MicroRNA: A Signature for the Clinical Progression of Chronic Lymphocytic Leukemia
Abstract
:1. Introduction
2. Results
2.1. miRNA Expression Profile in Bone Marrow and Lymphatic Nodes in CLL
2.1.1. Comparative Analysis of miRNA Expression Levels between Tumor Samples and Non-Cancerous Blood Diseases
2.1.2. Comparative Analysis of miRNA Expression Levels between CLL BM Tumor Samples from Patients with Anemia and CLL Cases without Anemia
2.1.3. Comparative Analysis of miRNA Expression Levels between CLL BM Tumor Samples from Patients with Different Stages of CLL
2.2. Bioinformatics Analysis of Pathways and Targets Associated with B-Cell Lymphomas
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Isolation of Total RNA from Fine-Needle Aspiration Cytological Specimens
4.3. Isolation of Total RNA from FFPE
4.4. miRNA Selection
4.5. Reverse Transcription
4.6. Real-Time PCR
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Lin, X.; Li, F.; Jin, J.; Wang, H. The global burden and attributable risk factors of chronic lymphocytic leukemia in 204 countries and territories from 1990 to 2019: Analysis based on the global burden of disease study 2019. Biomed. Eng. Online 2022, 21, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kipps, T.J. The pathogenesis of chronic lymphocytic leukemia. Annu. Rev. Pathol. 2014, 9, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Gaidano, G.; Foà, R.; Dalla-Favera, R. Molecular pathogenesis of chronic lymphocytic leukemia. J. Clin. Investig. 2012, 122, 3432–3438. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Montserrat, E. Genetic lesions in chronic lymphocytic leukemia: What’s ready for prime time use? Haematologica 2010, 95, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Seifert, M.; Sellmann, L.; Bloehdorn, J.; Wein, F.; Stilgenbauer, S.; Dürig, J.; Küppers, R. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 2012, 209, 2183–2198. [Google Scholar] [CrossRef]
- Knisbacher, B.A.; Lin, Z.; Hahn, C.K.; Nadeu, F.; Duran-Ferrer, M.; Stevenson, K.E.; Tausch, E.; Delgado, J.; Barbera-Mourelle, A.; Taylor-Weiner, A. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat. Genet. 2022, 54, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; Nadeu, F.; Colomer, D.; Campo, E. Chronic lymphocytic leukemia: From molecular pathogenesis to novel therapeutic strategies. Haematologica 2020, 105, 2205–2217. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.W.; Mendell, J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 2006, 94, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Kröber, A.; Bullinger, L.; Döhner, K.; Bentz, M.; Lichter, P. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef]
- Rossi, S.; Shimizu, M.; Barbarotto, E.; Nicoloso, M.S.; Dimitri, F.; Sampath, D.; Fabbri, M.; Lerner, S.; Barron, L.L.; Rassenti, L.Z.; et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 2010, 116, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Aref, S.; El Tantawy, A.; Aref, M.; El Agdar, M.; Ayed, M. Prognostic Value of Plasma miR-29a Evaluation in Chronic Lymphocytic Leukemia Patients. Asian Pac. J. Cancer Prev. 2023, 24, 2439–2444. [Google Scholar] [CrossRef] [PubMed]
- Chocholska, S.; Zarobkiewiczk, M.; Szymańska, A.; Lehman, N.; Woś, J.; Bojarska-Junak, A. Prognostic Value of the miR-17~92 Cluster in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2023, 24, 1705. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jiang, X.; Chen, J. The role of miR-150 in normal and malignant hematopoiesis. Oncogene 2014, 33, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.D.; Guo, S.; Bai, H.; Guo, Y.; Megyola, C.M.; Cheng, J.; Heydari, K.; Xiao, C.; Reddy, E.P.; Lu, J. An in vivo functional screen uncovers miR-150-mediated regulation of hematopoietic injury response. Cell Rep. 2012, 2, 1048–1060. [Google Scholar] [PubMed]
- Hu, Y.Z.; Li, Q.; Wang, P.F.; Li, X.P.; Hu, Z.L. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front. Oncol. 2023, 13, 1140813. [Google Scholar] [CrossRef]
- Mendiola-Soto, D.K.; Bárcenas-López, D.A.; Pérez-Amado, C.J.; Cruz-Miranda, G.M.; Mejía-Aranguré, J.M.; Ramírez-Bello, J.; Hidalgo-Miranda, A.; Jiménez-Morales, S. miRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2023, 24, 5436. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, S.; Mayr, C.; Bartel, D.P.; Lodish, H.F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl. Acad. Sci. USA 2007, 104, 7080–7085. [Google Scholar]
- Hu, H.; Wang, B.; Borde, M.; Nardone, J.; Maika, S.; Allred, L.; Tucker, P.W.; Rao, A. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 2006, 7, 819–826. [Google Scholar] [CrossRef]
- Mraz, M.; Chen, L.; Rassenti, L.Z.; Ghia, E.M.; Li, H.; Jepsen, K.; Smith, E.N.; Messer, K.; Frazer, K.A.; Kipps, T.J. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood 2014, 124, 84–95. [Google Scholar] [CrossRef]
- Cerna, K.; Oppelt, J.; Chochola, V.; Musilova, K.; Seda, V.; Pavlasova, G.; Radova, L.; Arigoni, M.; Calogero, R.A.; Benes, V. MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia 2019, 33, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.S.; O’Connell, R.M.; Chaudhuri, A.A.; Garcia-Flores, Y.; Geiger, T.L.; Baltimore, D. MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 2010, 33, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Calado, D.P.; Galler, G.; Thai, T.H.; Patterson, H.C.; Wang, J.; Rajewsky, N.; Bender, T.P.; Rajewsky, K. MiR-150 controls b cell differentiation by targeting the transcription factor c-myb. Cell 2007, 131, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Autore, F.; Ramassone, A.; Stirparo, L.; Pagotto, S.; Fresa, A.; Innocenti, I.; Visone, R.; Laurenti, L. Role of microRNAs in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2023, 24, 12471. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, Y.; Lu, J.B.; Miao, Y.; Du, X.Y.; Wang, R.; Yang, H.; Xu, W.; Li, J.Y.; Fan, L. A feedback circuit of miR-34a/MDM4/p53 regulates apoptosis in chronic lymphocytic leukemia cells. Transl. Cancer Res. 2020, 9, 6143–6153. [Google Scholar] [CrossRef] [PubMed]
- Getaneh, Z.; Asrie, F.; Melku, M. MicroRNA profiles in B-cell non-Hodgkin lymphoma. EJIFCC 2019, 30, 195–214. [Google Scholar] [PubMed]
- Stamatopoulos, B.; Van Damme, M.; Crompot, E.; Dessars, B.; Housni, H.E.; Mineur, P.; Meuleman, N.; Bron, D.; Lagneaux, L. Opposite Prognostic Significance of Cellular and Serum Circulating MicroRNA-150 in Patients with Chronic Lymphocytic Leukemia. Mol. Med. 2015, 21, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Selvam, M.; Bandi, V.; Ponne, S.; Ashok, C.; Baluchamy, S. microRNA-150 targets major epigenetic repressors and inhibits cell proliferation. Exp. Cell Res. 2022, 415, 113110. [Google Scholar] [CrossRef] [PubMed]
- Zenz, T.; Mohr, J.; Eldering, E.; Kater, A.P.; Bühler, A.; Kienle, D.; Winkler, D.; Dürig, J.; van Oers, M.H.; Mertens, D.; et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009, 113, 3801–3808. [Google Scholar] [CrossRef]
- Balatti, V.; Tomasello, L.; Rassenti, L.Z.; Veneziano, D.; Nigita, G.; Wang, H.Y.; Thorson, J.A.; Kipps, T.J.; Pekarsky, Y.; Croce, C.M. miR-125a and miR-34a expression predicts Richter syndrome in chronic lymphocytic leukemia patients. Blood 2018, 132, 2179–2182. [Google Scholar] [CrossRef]
- Asslaber, D.; Piñón, J.D.; Seyfried, I.; Desch, P.; Stöcher, M.; Tinhofer, I.; Egle, A.; Merkel, O.; Greil, R. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood 2010, 115, 4191–4197. [Google Scholar] [CrossRef] [PubMed]
- Gibcus, J.H.; Tan, L.P.; Harms, G.; Schakel, R.N.; de Jong, D.; Blokzijl, T.; Möller, P.; Poppema, S.; Kroesen, B.J.; van den Berg, A. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia 2009, 11, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Mauro, F.R.; Gentile, M.; Foa, R. Erythropoietin and chronic lymphocytic leukemia. Rev. Clin. Exp. Hematol. 2002, (Suppl. S1), 21–31. [Google Scholar]
- Koury, M.J. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev. 2014, 28, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Bissels, U.; Bosio, A.; Wagner, W. MicroRNAs are shaping the hematopoietic landscape. Haematologica 2012, 97, 160–167. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Han, X.; Zhao, X.; Peng, Y.; Li, Y.; Peng, M.; Song, J.; Wu, K.; Sun, S. miR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget 2015, 6, 43033–43047. [Google Scholar] [CrossRef] [PubMed]
- Dostalova Merkerova, M.; Krejcik, Z.; Votavova, H.; Belickova, M.; Vasikova, A.; Cermak, J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur. J. Hum. Genet. 2011, 19, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, J.Y.; Guo, J.; Li, P.S.; Zhang, W.H. Influence of MiR-451 on Drug Resistances of Paclitaxel-Resistant Breast Cancer Cell Line. Med. Sci. Monit. 2015, 21, 3291–3297. [Google Scholar] [CrossRef]
- Perini, G.F.; Ribeiro, G.N.; Pinto Neto, J.V.; Campos, L.T.; Hamerschlak, N. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol. 2018, 11, 65. [Google Scholar] [CrossRef]
- Burger, J.A.; Gribben, J.G. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: Insight into disease biology and new targeted therapies. Semin. Cancer Biol. 2014, 24, 71–81. [Google Scholar] [CrossRef]
- Willimott, S.; Wagner, S. Stromal cells and CD40 ligand (CD154) alter the miRNome and induce miRNA clusters including, miR-125b/miR-99a/let-7c and miR-17-92 in chronic lymphocytic leukaemia. Leukemia 2012, 26, 1113–1116. [Google Scholar] [CrossRef]
- The Human Protein Atlas. 2023. Available online: https://www.proteinatlas.org/ (accessed on 25 June 2024).
- Legaz, I.; Jimenez-Coll, V.; González-López, R.; Fernández-González, M.; Alegría-Marcos, M.J.; Galián, J.A.; Botella, C.; Moya-Quiles, R.; Muro-Pérez, M.; Minguela, A.; et al. MicroRNAs as Potential Graft Rejection or Tolerance Biomarkers and Their Dilemma in Clinical Routines Behaving like Devilish, Angelic, or Frightening Elements. Biomedicines 2024, 12, 116. [Google Scholar] [CrossRef]
- Veryaskina, Y.A.; Titov, S.E.; Kovynev, I.B.; Pospelova, T.I.; Fyodorova, S.S.; Shebunyaeva, Y.Y.; Sumenkova, D.V.; Zhimulev, I.F. MicroRNA Expression Profile in Bone Marrow and Lymph Nodes in B-Cell Lymphomas. Int. J. Mol. Sci. 2023, 24, 15082. [Google Scholar] [CrossRef]
- Veryaskina, Y.A.; Titov, S.E.; Kovynev, I.B.; Pospelova, T.I.; Zhimulev, I.F. The Profile of MicroRNA Expression in Bone Marrow in Non-Hodgkin’s Lymphomas. Diagnostics 2022, 12, 629. [Google Scholar] [CrossRef]
Bone Marrow | Lymph Node | |||
---|---|---|---|---|
Fold Change | p-Value | Fold Change | p-Value | |
miR-20a | 1.08 | NS | −1.93 | 2 × 10−5 |
miR-96 | 1.14 | NS | −2.84 | NS |
miR-26b | 2.20 | 1 × 10−17 | −2.58 | 5 × 10−5 |
miR-34a | 4.34 | 1 × 10−7 | −1.88 | 2 × 10−2 |
miR-150 | 18.98 | 1 × 10−22 | −1.05 | NS |
miR-451a | −1.07 | NS | −9.22 | 4 × 10−4 |
miRNA | Stage B vs. Stage A | Stage C vs. Stage B | Stage C vs. Stage A | |||
---|---|---|---|---|---|---|
Fold Change | Adjusted p-Value | Fold Change | Adjusted p-Value | Fold Change | Adjusted p-Value | |
miR-20a | −1.02 | NS | 1.02 | NS | 1 | NS |
miR-96 | −1.41 | NS | 1.15 | NS | −1.22 | NS |
miR-26b | −1.02 | NS | 1.12 | NS | 1.09 | NS |
miR-34a | 1.8 | 3 × 10−3 | 1.33 | NS | 2.39 | 2 × 10−3 |
miR-150 | 2.73 | 1 × 10−3 | 1.69 | NS | 4.62 | 1 × 10−5 |
miR-451a | −1.32 | NS | −1.15 | NS | −1.52 | NS |
miRNA | Pathway | p-Value | Targets |
---|---|---|---|
miR-150 | hematopoiesis | 0.018 | CCR6, CREB1, EP300, FLT3, MMP14, MYB, PRKCA, STAT1, STAT5B, TP53, VEGFA, ZEB1 |
lymphocyte differentiation | 0.018 | CCR6, EP300, FLT3, MMP14, MYB, STAT5B, TP53, ZEB1 | |
lymphocyte activation | 0.036 | CCR6, EP300, FLT3, MMP14, MYB, P2RX7, STAT5B, TP53, ZEB1 | |
positive regulation of lymphocyte apoptotic process | 0.047 | P2RX7, TP53 | |
miR-34a | hematopoiesis | 0.027 | ATG5, AXL, BAX, BCL2, CDK6, CSF1R, DLL1, ERBB2, FOS, FOXP1, HDAC1, HMGB1, IFNB1, JAG1, KIT, KLF4, LEF1, MYB, MYC, NOTCH1, NOTCH2, SIRT1, TCF7, TP53, TREM2, WNT1, ZAP70 |
microRNA pathway associated with chronic lymphocytic leukemia | 0.002 | BCL2, TP53, ZAP70 | |
lymphocyte activation | 0.006 | AKT1, ATG5, AXL, BAX, BCL2, CD24, CD44, CDK6, DLL1, ERBB2, FKBP1B, FLOT2, FOXP1, HMGB1, IFNB1, IMPDH2, KIT, LEF1, MYB, NOTCH2, PIK3CG, SRC, TCF7, TP53, ULBP2, WNT1, ZAP70 | |
lymphocyte differentiation | 0.010 | ATG5, AXL, BAX, BCL2, CDK6, DLL1, ERBB2, FOXP1, HMGB1, IFNB1, KIT, LEF1, MYB, NOTCH2, TCF7, TP53, WNT1, ZAP70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veryaskina, Y.A.; Titov, S.E.; Kovynev, I.B.; Pospelova, T.I.; Fyodorova, S.S.; Shebunyaeva, Y.Y.; Demakov, S.A.; Demenkov, P.S.; Zhimulev, I.F. MicroRNA: A Signature for the Clinical Progression of Chronic Lymphocytic Leukemia. Lymphatics 2024, 2, 157-167. https://doi.org/10.3390/lymphatics2030013
Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Fyodorova SS, Shebunyaeva YY, Demakov SA, Demenkov PS, Zhimulev IF. MicroRNA: A Signature for the Clinical Progression of Chronic Lymphocytic Leukemia. Lymphatics. 2024; 2(3):157-167. https://doi.org/10.3390/lymphatics2030013
Chicago/Turabian StyleVeryaskina, Yuliya A., Sergei E. Titov, Igor B. Kovynev, Tatiana I. Pospelova, Sofya S. Fyodorova, Yana Yu. Shebunyaeva, Sergei A. Demakov, Pavel S. Demenkov, and Igor F. Zhimulev. 2024. "MicroRNA: A Signature for the Clinical Progression of Chronic Lymphocytic Leukemia" Lymphatics 2, no. 3: 157-167. https://doi.org/10.3390/lymphatics2030013
APA StyleVeryaskina, Y. A., Titov, S. E., Kovynev, I. B., Pospelova, T. I., Fyodorova, S. S., Shebunyaeva, Y. Y., Demakov, S. A., Demenkov, P. S., & Zhimulev, I. F. (2024). MicroRNA: A Signature for the Clinical Progression of Chronic Lymphocytic Leukemia. Lymphatics, 2(3), 157-167. https://doi.org/10.3390/lymphatics2030013