Development of Paclitaxel Proliposomal Dry Powder Inhaler (PTX-PLM-DPI) by Freeze-Drying Method for Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. Formulation and Optimization of PTX-PLM-DPI
2.2. Evaluation of Optimized PTX-PLM-DPI
2.3. Entrapment Efficiency and In Vitro Drug Release
2.4. Release Kinetics
2.5. Delivered Dose Uniformity
2.6. In Vitro Lung Deposition Study
2.7. In Vitro Cytotoxicity (MTT Assay)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of PTX-PLM-DPI
4.2.2. Evaluation of PTX-PLM-DPI Powder
4.2.3. Reconstitution to Liposomes and Its Physicochemical Evaluation
4.2.4. HPLC Method Development
4.2.5. Entrapment Efficiency
4.2.6. In Vitro Release of Paclitaxel
4.2.7. Release Kinetics
4.2.8. In Vitro Evaluation of Aerosol Performance by Cascade Impactor
4.2.9. Delivered Dose Uniformity (DDU)
4.2.10. In Vitro Lung Deposition Study
4.2.11. In Vitro Cytotoxicity (MTT Assay)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPI | Dry Powder Inhaler |
IC50 | Half Maximal Inhibitory Concentration |
PLM | Proliposomes |
EEG | Excipient-enhanced particle growth |
PTX | Paclitaxel |
LMH | Lactose monohydrate |
SPC | Soya phosphatidylcholine |
FBS | Fetal Bovine Serum |
RBF | Round Bottom Flask |
TEM | Transmission Electron Microscopy |
SEM | Scanning Electron Microscopy |
XRD | X-ray diffraction |
DDU | Delivered dose uniformity |
PDI | Polydispersity index |
DLS | Dynamic light scattering |
PBS | Phosphate-buffered saline |
ACI | Anderson Cascade Impactor |
IP | Induction Port (IP) |
PS | Pre-separator |
CFC | Critical Flow Controller |
DUSA | Dose Uniformity Sampling Apparatus |
MMAD | Mass Median Aerodynamic Diameter |
FPF | Fine Particle Fraction |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
DMSO | Di methyl Sulfoxide |
References
- Zhang, Q.; Huang, X.E.; Gao, L.L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed. Pharmacother. 2009, 63, 603–607. [Google Scholar] [CrossRef]
- Pandey, H.; Rani, R.; Agarwal, V. Liposome and their applications in cancer therapy. Braz. Arch. Biol. Technol. 2016, 59, e16150477. [Google Scholar] [CrossRef]
- Yang, T.; Cui, F.D.; Choi, M.K.; Lin, H.; Chung, S.J.; Shim, C.K.; Kim, D.D. Liposome Formulation of Paclitaxel with Enhanced Solubility and Stability. Drug Deliv. 2007, 14, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Rojanarat, W.; Nakpheng, T.; Thawithong, E.; Yanyium, N.; Srichana, T. Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv. 2012, 19, 334–345. [Google Scholar] [CrossRef]
- Payne, N.I.; Timmins, P.; Ward, C.V.A.M.D.; Ridgway, F. Proliposomes: A novel solution to an old problem. J. Pharm. Sci. 1986, 75, 325–329. [Google Scholar] [CrossRef]
- Singh, N.; Kushwaha, P.; Ahmad, U.; Abdullah, M. Proliposomes: An Approach for the Development of Stable Liposome. Ars. Pharm. 2019, 60, 231–240. [Google Scholar] [CrossRef]
- Gomez, A.I.; Acosta, M.F.; Muralidharan, P.; Yuan, J.X.J.; Black, S.M.; Hayes, D.; Mansour, H.M. Advanced Spray Dried Proliposomes of Amphotericin B Lung Surfactant-Mimic Phospholipid Microparticles/Nanoparticles as Dry Powder Inhalers for Targeted Pulmonary Drug Delivery. Pulm. Pharmacol. Ther. 2020, 64, 101975. [Google Scholar] [CrossRef] [PubMed]
- Adel, S.M.; ElMeligy, M.F.; Abdelrahim, M.A.; Mage, A.; Abdelkhalek, A.A.; Abdelmoteleb, A.M.; Elkasabgy, N.A. Design and Characterization of Spray-Dried Proliposomes for the Pulmonary Delivery of Curcumin. Int. J. Nanomed. 2021, 16, 2667–2687. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B 2018, 8, 440–448. [Google Scholar] [CrossRef]
- Lee, W.H.; Loo, C.Y.; Traini, D.; Young, P.M. Development and Evaluation of Paclitaxel and Curcumin Dry Powder for Inhalation Lung Cancer Treatment. Pharmaceutics 2021, 13, 9. [Google Scholar] [CrossRef]
- Islam, N.; Gladki, E. Dry powder inhalers (DPIs)—A review of device reliability and innovation. Int. J. Pharm. 2008, 360, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Suzuki, Y.; Kobayashi, Y.; Ishii, T.; Uchida, S.; Itaka, K.; Kataoka, K.; Okamoto, H. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying. Pharmaceutics 2015, 7, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Boer, A.H.D.; Hagedoorn, P.; Hoppentocht, M.; Buttini, F.; Grasmeijer, F.; Frijlink, H.W. Dry powder inhalation: Past; present; future. Expert. Opin. Drug Deliv. 2016, 14, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C. Pharmaceutical Particle Engineering via Nano Spray Drying—Process Parameters and Application Examples on the Laboratory Scale. Int. J. Med. Nano Res. 2018, 5, 026. [Google Scholar] [CrossRef]
- Anderson, S.D.; Daviskas, E.; Brannan, J.D.; Chan, H.K. Repurposing excipients as active inhalation agents: The mannitol story. Adv. Drug Deliv. Rev. 2018, 133, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010, 392, 1–19. [Google Scholar] [CrossRef]
- Wauthoz, N.; Deleuze, P.; Saumet, A.; Duret, C.; Kiss, R.; Amighi, K. Temozolomide-Based Dry Powder Formulations for Lung Tumor-Related Inhalation Treatment. Pharm. Res. 2011, 28, 762–775. [Google Scholar] [CrossRef]
- Wang, B.; Hu, W.; Yan, H.; Chen, G.; Zhang, Y.; Mao, J.; Wang, L. Lung cancer chemotherapy using nanoparticles: Enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed. Pharmacother. 2021, 136, 11124. [Google Scholar] [CrossRef]
- Gao, Y.; Nai, J.; Yang, Z.; Zhang, J.; Ma, S.; Zhao, Y.; Li, H.; Li, J.; Yang, Y.; Yang, M.; et al. A novel preparative method for nanoparticle albumin-bound paclitaxel with high drug loading and its evaluation both in vitro and in vivo. PLoS ONE 2021, 16, e0250670. [Google Scholar] [CrossRef] [PubMed]
- Sofias, A.M.; Dunne, M.; Storm, G.; Allen, C. The battle of “Nano” Paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu, E.; Cagel, M.; Lagomarsino, E.; Moretton, M.; Chiappett, D.A. Paclitaxel: What has been done and the challenges remain ahead. Int. J. Pharm. 2017, 526, 474–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, M.; Du, L.; Zeng, J.; Yao, T.; Jin, Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm. 2020, 578, 119177. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Taguchi, K.; Sakuragi, M.; Imoto, S.; Yamasaki, K.; Otagiri, M. Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer. ACS Omega 2019, 4, 8693–8700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, S.; Pollack, S.F.; Li, R.; Gonzalez, A.M.; Fan, J.; Zou, J.; Leininger, S.E.; Pavía-Sanders, A.; Johnson, R.; et al. Improving Paclitaxel Delivery: In Vitro and In Vivo Characterization of PEGylated Polyphosphoester-Based Nanocarriers. J. Am. Chem. Soc. 2015, 137, 2056–2066. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.A.T.; Sun, Q.; Meenach, S.A. Development and evaluation of paclitaxel-loaded aerosol nanocomposite microparticles and their efficacy against air-grown lung Cancer tumor spheroids. ACS Biomater. Sci. Eng. 2019, 5, 6570–6580. [Google Scholar] [CrossRef] [PubMed]
- Chogale, M.M.; Patravale, V.B. A triple combination ’nano’ dry powder inhaler for tuberculosis: In vitro and in vivo pulmonary characterization. Drug Deliv. Transl. Res. 2021, 11, 1520–1531. [Google Scholar] [CrossRef]
- Kumar, K.N.; Mallik, S.; Sarkar, K. Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. J. Acoust. Soc. Am. 2017, 142, 3670. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Yi, E.J.; Hwang, K.M.; Cho, C.H.; Park, C.W.; Kim, J.Y.; Rhee, Y.S.; Park, E.S. Formulation and evaluation of carrier-free dry powder inhaler containing sildenafil. Drug Deliv. Transl. Res. 2019, 9, 319–333. [Google Scholar] [CrossRef]
- Koudelka, S.; Turánek, J. Liposomal paclitaxel formulations. J. Control. Release 2012, 163, 322–334. [Google Scholar] [CrossRef]
- Najlah, M.; Jain, M.; Wan, K.; Ahmed, W.; Alhnan, M.A.; Phoenix, D.A.; Taylor, K.M.G.; Elhissi, A. Ethanol-Based Proliposome Delivery Systems of Paclitaxel for In Vitro Application Against Brain Cancer Cells. J. Liposome Res. 2018, 28, 74–85. [Google Scholar] [CrossRef]
- Mali, A.J.; Joshi, P.A.; Bothiraja, C.; Pawar, A.P. Fabrication and application of dimyristoyl phosphatidylcholine biomaterial-based nanocochleates dry powder inhaler for controlled release resveratrol delivery. Future J. Pharm. Sci. 2021, 7, 47. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.K.; Chowdhury, P. Kinetic Modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Dechraksa, J.; Suwandecha, T.; Srichana, T. Deposition Pattern of Polydisperse Dry Powders in Andersen Cascade Impactor—Aerodynamic Assessment for Inhalation Experimentally and In Silico. Turk. J. Pharm. Sci. 2020, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Samaan, T.M.A.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019, 9, 789. [Google Scholar] [CrossRef]
- Muneer, S.; Masood, Z.; Butt, S.; Anjum, S.; Zainab, H.; Anwar, N.; Ahmad, N. Proliposomes as Pharmaceutical Drug Delivery System: A Brief Review. J. Nanomed. Nanotechnol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Khan, I.; Yousaf, S.; Subramanian, S.; Alhnan, M.A.; Ahmed, W.; Elhissi, A. Proliposome Tablets Manufactured Using a Slurry-Driven Lipid-Enriched Powders: Development, Characterization and Stability Evaluation. Int. J. Pharm. 2018, 538, 250–262. [Google Scholar] [CrossRef]
- Khan, I.; Lau, K.; Bnyan, R.; Houacine, C.; Roberts, M.; Isreb, A.; Elhissi, A.; Yousaf, S. A facile and novel approach to manufacture paclitaxel-loaded proliposome tablet formulations of micro or nano vesicles for nebulization. Pharm. Res. 2020, 37, 116. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.P.; Hazarika, H.; Bhardwaj, R.; Loying, P.; Baishya, R.; Dash, S.K.; Das, M.K. Curcumin-docetaxel co loaded nanosuspension for enhanced antibreast cancer activity. Expert. Opin. Drug Deliv. 2016, 13, 1065–1074. [Google Scholar] [CrossRef]
- Sartori, T.; Murakami, F.S.; Cruz, A.P.; de Campos, A.M. Development and Validation of a Fast RP-HPLC Method for Determination of Methotrexate Entrapment Efficiency in Polymeric Nanocapsules. J. Chromatogr. Sci. 2008, 46, 505–509. [Google Scholar] [CrossRef]
- Lopes, C.E.; Langoski, G.; Klein, T.; Ferrari, P.C.; Farago, P.V. A simple HPLC method for the determination of halcinonide in lipid nanoparticles: Development, validation, encapsulation efficiency, and in vitro drug permeation. Braz. J. Pharm. Sci. 2017, 53, e15250. [Google Scholar] [CrossRef]
- Fuster, J.; Negro, S.; Salama, A.; Fernandez-Carballido, A.; Marcianes, P.; Boeva, L.; Barcia, E. HPLC-UV method development and validation for the quantification of ropinirole in new PLGA multiparticulate systems: Microspheres and nanoparticles. Int. J. Pharm. 2015, 491, 310–317. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Lin, D.; Xu, D.; Li, S.; Huang, J.; Weng, S.; Lin, Z.; Zheng, Y.; Yao, H.; et al. Proliposomes for oral delivery of total biflavonoids extract from Selaginella doederleinii: Formulation development, optimization, and in vitro–in vivo characterization. Int. J. Nanomed. 2019, 14, 6691–6706. [Google Scholar] [CrossRef]
- Shepard, K.B.; Vodak, D.T.; Kuehl, P.J.; Revelli, D.; Zhou, Y.; Pluntze, A.M.; Adam, M.S.; Oddo, J.C.; Switala, L.; Cape, J.L.; et al. Local Treatment of Non-small Cell Lung Cancer with a Spray-Dried Bevacizumab Formulation. AAPS PharmSciTech 2021, 22, 230. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.K.; Saisivam, S.; Debanth, M.; Omri, A. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS ONE 2018, 13, e0190976. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Chisholm, W.P.; Slaven, J.E.; Harper, M. Size Distributions of 0.5 to 20 µm Aerodynamic Diameter Lead-Containing Particles from Aerosol Sampler Walls and Filters. Aerosol Sci. Technol. 2009, 43, 1042–1050. [Google Scholar] [CrossRef]
Formulation Number | Lipid:Carrier | SPC:Chol | Vesicle Size nm ± SD | Entrapment % ± SD | Release % ± SD (in 24 h) |
---|---|---|---|---|---|
F16 | 1:5 | 9:1 | 196.20 ± 4.99 | 92.64 ± 1.40% | 27.26 ± 4.20 |
Flow Parameter | Pre-Lyophilization | Post-Lyophilization |
---|---|---|
Tapped Density | 0.65 ± 0.02 | 0.52 ± 0.01 |
Carr’s Index | 24.19 ± 0.05 | 7.93 ± 0.03 |
Hausner’s Ratio | 1.32 ± 0.06 | 1.08 ± 0.03 |
Angle of Repose | 55.14° ± 2.10 | 28.19° ± 2.60 |
Zero Order Model | First Order Model | Higuchi Model | Korsmeyer–Peppas Model | ||||
---|---|---|---|---|---|---|---|
K0 | R2 | K1 | R2 | KH | R2 | K | n |
0.0425 | 0.9696 | −0.0002 | 0.9789 | 1.0506 | 0.9836 | 0.9707 | 0.3583 |
ACI Stage | Particle Size (µm) | Amount of Drug Deposited (µg) ± SD |
---|---|---|
Device | 26.17 ± 2.44 | |
Pre-separator | 103.99 ± 0.11 | |
Stage 0 | 9.0+ | 78.13 ± 4.55 |
Stage 1 | 7.40 | 34.80 ± 3.47 |
Stage 2 | 5.25 | 68.34 ± 1.98 |
Stage 3 | 4.00 | 35.64 ± 4.07 |
Stage 4 | 2.70 | 42.99 ± 3.66 |
Stage 5 | 1.60 | 35.15 ± 2.13 |
Stage 6 | 0.90 | 25.70 ± 6.01 |
Stage 7 | 0.55 | 25.36 ± 5.66 |
Sl. No. | Formulations | IC50 Values (ng/mL) ± SD |
---|---|---|
1 | PTX Suspension | 154.90 ± 3.64 |
2 | Reconstituted liposomes of the PTX-PLM-DPI | 46 ± 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borah, C.; Saikia, T.; Bharali, A.; Lahan, M.; Biswas, N.; Sahu, B.P. Development of Paclitaxel Proliposomal Dry Powder Inhaler (PTX-PLM-DPI) by Freeze-Drying Method for Lung Cancer. Drugs Drug Candidates 2024, 3, 275-290. https://doi.org/10.3390/ddc3010016
Borah C, Saikia T, Bharali A, Lahan M, Biswas N, Sahu BP. Development of Paclitaxel Proliposomal Dry Powder Inhaler (PTX-PLM-DPI) by Freeze-Drying Method for Lung Cancer. Drugs and Drug Candidates. 2024; 3(1):275-290. https://doi.org/10.3390/ddc3010016
Chicago/Turabian StyleBorah, Chinmoyee, Trideep Saikia, Alakesh Bharali, Madhuchandra Lahan, Nikhil Biswas, and Bhanu P Sahu. 2024. "Development of Paclitaxel Proliposomal Dry Powder Inhaler (PTX-PLM-DPI) by Freeze-Drying Method for Lung Cancer" Drugs and Drug Candidates 3, no. 1: 275-290. https://doi.org/10.3390/ddc3010016
APA StyleBorah, C., Saikia, T., Bharali, A., Lahan, M., Biswas, N., & Sahu, B. P. (2024). Development of Paclitaxel Proliposomal Dry Powder Inhaler (PTX-PLM-DPI) by Freeze-Drying Method for Lung Cancer. Drugs and Drug Candidates, 3(1), 275-290. https://doi.org/10.3390/ddc3010016