC depeg event.

In brief, GARCH with the dummy model provides valuable insights into the general
volatility dynamics of the LUNA crash. It confirms that volatility was high and persistent,
reflecting the ongoing instability that followed the USTC depeg. However, the model’s
limitations lie in its assumption of symmetric volatility responses and the insignificance
of the dummy variable, suggesting that the crisis-driven volatility was driven by market-
endogenous dynamics rather than isolated external shocks. For a deeper and detailed study
of the LUNA crash, these findings could be supplemented by an asymmetric model like
TGARCH to capture the larger impact of negative shocks, providing a more comprehensive
view of how volatility was affected during the crisis.
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Table 7. Summary of GARCH with dummy model results.

Parameter/Statistic Estimate Std. Error t-Value p-Value Interpretation

Omega (ω) 5.3875 2.0262 2.6589 0.0078 Baseline volatility, significant and elevated, indicating a high-volatility environment around the crash.

Alpha1 (α1) 0.6619 0.0796 8.3131 <0.001 Short-term impact of shocks on volatility; high alpha indicates strong immediate volatility response.

Beta1 (β1) 0.5410 0.0358 15.1133 <0.001 Volatility persistence; significant beta suggests volatility remains high for extended periods post shock.

Dummy Variable (vxreg1) 0.0000 2.0076 0.0000 1.0000 Insignificant, suggesting that volatility was endogenously driven rather than by a single shock event.

Log-Likelihood −2824.132 - - - Indicates model fit, with further improvement possible via models capturing asymmetry (e.g., TGARCH).

Akaike Information Criterion (AIC) 7.3078 - - - Basis for model comparison; reflects reasonable fit but highlights room for enhancement.

Bayesian Information Criterion (BIC) 7.3319 - - - Provides basis for model selection, showing potential for exploring alternative models.

Weighted Ljung–Box (Residuals) - - - p = 0.04463 (Lag 5) Mixed results at certain lags, suggesting model may miss finer patterns in residual autocorrelation.

ARCH LM Test - - - p > 0.5 No additional ARCH effects detected, indicating GARCH(1,1) specification captures clustering well.

Nyblom Stability Test (Joint) 1.5409 - - - Confirms parameter stability, indicating consistent volatility dynamics across the sample period.

Sign Bias Test (Joint Effect) 3.3332 - - 0.3431 No significant bias detected; supports use of symmetric model, though TGARCH may capture asymmetry better.

Adjusted Pearson Goodness of Fit 102.7 (group 1) - - p < 0.001 Significant p-values suggest model fit limitations, warranting further exploration of volatility dynamics.
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4.4.3. TGARCH Model with Dummy

The TGARCH model (fGARCH sub-model: TGARCH(1,1)) is designed to capture
volatility asymmetry, specifically highlighting the differential impact of positive and neg-
ative shocks on market volatility. The model TGARCH (Threshold GARCH) with the
dummy provides a nuanced understanding of the volatility dynamics during the LUNA
crash by accounting for asymmetric responses to positive and negative shocks. This feature
makes it particularly suitable for analyzing the market behavior around the USTC depeg
and LUNA’s subsequent price collapse. The Table 8 shows the summary of the TGARCH
with dummy models results.

The log-likelihood (−2806.026) is higher than the log-likelihood of the simpler GARCH
model. This improvement suggests that the TGARCH model captures more nuances in the
data, particularly asymmetries, making it better suited for crises like the Terra-LUNA crash.

The Akaike (AIC = 7.2636) and Bayesian (BIC = 7.2937) values are slightly lower
than the GARCH model, reinforcing that TGARCH provides a better fit by capturing
volatility asymmetry.

The parameter of baseline volatility omega (ω = 0.78044, p = 0.000166) is statistically sig-
nificant. The lower value compared to GARCH’s omega suggests that TGARCH provides a
more precise baseline, adjusting for volatility spikes due to asymmetrical shock responses.

Alpha1 (α1= 0.45656, p < 0.001) shows that recent shocks significantly influence current
volatility. A moderately high alpha indicates that LUNA’s market volatility was immedi-
ately impacted by each recent shock, with fast adjustments in response to new information
or sell-offs.

Beta1 (β1 = 0.62674, p < 0.001) represents the persistence of volatility over time,
meaning high volatility remains elevated after shocks. This persistence aligns with the
prolonged instability during the Terra-LUNA crash period, where volatility lingered as
investors struggled to regain confidence.

Eta11 (Eta11 = 0.18420, p = 0.00126) captures the asymmetry in volatility responses,
where negative shocks (e.g., price drops) lead to larger volatility spikes than positive shocks.
This significant eta value indicates that volatility increased disproportionately when prices
fell, capturing the heightened panic during the USTC depeg. This is a key finding as it
confirms that market responses to negative news were stronger and contributed to the
self-reinforcing crash dynamics.

The insignificance of the dummy variable (vxreg1 = 0.00000, p = 1.0000) implies that
the crash’s impact on volatility was primarily endogenous. Market volatility seemed to
respond more to internal feedback loops rather than an isolated external shock, consistent
with a cascading market reaction post depeg.

We also highlight some of the other most relevant pieces of information and statistical
metrics in the table.

The TGARCH model’s ability to account for asymmetric volatility—where negative
shocks increase volatility more than positive ones—aligns with the market behavior ob-
served during the LUNA crash. Negative news (USTC depeg) disproportionately escalated
volatility, a pattern typical of financial crises, making TGARCH with the dummy a more
appropriate model for this analysis compared to GARCH with the dummy. This model
underscores the systemic risks of endogenous feedback loops in unregulated crypto as-
sets and provides a critical perspective for policymakers on the dangers of algorithmic
stablecoin designs.
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Table 8. Summary of TGARCH with dummy model results.

Parameter/Statistic Estimate Std. Error t-Value p-Value Interpretation

Omega (ω) 0.7804 0.2072 3.7657 0.000166 Baseline volatility, significant and elevated, reflecting a high-volatility environment during the crash.

Alpha1 (α1) 0.4566 0.0386 11.8377 <0.001 Short-term shock impact; high alpha indicates strong immediate volatility response to recent shocks.

Beta1 (β1) 0.6267 0.0317 19.7426 <0.001 Persistence of volatility; high beta suggests volatility remains high after shocks, aligning with prolonged
instability.

Eta11 (η11) 0.1842 0.0571 3.2248 0.00126 Asymmetry term; significant eta confirms larger volatility responses to negative shocks, key for modeling crash
dynamics.

Dummy Variable (vxreg1) 0.0000 0.1668 0.0000 1.0000 Insignificant, indicating endogenous volatility dynamics driven by market response rather than a single shock
event.

Log-Likelihood −2806.026 - - - Indicates model fit, with higher log-likelihood than GARCH model, showing TGARCH captures volatility
asymmetry better.

Akaike Information Criterion (AIC) 7.2636 - - - Basis for model comparison, showing improved fit over GARCH and confirming TGARCH’s appropriateness
for asymmetry.

Bayesian Information Criterion (BIC) 7.2937 - - - Reflects model fit and suitability for capturing volatility asymmetry in the Terra-LUNA crash.

Weighted Ljung–Box (Residuals) - - - p = 0.024319 (Lag 2) Some residual autocorrelation suggests minor fit limitations at certain lags, though model performs well
overall.

ARCH LM Test - - - p > 0.5 No additional ARCH effects, indicating that the TGARCH model captures volatility clustering adequately.

Nyblom Stability Test (Joint) 1.4135 - - - Confirms parameter stability, indicating consistent volatility dynamics across the sample period.

Sign Bias Test (Negative Sign Bias) 1.7263 - - p = 0.08469 Mild evidence of negative sign bias, suggesting a greater response to negative shocks, in line with TGARCH
design.

Adjusted Pearson Goodness of Fit 89.88 (group 1) - - p = 3.489 × 10−11 Significant p-values indicate some fit limitations, supporting further exploration of market response dynamics.
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4.4.4. Comparison Table Including GARCH with Dummy Model Alongside the TGARCH
with Dummy and Linearity Test (STVAR)

The Table 9 is a comparison table including GARCH with the dummy model alongside
TGARCH with the dummy and linearity test (STVAR):

We can mention how TGARCH better models volatility dynamics by accounting for
asymmetry, while the STVAR model (supported by the linearity test) captures regime-
dependent relationships, together providing a fuller understanding of the LUNA crash.
The GARCH model assumes that both positive and negative shocks affect volatility in
the same way. However, the LUNA crash was characterized by panic-driven negative
shocks, where bad news (such as the USTC depeg) caused disproportionate volatility
increases. This is where GARCH falls short, as it does not account for this asymmetry. The
insignificance of the dummy variable implies that the USTC depeg event did not create a
distinct break in volatility patterns. Instead, market dynamics, likely driven by endogenous
reactions to price changes, were the main drivers of volatility.

Table 9. Comparison table of the three models.

Aspect GARCH with Dummy TGARCH with Dummy Linearity Test (STVAR)

Focus Basic volatility modeling without
asymmetry

Volatility dynamics with asymmetry
for positive vs. negative shocks

Detecting nonlinearity in relationships
between variables (e.g., price and

volumes)

Type of Model Standard GARCH (with a dummy
variable)

Threshold GARCH (TGARCH) with a
dummy variable

Linearity test to validate the
nonlinearity and regime-switching

nature of STVAR

Key Feature Symmetric volatility response
to shocks

Asymmetric volatility response to
shocks

Nonlinear transitions between market
regimes (pre and post crash)

Volatility Models volatility clustering and
persistence

Models volatility clustering,
persistence, and asymmetry

Not focused on volatility; more on
dynamic relationships between

variables

Shocks Handling Models equal impact of positive and
negative shocks

Negative shocks have larger impacts
on volatility

Models shifts in relationships (e.g.,
price–volume) between regimes

Regime Shifts Dummy variable attempts to capture
regime shifts

Dummy variable attempts to capture
regime shifts but is insignificant

Identifies regime changes through
smooth transitions in variables

Relevance to Crash Shows general volatility increase
post depeg

Shows greater volatility response to
negative shocks, capturing heightened

sensitivity to crashes

Explains regime-dependent
relationships, capturing how variables
(e.g., price, volume) interact differently

post crash

Event Modeling Dummy variable included but lacks
significance

Dummy variable included but
insignificant

Implicitly models regime shifts using
nonlinear transitions in STVAR

In summary, the TGARCH model complements the VLSTVAR model but does not
replace it; they serve different purposes. Both TGARCH with the dummy and the VLSTAR
model address different aspects of the LUNA crash. The TGARCH model focuses on
volatility and the asymmetric impact of negative shocks, showing that the crash had a
disproportionate effect on market instability. The VLSTVAR (validated by the linearity
test) model focuses on how relationships between variables changed across different
regimes (before and after the crash) and nonlinear dynamics during the crash. Both models
contribute valuable insights into how the market reacted and transitioned during the USTC
depeg event.

5. Conclusions

This paper investigates the collapse of LUNA Classic in the wake of the USTC depeg,
using advanced econometric and time series methods such as the VLSTAR model. The
results provide critical insights into the dynamics of algorithmic stablecoins and their
susceptibility to liquidity crises, highlighting the role of large trading volumes and collateral
assets like Bitcoin in amplifying the crash.
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The collapse of USTC’s peg demonstrated the fragility of algorithmic stablecoins,
where the failure of the stabilization mechanism led to a cascading market crash. The
inability to absorb the liquidity shock underlined systemic risks inherent in such systems.
The role of collateral assets is well elucidated by our analysis. Bitcoin volumes were
shown to have a significant effect on the LUNA price collapse, suggesting that the liquidity
of collateral assets plays a pivotal role in maintaining price stability during crises. Our
study also highlights the impact of trading volumes on price dynamics. Indeed, the
analysis reveals that during regime two (post depeg), the large trading volumes significantly
intensified the price crash. This nonlinear relationship underscores how liquidity shortages
during large-scale liquidations can lead to dramatic price declines.

These interesting findings demonstrate how algorithmic stablecoin failures, like
the USTC depeg, can amplify market instability, creating conditions where negative
news drives disproportionately higher volatility. These findings also have implications
for stakeholders:

• Investors: The findings highlight the vulnerabilities of algorithmic stablecoins, espe-
cially during periods of market stress. Investors should be aware of the potential for
large-scale liquidations to rapidly destabilize prices, particularly in assets that rely on
algorithmic mechanisms. This study emphasizes the need for better risk management
strategies to mitigate such crashes.

• Researchers: For researchers, this study contributes to a deeper understanding of the
nonlinear interactions between liquidity, volumes, and price movements in cryptocur-
rency markets. The VLSTAR model’s ability to capture regime shifts offers a useful
framework for analyzing other cryptocurrencies and volatile markets in the future.

• Policymakers: The results have regulatory implications, particularly for the design and
oversight of stablecoins. Policymakers should consider imposing stricter safeguards
to ensure liquidity and stability in algorithmic stablecoins, including requirements for
transparent reserves and the ability to withstand large-scale liquidations.

However, while this study provides important insights, it also has several limitations:

1. Data Frequency: The analysis relies on daily frequency data, which may not fully
capture intraday price volatility and rapid market reactions during the crash. Fu-
ture research could utilize higher-frequency data to offer a more granular view of
price dynamics.

2. Model Limitations: The VLSTAR model effectively captures nonlinear relationships,
but alternative models such as GARCH could provide additional insights into volatility
clustering and the behavior of prices during extreme events. Future studies could com-
pare different modeling approaches to better understand the robustness of the findings.

3. Broader Market Factors: This study focuses primarily on LUNA and USTC. Expanding
the analysis to include other cryptocurrencies and macroeconomic factors could
enhance the understanding of how systemic risk propagates through the broader
crypto ecosystem.

Building on this work, future studies could explore the role of sentiment analysis and
news events in driving price crashes and recoveries. A broader analysis of other algorithmic
stablecoins to assess commonalities and differences in their behavior during market crises
would also be interesting. The development of predictive models for the early detection of
liquidity crises in cryptocurrency markets also could be relevant.
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