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Abstract: In recent years, machine learning algorithms have seen extensive application in
chemical science, especially in cell detection technologies. Machine learning, a branch of
artificial intelligence, is designed to automatically discover patterns in data. This review
provides an overview of cell detection methods such as bright-field microscopy (BL),
dark-field microscopy (DL), surface-enhanced Raman scattering (SERS), and fluorescence
detection (FL). We highlight key computational models like support vector machines and
convolutional neural networks that significantly enhance the precision and efficiency of
automated cell detection. Relevant research applications are discussed, along with future
prospects for machine learning in cell analysis.
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1. Introduction
Machine learning is widely applied across various scientific disciplines, often in

tandem with big data analytics and artificial intelligence [1]. It offers exceptional advantages
in cellular data processing, with increased flexibility, efficiency, and precision in solving
practical problems. In this review, we focus on the evolution of cell detection technology,
examining how traditional techniques have transitioned into modern approaches using
deep learning models.

Prior to 2012, classical machine learning algorithms, such as the viola jones detector
(VJ detector) [2], histogram of oriented gradients (HOG) [3], and deformable part models
(DPM) [4], dominated the landscape. However, the introduction of deep learning architec-
tures like AlexNet [5], R-CNN [6], and YOLO [7] after 2012 led to significant advancements
in the field. These deep learning models have since been integrated into cell detection
technologies, enhancing the intelligence and accuracy of automated detection systems.
Traditional detection algorithms primarily relied on feature extraction and image segmenta-
tion, using methods based on object region or color. With the advent of deep learning and
the growth of cell data, two-stage detection models like R-CNN [8] and single-stage models
such as YOLO and SSD [9] have emerged as standard tools. More recently, algorithms
based on the Transformer architecture have gained traction, representing the next wave of
innovation in object detection [10]. Machine learning in cell detection continues to evolve,
with diverse algorithmic approaches improving the accuracy and reliability of detection
results. This review explores the trajectory of these advancements and discusses their
applications in cell detection.

As a software tool for building models, machine learning is trainable and reliable,
which can facilitate researchers in cell analysis. With the advancement of machine learning
algorithms and the development of cell detection technology, we can automatically analyze
large amounts of data through machine learning models, so as to predict and analyze
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more complex cell behaviors and provide new insights for the treatment of diseases; this
is expected to be applied in the fields of chemistry, biology, and medicine and to promote
interdisciplinary cooperation.

2. Machine Learning Algorithms for Cell Detection
Early cell detection techniques primarily utilized two types of machine learning

algorithms: kernel methods and ensemble methods. Kernel methods address the challenge
of mapping non-linear, low-dimensional data into a higher-dimensional space, with support
vector machines (SVMs) serving as a classical model. For instance, Svensson et al. achieved
an 88% accuracy rate in identifying circulating tumor cells using an SVM coupled with a
naive Bayes classifier [11]. This algorithm is reliable and automated and plays a key role in
the early diagnosis of diseases. However, the kernel method is often limited to specific types
of target models, leading to the development of more generalized ensemble approaches.

Ensemble methods combine multiple machine learning algorithms to transform a
series of weak learners into strong predictors. Key examples include the AdaBoost and
random forest algorithms [12]. Pereira et al. demonstrated the utility of random forest
models in brain tumor segmentation, achieving superior precision and stability compared
to earlier segmentation techniques [13]. We believe that the method can be further improved
by combining the model with other techniques, resulting in data with higher accuracy and
more stable results. Despite these advancements, traditional machine learning algorithms
struggle with complex, large-scale cell data, and detection accuracy can be limited by the
sample size.

Recent developments in machine learning have introduced deep learning algorithms
that simulate the neural networks of the human brain. In particular, a convolutional neural
network (R-CNN) is a region-based, two-stage target detection algorithm, which has been
shown to be effective in cell detection tasks. Zeune et al. used a CNN combined with visual-
ization techniques to achieve over 96% accuracy in detecting circulating tumor cells, while
also identifying novel cell subtypes [14]. This strategy combines a variety of technologies,
more in-depth research based on machine learning, and higher accuracy for cell detection.
In addition, YOLO is a border-based single-stage target detection algorithm, which has been
successfully applied to cervical cancer and breast cancer cell detection [15]. We believe that
the single-stage object detection algorithm has lower computational complexity than the
two-stage object detection algorithm, so the detection speed is faster. These advancements
suggest that deep learning algorithms will continue to play a pivotal role in the future of
cell detection technologies.

3. The Application of Machine Learning to Cell Detection Methods
The diversity of machine learning and cell detection methods can help us better un-

derstand the similarities and differences in cell data for tasks such as cell data visualization,
dimensionality reduction, clustering, and feature selection. In practical applications, it is
necessary to select the appropriate cell detection means according to the specific needs,
determine the machine learning algorithms and parameters, and evaluate and optimize the
results to achieve the best results. Therefore, according to the means of cell detection, we
can roughly divide this into four categories: bright-field microscopic detection, dark-field
microscopic detection, surface-enhanced Raman scattering, and fluorescence detection.

3.1. Bright-Field Microscopic Detection

Bright-field microscopy, a cost-effective optical method, allows for the analysis of cell
shape, size, and morphology [16]. By applying machine learning algorithms to bright-field
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images, researchers can rapidly and accurately identify cellular characteristics, improving
detection and analysis outcomes.

The early diagnosis and evaluation of cancer are crucial to the treatment of patients
with the disease. Chemotherapy is an important method used in the treatment of leukemia,
but cancer cells of different patients have different resistances to the treatment effect [17].
Uelu et al. used the computer vision algorithm to quantitatively detect the immuno-
magnetic beads and leukemia cells by using the cell images collected by the high-power
objective lens under the bright-field microscope (Figure 1a), and the accuracy reached 91.6%
under the 40-fold objective lens [18]. This method provides convenience for the realization
of on-site cell analysis.

Circulating tumor cells (CTCs) are an important biomarker of cancer, and their count
can predict the survival of patients, but their identification is difficult [19]. Wang et al. used
convolutional neural networks to detect CTCs in blood under a bright-field microscope
(Figure 1b) and counted the CTCs simply and quickly through cell images with high
detection accuracy [20]. This method is smart and could be used to detect rare cells in
the future.

Due to the low contrast of images obtained under bright-field microscopy and the
possibility of cell overlap, automatic segmentation cannot be performed, and manual
acquisition is time-consuming and complicated [21]. Asha et al. developed a remarkable
and spherically driven U-shaped network (SBU-net), which can accurately segment cells in
bright-field microscopic images (Figure 1c) and obtain cell structure information [22]. This
model has strong cell segmentation performance and greatly promotes the development of
the automatic segmentation of microscopic images.

Mesenchymal stem cells (MSCs) are a kind of stem cell with diverse differentiation
abilities, widely used in the research of immune diseases. The aging of MSCs will cause
adverse reactions to the human body, so the count of senescent cells in MSCs is very
important [23,24]. Celebi et al. used the model combined with self-supervised learning
and mask R-CNNs to automatically segment and count senescent cells in bright-field
microscopy images (Figure 1d), with an accuracy of more than 80% [25]. The model can be
further applied to the detection of other cell types.

3.2. Dark-Field Microscopic Detection

Because of the low contrast that is characteristic of bright-field images, the performance
of the segmentation algorithm is affected to some extent, and there are some limitations
to cell detection. With a dark-field microscope, the condenser collects diffracted light by
passing light through the aperture of the lens so that the background of the image is black
but the cells are bright, and a high-contrast image is obtained [26]. The combination of
machine learning and dark-field microscopy has improved the accuracy of cell detection
due to the enhanced performance of the algorithm.

In cell detection studies, the growth state of cells is extremely important, among which
cell density and activity are the most important [27]. Wei et al. developed a probe based
on the support vector machine model (SVM), which was used to analyze yeast cell images
under dark-field microscopy (Figure 2a), so as to separate living and dead cells and detect
cell density and activity with high precision [28]. This method has high precision, good
stability, and good application prospects in distinguishing living cells from dead cells.
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Figure 1. Application of machine learning in bright-field microscopic detection of cells. (a) Quanti-
tative detection of immunomagnetic beads and leukemia cells using visual algorithms and bright-
field microscopy. Reproduced from Ref. [18] with the permission of Elsevier. (b) Using CNN algo-
rithm and bright-field microscope to detect CTCs in blood. Reproduced from Ref. [20] with the per-
mission of Nature. (c) Accurate segmentation of cells in bright-field microscopic images using SBU-
net. Reproduced from Ref. [22] with the permission of Elsevier. (d) Automatic segmentation of se-
nescent cells in bright-field microscopic images using self-supervised learning. Reproduced from 
Ref. [25] with the permission of Wiley Online Library. 
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mance of the segmentation algorithm is affected to some extent, and there are some limi-
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which cell density and activity are the most important [27]. Wei et al. developed a probe 
based on the support vector machine model (SVM), which was used to analyze yeast cell 
images under dark-field microscopy (Figure 2a), so as to separate living and dead cells 
and detect cell density and activity with high precision [28]. This method has high preci-
sion, good stability, and good application prospects in distinguishing living cells from 
dead cells. 

In the process of cell culture, cells are easily affected by the external environment and 
so are easy to be contaminated, and it is important to develop non-staining and non-harm-

Figure 1. Application of machine learning in bright-field microscopic detection of cells. (a) Quantita-
tive detection of immunomagnetic beads and leukemia cells using visual algorithms and bright-field
microscopy. Reproduced from Ref. [18] with the permission of Elsevier. (b) Using CNN algorithm
and bright-field microscope to detect CTCs in blood. Reproduced from Ref. [20] with the permission
of Nature. (c) Accurate segmentation of cells in bright-field microscopic images using SBU-net.
Reproduced from Ref. [22] with the permission of Elsevier. (d) Automatic segmentation of senescent
cells in bright-field microscopic images using self-supervised learning. Reproduced from Ref. [25]
with the permission of Wiley Online Library.

In the process of cell culture, cells are easily affected by the external environment
and so are easy to be contaminated, and it is important to develop non-staining and non-
harmful cell analysis methods. Based on SVMs in machine learning, Burgemeister et al.
proposed a CellViCAM system (Figure 2b), which can estimate the animal cell density
and cell differentiation degree without adding any marks when processing dark-field
microscopic images [29]. This strategy can better distinguish cell differentiation states such
as live cells, necrotic cells, and apoptotic cells.

The change in blood value will lead to the occurrence of many diseases. The count
of blood cells includes red blood cells, white blood cells, platelets, and other quantitative
indicators [30]. The collection of human blood is conducive to the screening of diseases, in
which the morphologic study of red blood cells can know whether anemia is present [31].
Using Mi scattering and machine learning, Chen et al. obtained cell morphological infor-
mation (Figure 2c) by imaging in the dark field, including the volume, concentration, and
distribution range of red blood cells, with high accuracy [32]. This method has a good
advantage in detecting anemia.
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Gold nanoparticles (AuNPs) have high stability, good biocompatibility, and strong
molecular signals, which can provide good imaging [33]. Based on the scattering properties
of AuNPs, researchers can construct functional nanosensors [34,35]. However, conven-
tional methods for detecting nanoparticle scattering in living cells are time-consuming
and complex. Huang et al. developed U-Net convolutional deep learning neural network
technology (Figure 2d), which can identify the scattered light signal of nanoparticles in
living cells with high accuracy under complex environments with background interference
by using dark-field microscopic imaging technology [36]. This method provides a new idea
for the imaging analysis of living cells in the field of chemistry.

In addition to intracellular, we can also detect the degree of AuNPs’ aggregation in
different saline solutions. Wang et al. used dark-field microscopic imaging to build an
AlexNet model of machine learning, which could accurately predict the AuNP aggregation
degree in solution (Figure 2e) with an accuracy higher than 96% [37]. This strategy is useful
for the predictive analysis of dark-field imaging, and it has potential biological applications.
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with the permission of Elsevier. (c) The morphologic information of red blood cells was obtained by 
using machine learning imaging under dark-field microscopy. Red represents single cells and blue 
represents multiple cells. Reproduced from Ref. [32] with the permission of Optica Publishing 
Group. (d) Detection of nanoparticle scattering in living cells using U-Net convolutional deep learn-
ing neural network technology and dark-field microscopic imaging. Reproduced from Ref. [36] with 
the permission of American Chemical Society. (e) Dark-field microscopy and an AlexNet model 
were used to predict AuNPs aggregation in salt solution. Reproduced from Ref. [37] with the per-
mission of American Chemical Society. 
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detection [38]. Different cells have different feature types, and the collected Raman spec-
tral data are different. Machine learning can be used to quickly analyze the structure and 
composition of different feature peaks from a large number of Raman spectral data, so as 
to find the best feature data and obtain effective information faster. Therefore, after the 
introduction of machine learning technology, the detection effect of cells is better, the ac-
curacy is higher, and the research value is very meaningful. 

Ulcerative colitis (UC) is a chronic inflammatory disease, and evaluating the severity 
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Figure 2. Application of machine learning in dark-field microscopic detection of cells. (a) A probe
developed based on SVMs for the analysis of yeast cells under dark-field microscopic images. Repro-
duced from Ref. [28] with the permission of Wiley Analytical Science. (b) Cell density in dark-field
microscopic images was estimated based on the CellViCAM system. Reproduced from Ref. [29]
with the permission of Elsevier. (c) The morphologic information of red blood cells was obtained by
using machine learning imaging under dark-field microscopy. Red represents single cells and blue
represents multiple cells. Reproduced from Ref. [32] with the permission of Optica Publishing Group.
(d) Detection of nanoparticle scattering in living cells using U-Net convolutional deep learning
neural network technology and dark-field microscopic imaging. Reproduced from Ref. [36] with the
permission of American Chemical Society. (e) Dark-field microscopy and an AlexNet model were
used to predict AuNPs aggregation in salt solution. Reproduced from Ref. [37] with the permission
of American Chemical Society.
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3.3. Surface-Enhanced Raman Scattering

Nowadays, surface-enhanced Raman scattering (SERS) technology is used to study
the spectrum of biomolecules in cells. The Raman effect is caused by the vibration of the
molecule, and this technique can identify differences in the composition of the sample
by the characteristic peak location and intensity. This method has high detection speed,
high accuracy, and no sample pretreatment, so it has been more and more widely used in
cell detection [38]. Different cells have different feature types, and the collected Raman
spectral data are different. Machine learning can be used to quickly analyze the structure
and composition of different feature peaks from a large number of Raman spectral data,
so as to find the best feature data and obtain effective information faster. Therefore, after
the introduction of machine learning technology, the detection effect of cells is better, the
accuracy is higher, and the research value is very meaningful.

Ulcerative colitis (UC) is a chronic inflammatory disease, and evaluating the severity
of UC is crucial for the treatment of the disease, but the biomolecular information related to
UC cannot be found by conventional methods [39]. Kirchberger-Tolstik et al. used Raman
spectroscopy to construct a 1D CNN model (Figure 3a) for predicting the Mayo endoscopic
score in biopsies of patients with colonic inflammation [40]. The results show that many
molecular changes, such as proteins, DNA, and lipids, occur during inflammation, and this
work also has important implications for the diagnosis of other types of diseases.

Cyanobacteria are important microorganisms in photosynthesis, and the selection of
mutant cells from them is of great significance in biogenetic studies [41]. Gao et al. used
surface-enhanced Raman scattering technology to establish a support vector analyzer (SVC)
model (Figure 3b) to distinguish wild-type and mutant cyanobacteria cells with an accuracy
of 97% [42]. This high-throughput selection approach provides innovative strategies for
genetic and cellular detection in biology.

Changes in cell secretions affect cell death, so the classification of cancer cells is
beneficial for cancer treatment, but conventional methods are time-consuming and easily
destroy cells [43,44]. Plou et al. used marker-free SERS to combine microfluidic and
machine learning to quickly identify cell secretions under different conditions (Figure 3c),
with an accuracy of 95% [45]. This scheme lays a good foundation for high-throughput
cell detection.

Exosomes are extracellular vesicles with abundant cellular body fluids, which contain
a lot of molecular information and are an important biomarker for cancer [46,47]. However,
it is difficult to find comprehensive molecular information when detecting exosomes [48].
By using machine learning and SERS, Diao et al. used AuNPs as a basis to accurately
detect exosomes in samples with high sensitivity (Figure 3d), and the prediction accuracy
of cancer reached 91.1% [49]. This method has a wide application prospect for the diagnosis
of cancer and even other diseases in the future.

Dopamine (DA), as a neurotransmitter, plays an important role in functional regula-
tion [50]. However, it is difficult to determine the content of DA in exosomes secreted by
cells. Lv et al. built an XGBoost model that can accurately identify exosome signals secreted
by different cells (Figure 3e) and used nanotubes as an auxiliary method to accurately
measure the DA content in exosomes by using continuous pulse current [51]. This strategy
uses the continuous pulse current signal and can obtain a single dimension spectrum
similar to the Raman spectrum. The spectrum with signal peaks can also be analyzed by it,
which provides a new idea for chemical research.
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times limited by the high complexity of the sample, and the establishment of an algorithm 
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Figure 3. Application of machine learning to cell detection with surface-enhanced Raman scattering
technique. (a) Raman spectrum and CNN model were used to classify the severity of UC. Reproduced
from Ref. [40] with the permission of American Chemical Society. (b) SVC model and SERS were used
to identify mutant cyanobacteria cells. Reproduced from Ref. [42] with the permission of American
Chemical Society. (c) Rapid identification of cell secretions using marker-free SERS and machine
learning. Reproduced from Ref. [45] with the permission of Wiley Online Library. (d) Highly sensitive
detection of cellular exosomes using machine learning and SERS. Reproduced from Ref. [49] with the
permission of American Chemical Society. (e) XGBoost model and continuous pulse current were
used to determine the DA content in exosomes. Reproduced from Ref. [51] with the permission of
American Chemical Society.

3.4. Fluorescence Detection

For cell detection, the fluorescent probe is also a good detection method, which
has good specificity, high sensitivity, and strong tissue penetration [52]. However, it is
sometimes limited by the high complexity of the sample, and the establishment of an
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algorithm model through machine learning can break through this limitation, so as to
obtain a fluorescence probe with higher sensitivity and specificity, which makes the cell
detection more accurate, allowing it to be widely used in the detection of various biological
cells. In addition, fluorescent labeling methods based on optical imaging can make specific
cells show fluorescent signals in order to clearly observe the behavior of cells. By using
machine learning algorithms, fluorescent images can be automatically analyzed, specific
objects can be identified after multiple training, quantitative information can be collected,
and reliable data can be obtained quickly, which is conducive to cell analysis.

Non-melanoma skin cancer (NMSC) is a type of skin lesion, and its early diagnosis
is crucial for the treatment of the disease [53]. NMSC is divided into various types, and it
is difficult to evaluate the growth status of the cells [54]. Chen et al. used the stained cell
sections for fluorescence imaging and built a linear support vector machine model (LSVM),
which could accurately obtain different characteristics of skin cancer (Figure 4a), so as to
detect cancerous cells with high sensitivity [55]. This strategy has great potential for the
diagnosis of skin diseases.

Myelin is a lipid on the outside of neurons, and damage to it by heredity and external
environments can lead to multiple sclerosis disease [56,57]. Drug treatments that regenerate
myelin are urgently needed, so its detection is crucial [58]. Based on machine learning,
Yeti et al. proposed a method for detecting myelin in fluorescence microscopic images
(Figure 4b), which could extract feature data. In different machine learning technologies,
the detection accuracies of the Boosted Trees model and CNN model were up to more than
98% [59]. This method facilitates the rapid screening of drugs for myelin regeneration.

Muscle stem cells (MuSCs) play an important role in the growth of skeletal muscle and
contribute to the repair of damaged tissues; that is, they have strong regenerative capac-
ity [60,61]. Therefore, the dynamic regulation of MuSCs contributes to the regeneration of
skeletal muscle. Togninalli et al., using machine learning strategies, invented a microscope
method for Dual-FLIT imaging (Figure 4c), which can track the dynamic growth of single
cells at high resolution, thus regulating the dynamics of MuSCs [62]. This strategy helps us
better understand the mechanisms of tissue cell regeneration.

Bladder cancer is a malignant tumor with a high incidence, and the detection of
bladder cancer cells is helpful for early diagnosis and treatment [63]. Based on the SVM
model in the machine algorithm, Zhang et al. developed a double-fluorescence micro-
image flow cytometer (µ-FCM) for the high-throughput detection of bladder cancer cells
(Figure 4d) and effectively reduced the overlap of different cells [64]. The system provides
a new method for the detection of bladder cancer cells and the diagnosis of the disease.

3.5. Other Methods

The combination of machine learning and cell detection technology is diverse, and in
addition to the combination method mentioned above, the research has more directions.
Islam et al. developed a multi-head attention-based transformer model for finding plas-
modium parasites from blood cell data using the gradient-weighted class activation graph
technique with high test accuracy [65]. Karimzadeh et al. developed a multi-task generat-
ing artificial intelligence model for analyzing orphan non-coding RNA from patients with
non-small cell lung cancer, which can detect early cancer with high sensitivity. Due to the
large amount of blood sample data required in the experiment, this study can promote
interdisciplinary cooperation in chemistry and medicine [66]. Pastuszak et al. developed
a tree-based machine learning model for screening circulating tumor cells by analyzing
single-cell RNA sequencing data [67].



Targets 2025, 3, 2 9 of 14Targets 2025, 3, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 4. Application of machine learning to fluorescence detection of cells. (a) LSVM and fluores-
cence imaging were used to obtain characteristic information about different skin cancer cells. In the 
figure on the right, green represents Bowen’s disease (BD), yellow represents actinic keratosis (AK) 
and red represents basal cell carcinoma (BCC). Reproduced from Ref. [55] with the permission of 
American Chemical Society. (b) Detection of myelin using machine learning models and fluores-
cence. Reproduced from Ref. [59] with the permission of Elsevier. (c) Dynamic regulation of MuSC 
using machine learning and Dual-FLIT. Reproduced from Ref. [62] with the permission of Nature. 
(d) SVM and µ-FCM were used to detect bladder cancer cells. Reproduced from Ref. [64] with the 
permission of Elsevier. 

3.5. Other Methods 

The combination of machine learning and cell detection technology is diverse, and in 
addition to the combination method mentioned above, the research has more directions. 
Islam et al. developed a multi-head attention-based transformer model for finding plas-
modium parasites from blood cell data using the gradient-weighted class activation graph 
technique with high test accuracy [65]. Karimzadeh et al. developed a multi-task generat-
ing artificial intelligence model for analyzing orphan non-coding RNA from patients with 

Figure 4. Application of machine learning to fluorescence detection of cells. (a) LSVM and fluores-
cence imaging were used to obtain characteristic information about different skin cancer cells. In the
figure on the right, green represents Bowen’s disease (BD), yellow represents actinic keratosis (AK)
and red represents basal cell carcinoma (BCC). Reproduced from Ref. [55] with the permission of
American Chemical Society. (b) Detection of myelin using machine learning models and fluorescence.
Reproduced from Ref. [59] with the permission of Elsevier. (c) Dynamic regulation of MuSC using
machine learning and Dual-FLIT. Reproduced from Ref. [62] with the permission of Nature. (d) SVM
and µ-FCM were used to detect bladder cancer cells. Reproduced from Ref. [64] with the permission
of Elsevier.

Combined with the detailed analysis of the latest progress, the machine learning
model and detection means are diversified, and the detection means and machine learning
model are selected according to the specific detection target. To improve detection accuracy,
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researchers often improve on the original machine learning model to develop new models
that are conducive to cell detection. This type of research uses a variety of analytical
chemical assays, cell, and blood sample data, so it can greatly facilitate interdisciplinary
collaboration. The applications of machine learning models in chemistry and medicine are
promising, but they also pose ethical challenges. The privacy of patient data is the most
critical issue, with the risk of data breach or misuse in research. As we analyze data and
develop machine learning models, we also need to ensure that patient confidentiality is
maintained, either by encrypting or anonymizing the data. In short, the application of
machine learning in cell detection has broad prospects and unlimited potential.

4. Discussion
The combination of machine learning and various cell detection methods, including

bright-field, dark-field, SERS, and fluorescence techniques, has significantly improved the
accuracy and efficiency of cell analysis. While traditional cell analysis methods cannot
analyze the heterogeneity between cells, machine learning can analyze the data of individ-
ual cells to provide information at the single-cell level. In the single-cell analysis of tumor
tissue, machine learning can excavate the function and interaction relationship of different
cell groups through cluster analysis, providing new ideas and methods for tumor precision
treatment. Machine learning is capable of processing and analyzing complex datasets, thus
improving research efficiency and potentially revealing relationships at the cellular and
molecular level that cannot be observed with traditional methods. Combined with cell
analysis and machine learning, new biological phenomena and laws can be discovered to
promote the further development of life science research. However, challenges remain. The
performance of machine learning models is highly dependent on the quality and type of
training data, and mislabeled or incomplete data can hinder model performance. Addi-
tionally, complex machine learning models often lack interpretability, making it difficult to
balance accuracy with transparency.

To improve the reliability of machine learning models in cell detection, ensuring
high-quality, diverse, and accurately annotated datasets is critical, as it enhances model
generalizability and reduces bias. Techniques such as data augmentation and synthetic data
generation can further expand dataset variety and prevent overfitting. Employing robust
validation strategies like stratified k-fold cross-validation and leveraging ensemble learning
can mitigate individual model weaknesses and improve overall robustness. Incorporating
transfer learning from pre-trained models accelerates learning while enhancing perfor-
mance on smaller datasets. For better data interpretation, explainable AI (XAI) techniques
can be utilized to visualize and understand model decisions, while feature attribution
methods, such as SHAP or Grad-CAM, help link model predictions to meaningful biologi-
cal insights. Together, these approaches ensure both reliable performance and improved
interpretability in cell detection tasks.

The future of machine learning in cell detection holds immense promise in terms of
advancements in computational methods, imaging technologies, and biological research
converge. Enhanced algorithms, including deep learning techniques like transformers,
will improve the accuracy and speed of cell detection, enabling the real-time analysis and
more precise identification of cell types and abnormalities. The integration of multimodal
data from imaging techniques, genomics, proteomics, and transcriptomics will facilitate
holistic cell profiling, linking cellular morphology with molecular states and behaviors.
Machine learning will also play a vital role in personalized medicine by analyzing single-
cell heterogeneity and predicting cellular responses to therapies, thus accelerating drug
discovery and enabling tailored treatments. Automated, high-throughput systems powered
by machine learning will handle large-scale cell imaging datasets, while edge comput-
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ing and IoT devices will decentralize and democratize cell detection across laboratories
worldwide. Additionally, machine learning models will improve the detection of rare
cell types and complex interactions, providing critical insights into tissue organization,
immune responses, and disease progression. Explainable AI (XAI) will enhance the trans-
parency of these models, fostering trust in clinical applications and aiding researchers in
uncovering new biological insights. Emerging technologies like quantum computing and
neuromorphic chips will further revolutionize machine learning applications by increasing
processing speed and energy efficiency. Ethical considerations, such as bias-free models
and data privacy, alongside the proliferation of open-source tools and interdisciplinary
education, will democratize access to machine learning in cell detection, ensuring global
adoption. These advancements will transform not only basic research but also clinical
diagnostics, drug development, and personalized medicine, driving novel therapeutic
approaches and deeper insights into cellular mechanisms.

5. Conclusions
This review highlights the growing role of machine learning in cell detection technolo-

gies, focusing on four primary methods: bright-field, dark-field, SERS, and fluorescence
detection. By leveraging advanced algorithms, researchers can now perform rapid, accu-
rate, and high-throughput cell analysis. As artificial intelligence continues to evolve, its
integration into cell detection technologies will likely yield new breakthroughs in both
scientific research and clinical practice.
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