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Abstract: Work with novel indicators that report intracellular ATP concentrations with improved
spatial and temporal resolution have challenged the current consensus that under physiological
conditions, intracellular ATP concentrations are not rate-limiting to enzymatic reactions. Recent data
from cardiac myocytes and cultured neurons show marked fluctuations of intracellular ATP levels,
as well as evidence for compartmentalization. It is likely that the availability of these genetically
encoded indicators will produce rapid progress in the mapping of the dynamics of intracellular ATP
concentrations in various types of cells. Here, a brief account of the most recent indicators is provided
as well as a review of how natural evolution appears to have obviated the potential shortage of the
ATP supply to one of key enzymes of the cyclic AMP signaling cascade, adenylyl cyclase 9.
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A recent break-through study [1] utilized a novel single-wavelength genetically-
encoded fluorescent indicator [2] for measuring the intracellular concentration of ATP
in cultured mouse cardiomyocytes. The results upend the previously held view that ATP
concentrations in the heart are in the region of 4–8 mM [3,4]. Temporal variation esti-
mated to be between 0.3–1 mM of intracellular ATP concentration during the heart cycle
was shown. Moreover, evidence was provided that ATP sensitive K+-channels become
active under low ATP conditions in diastole, which was previously thought to be impos-
sible due to the high levels of ATP [3]. The sensor developed by Lobas et al. has been
further improved to enhance its dynamic range and deployed to report ATP levels in
synaptic boutons of cultured hippocampal neurons [5]. The results show heterogeneity
of the initial concentrations of ATP between individual boutons and a marked as well
as more uniform depletion (≥50%) of intracellular ATP levels during the firing of action
potentials. Limitations, e.g., sensitivity of the ATP biosensors to changes of intracellular
pH [2,5] notwithstanding, these technologies have the potential to fundamentally change
our understanding of ATP availability in cells with rapid fluctations of energy demand
under physiological conditions. In addition to myocardiocytes and neurosecretory cells [5],
skeletal muscle contraction during exercise and the respiratory burst of neutrophil gran-
ulocytes and monocytes [6,7] spring to mind. Furthermore, the spatial variation of ATP
levels will likely prove to be significant [2,5]. Thus issues such as the efficacy of ATP-site
inhibitors of enzymes, most notably protein kinases [8], may need to be revisited even in
cells not showing paroxysms of metabolic activity. Towards the pathological domain, the
sensitivity of the ubiquitin-proteasome system to intracellular ATP concentrations, which
follows an optimum curve [9], appears significant. As per pathological settings, variations
of intracellular ATP levels in breast cancer cells reportedly have a significant impact on
malignancy [10].

Sympathetic stimulation of heart function requires the intracellular signaling molecule
cyclic AMP. Cyclic AMP is produced from ATP upon the activation of beta-adrenergic
receptors at the cell surface. In considering which signalling pathways in the heart could
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be affected by low levels of ATP, Rhana et al. [1] flagged the peculiar ATP-dependence of
adenylyl cyclase 9 (AC9), one of the enzymes that generate cyclic AMP in the heart. The
regulation of AC9 is unusual [11]. When in complex with the receptor-activated stimulatory
protein Gsα, the enzyme shows marked auto-inhibition, which is mediated by a short,
linear auto-regulatory motif in its isoform-specific carboxyl-terminal domain [12,13]. In the
presence of activated Gsα, the auto-regulatory motif docks into the substrate binding-site
of the enzyme causing a 40-fold reduction in the affinity for its substrate, ATP [13,14].
Importantly, in membranes prepared from rodent heart, the predominant form of AC9
is truncated; the carboxyl terminal domain, which contains the auto-regulatory motif is
undetectable, likely cleaved proteolytically [12,15]. A similarly shortened AC9 protein is
found in human heart samples [12]. While the exact mode of cleavage is yet to be elucidated,
it is clear that the potential for diminished cyclase activity due to reduced concentrations of
ATP is largely eliminated in rodent as well as human heart.

A second, radically different solution for the ATP to AC9 supply problem developed
in bony fish. Species that appeared after teleost-specific genome duplication (TGD) have
two AC9 genes. The respective primary sequences of the proteins encoded by these genes
are closely similar to that of the single mammalian orthologue. However, only one of
the teleost AC9 paralogues harbors the carboxyl-terminal auto-regulatory motif, which
is highly conserved from hagfish to human (Figure 1). The RNA-seq expression tables
in the PhyloFish database [16] show that in all the post-TGD species tested, the heart
only expresses the gene for the AC9 paralogue that lacks the auto-regulatory motif. Thus,
subfunctionalization of the AC9 genes after TGD has obviated the potential danger of
suboptimal cardiac AC9 activity due to low ATP sensitivity induced by auto-inhibition. In
zebrafish, knock-down of the non-autoinhibited AC9 gene caused severe acute heart failure
within three days post fertilization, indicating an essential role of the enzyme in cardiac
function [17].
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Figure 1. The auto-regulatory motif of AC9 is unique to vertebrates species and highly conserved.
The single amino acid codes of the primary sequences of the auto-regulatory motif in the isoform-
specfic carboxyl-teminal domain of AC9 are shown. In human AC9 these correspond to positions
1263–1278 (data from Genbank and Ensembl databases).

Taken together, ensuring the operation of AC9 in the heart independently of the
fluctuations of intracellular ATP levels appears to be a significant beneficial trait during
natural evolution that has produced at least two distinct solutions: proteolytic cleavage in
mammalian heart and an ohnolog AC9 gene in post-TGD bony fish. A third, as yet only
partly tested, possibility is dynamic modulation by protein phosphorylation [4]. As per
PhosphositePlus (https://www.phosphosite.org/ (accessed on 29 October 2024)), both
serines in the autoregulatory motif can be phosphorylated, and mutation of S1273 to alanine
reduced the efficacy of autoinhibition [4].

One remaining question is: why has auto-inhibition of AC9 uniquely developed in
vertebrates in the first place? A potential mechanistic answer is suggested by recent work
by von Zastrow et al. They have shown that upon activation of Gs-coupled receptors, AC9
from among AC1, AC3, and AC5 is selectively internalized through an endosomal pathway
in HEK239 cells [18] as well as medium spiny striatal neurons in culture [19]. Moreover,
they found that the internalized AC9_Gsα complex is transported to the vicinity of the
cell nucleus and can activate downstream cAMP-sensitive mediators. It is tempting to
speculate that the powerful autoinhibition of AC9 in the presence of active Gsα serves
to target activated cAMP production selectively, e.g., to a cellular compartment that can
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remove the occlusion of the ATP substrate site by changing the state of phosphorylation of
the autoregulatory motif. Autoinhibition ensures that only a minimal amount of cAMP is
“spilled” in the cytoplasm during the transit of AC9_Gsα from the plasma membrane to
the site of delivery.
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