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Abstract: This study compares the PM10 (particulate matter of diameter smaller than 10 µm) organic
aerosol composition between urban and suburban stations in Heraklion, Crete, during winter 2024 in
order to highlight the impact of local anthropogenic activities on urban atmospheric particulate matter
pollution. Using an HPLC-ESI-MS Orbitrap analyzer (High Performance Liquid Chromatography-
Electrospray Ionization-Mass Spectrometry) in full MS scan mode at a resolution of 140,000, 48 daily
aerosol filter extracts were analyzed in both positive and negative modes, resulting in the detection
of 2809 and 3823 features, respectively. Features with at least five times higher intensity in the
urban environment compared to the suburban, and p < 0.05, were deemed significant. A correlation
with black carbon (r > 0.6) was observed for 71% of significant urban features in positive mode.
These features showed a predominance of low O:C ratios (<0.2) and the majority were classified as
intermediate volatility organic compounds (IVOCs), indicating fresh primary emissions. A clear
urban–suburban distinction was shown by PCA of positive mode features, unlike the negative mode
features. Regarding the total intensity of the features, urban samples were on average 55% higher
than suburban samples in positive mode and 39% higher in negative mode. This study reveals the
molecular profile of locally emitted combustion related organics observed in positive mode in an
urban environment.

Keywords: PM10; urban aerosol; anthropogenic emissions; high resolution mass spectrometry;
electrospray ionization; HPLC; non-target analysis; black carbon; volatility classification; combustion-
related organic compounds

1. Introduction

Urban atmospheric particulate matter (PM) pollution poses significant environmental
and health problems [1]. The knowledge of the pollution sources and their contribution
to air quality can lead to more effective future mitigation strategies for reducing air pollu-
tion [2]. Organic aerosol (OA) is a major complex mixture of components of atmospheric
PM playing an important role in air quality and climate [3–5]. Organic aerosols can origi-
nate from both primary emissions and secondary formation, with their composition and
volatility influencing their atmospheric behavior and effects [6,7]. OA is an important com-
ponent (20–90%) of fine PM [8]. In the regional background atmosphere, more than 60% of
OA has been found to be in the submicron aerosol mode [9]. In urban areas the submicron
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OA fraction can be even larger and originates from anthropogenic sources (e.g., fossil fuels,
biomass burning, and cooking), as well as from secondary sources, such as chemical pro-
cessing of precursor molecules in the atmosphere [8,10]. Secondary OA has been found to
account for about 83.5% of OA in PM10 and 86% of OA in the PM1.06 (PM less than 1.06 µm
in diameter) in the remote Mediterranean atmosphere affected by long-range transport [11].
Stavroulas et al. [12] found that, in Athens, secondary OA accounts for 67% of sub-micron
OA in winter and for more than 80% in summer. In urban environments, the high density
of anthropogenic activities results in elevated concentrations of OA, particularly during
periods of increased residential heating emissions [13]. These emissions contribute to the
formation of primary organic aerosol (POA) and secondary organic aerosol (SOA), which
results from the atmospheric oxidation of volatile organic compounds (VOC) to less volatile
organics, as well as atmospheric aging of POA. The composition of OA also depends on the
origin of the air masses, and therefore on distant sources of pollution that reach the study
site via long-range transport, while meteorology also affects the chemical processing in the
atmosphere and therefore SOA composition [14]. To model the complex mixture of OA in
the atmosphere, numerical models are now commonly classifying OA components based
on their volatility using the so-called Volatility Basis Set (VBS) that was first introduced in
global models by Robinson et al. [15] and which classifies organics based on their volatility.
Both POA and SOA have distinct molecular signatures [16,17] that also reflect in their
volatility [8]. In this respect, several individual organic molecules have been reported in
the literature as tracers of specific sources of PM (e.g., specific saccharides [18–20], ratios of
various polyaromatic hydrocarbons [21], lipid biomarkers such as long chain n-alkanes,
n-alkanols, di- and tri-unsaturated C37 and C38 methyl ketones and C38 ethyl ketones,
diols and keto-ols and a range of sterols [22], tetrols, and pinonic and pinic acids [23,24]).
In the last two decades, efforts have been made to characterize the submicron fraction of
OA, benefiting from the technologies developed by Aerosol Mass Spectrometer (AMS)
and Aerosol Chemical Speciation Monitor (ACSM) technologies [12,25] which detect OA
component families and allow near-real-time source attribution [10].

Complementary to the above techniques, high-resolution mass spectrometry (HRMS)
combined with HPLC separations can be used. HPLC-ESI-MS Orbitrap is a powerful ana-
lytical technique allowing the characterization of complex organic mixtures in atmospheric
aerosols [26]. HRMS provides high mass accuracy and low limits of detection enabling
the identification of thousands of organic compounds [27]. This capability is particularly
advantageous for non-target analysis, where comprehensive profiling of aerosol samples
can reveal a wide array of compounds without prior knowledge of their identities [28].

Non-target analysis using HRMS is an unbiased method, which is essential for un-
derstanding the molecular fingerprint of organic compounds in aerosols. This approach
also allows for the detection of novel compounds, providing insights into the sources and
transformation processes of organic aerosols [29]. Previous studies have demonstrated
the effectiveness of HRMS at identifying specific molecular tracers for different pollution
sources, such as traffic emissions, biomass burning, and industrial activities [30].

The present study aims to identify differences in the organic composition between
urban and suburban environments in order to highlight the impact of local anthropogenic
activities on urban atmospheric PM pollution in a medium-sized coastal city. This is
achieved by comparing the PM10 organic aerosol composition between urban and suburban
stations in Heraklion, Crete, during winter 2024. Crete, Greece, was chosen because it
is located in a climate hot spot region, the East Mediterranean [31,32], and is an island
far from the main continent and subject to long-range transport of air masses from the
surrounding areas [33]. Depending on the trajectories of air masses reaching Crete, the area
may be affected by long-range transport of Sahara dust from the south, aerosols from the
Western Mediterranean Sea from the west, from Central Europe and the Balkans from the
northwest and north, from the Black Sea and its surrounding countries from the northeast
and from the Middle East from the east [33,34]. Therefore, the urban air quality will reflect
the regional background derived from long-range transport loaded by the peri-urban
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emissions and the local/urban emissions. Heraklion is therefore an ideal location to study
the fingerprints of urban anthropogenic emissions. The HPLC-ESI-MS Orbitrap was used
here for non-target analysis to provide detailed molecular wintertime fingerprints of the
organic aerosol components in an urban and a suburban site of Heraklion.

2. Materials and Methods
2.1. Sampling Sites

Aerosol samples were collected at an urban and a suburban site of Heraklion, Crete,
Greece. The urban station is located in a very small park in the city center, while the
suburban station is located at 5.9 km southwest (SW) of the urban station on the campus
of the University of Crete, next to the Department of Chemistry (Figure 1). The urban
station is a traffic station located close to one of the city’s main avenues leading to
the city center and the port of Heraklion. The suburban site is a sparsely populated
area with agricultural activity, mainly olive trees, where the influence of direct local
anthropogenic emissions is limited. During the study period, the average temperature
recorded at the urban station was 12.7 ◦C ± 1.6 ◦C, compared to 11.7 ◦C ± 1.5 ◦C at
the suburban station. The relative humidity was 61.7% ± 6.5% at the urban station and
67.8% ± 5.8% at the suburban station. The wind directions for both stations are classified
as predominantly northwest (NW) and southeast (SE), indicating similar influences
from long-range transport pollutants. The urban station shows a clearer wind direction
dominance and stronger prevailing winds coming from the NW than the suburban
station, which experiences stronger winds from the SW and shows a more dispersed
in the wind direction pattern. Overall, the suburban station is susceptible to higher
wind speeds than the urban station, with average wind speeds 2.3 m/s and 0.9 m/s,
respectively. It should be noted that the wind speed at the urban station is influenced
and obstructed by the taller buildings in the area, whereas the suburban station is free
from direct obstruction due to its elevated location. Based on the relative locations of the
stations and the prevailing winds, it is expected that there was little transport of urban
emissions to the suburban station during the period studied. An analysis of the 5-day
back trajectories reaching Heraklion that was carried out with the HYSPLIT model [35]
showed that the extended Heraklion area was affected by transported air masses from
W-SW from 7 to 13 February, then from the N-NE sector from 14 to 21 February, before
becoming well mixed, regionally influenced air masses from the SW, S, and E. Overall,
from 14 February to 2 March, the air masses reaching Heraklion were largely influenced
by the regional sources in the eastern Mediterranean, resulting in an aged background
atmospheric composition over the area studied.

2.2. Sample Collection

Aerosol sampling was performed at these two stations during wintertime, from
7 February to 2 March 2024. From each station, 24 daily filter samples were collected,
totaling 48 samples. In addition, 2 field blanks were sampled. Sampling did not take
place on 8 February.

A low-volume sampler (Digitel DPA-14 LVS, Digitel Elektronik AG, Hegnau, Switzer-
land) was used at each site to collect PM10 particles on 47 mm diameter quartz fiber filters
(PALLFLEX Membrane Filters, Tissuquartz, Pall Corporation, Port Washington, NY, USA).
Sampling was performed at a flow rate of approximately 38 L min−1 over 24-h intervals
(from 00:01 to 00:01 the day after, UTC time), corresponding to a total volume of 55 m3 for
each sample. The PM10 mass was determined gravimetrically (pre- and post-weighted),
using an analytical balance with 5 decimal points’ precision (Kern, ABT 120-5DM, Kern &
Sohn GmbH, Balingen, Germany). The filter samples were stored at −18 ◦C until analysis.
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Figure 1. Satellite view of Heraklion, Crete, Greece. Urban station (right) (35.332820 N, 25.138231 E, 
45 m altitude). Suburban station (left) (35.308542 N, 25.080084 E, 95 m altitude). The distance be-
tween the 2 stations is 5.9 km. The wind roses are drawn based on local winds registered at each 
station, averaged for the period studied. Sixteen wind direction classes are considered, wind speed 
units are in m/s and wind calm corresponds to 0.1 m/s. 
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(ACN, LiChrosolv, gradient grade for LC-MS) per sample was used. Pulsed vortexing was 
applied initially to each sample to ensure thorough mixing of the solvent with the sample 
matrix. After 1 h of extraction at room temperature with no further agitation, the extract 
was filtered using a 0.22 µm pore polytetrafluoroethylene (PTFE) 13 mm diameter syringe 
filter. The solvent was then evaporated under low pressure, and the extract was redis-
solved with 50 µL of 1:1 ACN/H2O and the assistance of sonication. The dissolved samples 
were transferred to 2 mL glass vials with 6 mm × 31 mm glass inserts with a conical base. 

Figure 1. Satellite view of Heraklion, Crete, Greece. Urban station (right) (35.332820 N, 25.138231 E,
45 m altitude). Suburban station (left) (35.308542 N, 25.080084 E, 95 m altitude). The distance
between the 2 stations is 5.9 km. The wind roses are drawn based on local winds registered at
each station, averaged for the period studied. Sixteen wind direction classes are considered, wind
speed units are in m/s and wind calm corresponds to 0.1 m/s.

2.3. Sample Analysis

For the analysis of the PM10 aerosol samples, a punch of 1.5 cm2 was cut from each
quartz filter and placed inside an Eppendorf tube. For the extraction, 1 mL of acetonitrile
(ACN, LiChrosolv, gradient grade for LC-MS) per sample was used. Pulsed vortexing
was applied initially to each sample to ensure thorough mixing of the solvent with the
sample matrix. After 1 h of extraction at room temperature with no further agitation, the
extract was filtered using a 0.22 µm pore polytetrafluoroethylene (PTFE) 13 mm diameter
syringe filter. The solvent was then evaporated under low pressure, and the extract was
redissolved with 50 µL of 1:1 ACN/H2O and the assistance of sonication. The dissolved
samples were transferred to 2 mL glass vials with 6 mm × 31 mm glass inserts with a conical
base. The sample vials were placed in the autosampler of the HPLC-MS system (Thermo
Scientific UltiMate 3000 HPLC coupled with Q Exactive Plus Orbitrap, Waltham, MA, USA),
conditioned at 17 ◦C. The two field blank filters were processed and analyzed following
the same procedures as the samples. The samples were initially analyzed in positive ion
mode and their re-analysis in negative ion mode followed immediately after. In positive
mode, the analytes that reached the detector were ionized mainly by protonation [M + H]+

(such as amines, amino acids, lipids, aldehydes, ketones), and in negative mode due to the
loss of a proton [M − H]− (such as organic acids and sulfates) [36–39]. Non-polar organic
molecules were not measured. The urban samples were coupled with the suburban samples
according to the sampling date. The paired samples were analyzed in random order to
avoid possible systematic errors. The instrument stability was monitored throughout the
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analysis sequences by regularly injecting in-house prepared standard solutions (about
1 standard every 10 samples). Specifically, a 100 ppb caffeine solution was used for positive
ion mode, and a 100 ppb phthalic acid solution was used for negative ion mode. The
average deviation was <20% throughout the analytical run.

For the chromatographic separation, a C18 column (2.1 mm × 10 mm, 3 µm particle
diameter, Fortis) was used. The binary pump system consisted of mobile phases A and B.
Mobile phase A was ultrapure H2O (18.2 MΩ/cm, PURELAB Option-S, Elga Labwater,
Lane End, UK), and mobile phase B was ACN, both of which contained 0.1% w/v formic
acid (Fisher Chemical LC/MS grade, Waltham, MA, USA). The flow rate was set to
300 µL/min, the column temperature to 30 ◦C, and the injection volume to 2 µL. A
gradient elution program was run for 22 min, with the initial mobile phase B at 5% for
2 min, increasing linearly to 100% at 13 min, where it remained for an additional 2 min.
Then, the mobile phase returned to its initial composition within a minute and remained
as such for 6 min before the next injection.

The HPLC system was coupled with the mass spectrometer via a Heated Electro-
Spray Ionization probe (HESI-II) that operated in both positive and negative ionization
modes. Each sample was analyzed twice, in full MS positive mode (90–800 m/z range)
and negative mode (117–800 m/z), thus the higher-energy collisional dissociation (HCD)
cell was not used. The resolution was set to the highest setting (140,000 at 200 m/z), the
AGC target (automatic gain control) was set to 3 × 106 for the c-trap, and the maximum
IT (injection time) was 200 ms. For the source parameters, the spray voltage was set
to +3.4 kV and −3.2 kV, respectively, the S-lens RF level (stacked-ring ion guide radio
frequency) to 35 a.u., the sheath flow rate to 39 a.u (arbitrary unit), the auxiliary gas
flow rate to 16 a.u., the sweep gas flow rate to 0 a.u., the auxiliary gas heater tempera-
ture to 300 ◦C, and the capillary temperature to 300 ◦C. The instrument mass accuracy
was externally calibrated prior to sample analysis with an in-house prepared STFA
(sodium trifluoroacetate) solution [40]. The mass spectrometry .raw files were acquired
in centroid mode.

To accumulate as much information as possible to compare the two sample groups, the
Orbitrap mass spectrometer was operating in full MS mode for both positive and negative
mode ESI ionization for a non-target analysis. High-resolution mass spectrometers offer
selectivity, accurate mass measurements, and low limits of detection, making them ideal
for non-target analysis [27].

2.4. Data Analysis

For the detection and integration of the chromatographic peaks/features, the open-
source software Mzmine 4.0 was used [41]. A feature is a chromatographic peak, corre-
sponding to a specific m/z and elution time. Noise levels of 5 × 104 and 1 × 104 were
set for positive and negative ion modes, respectively. The rest of the feature recognition
parameters were the Mzmine 4.0 default settings for HPLC-Orbitrap files (Table S1).
Chromatographic peak area was used as a measure of intensity. Two lists of features
were exported and further peak selection was done in an Excel spreadsheet environment.
In particular, features that were present in both the blank and aerosol samples, i.e.,
the matrix background, were not investigated further if the average sample intensity
was less than 5 times the average intensity of blank samples. Additionally, features
detected in fewer than 25% of the samples were not investigated further. The Principal
Component Analysis (PCA) and the volcano plots were generated using the online
open-source software MetaboAnalyst 6.0 [42]. Missing values were replaced by one
fifth of the minimum positive value of the respective feature intensity. The .raw files
were visualized using FreestyleTM 1.5 (Thermo Scientific). The elemental composition of
important features was calculated using Qual Browser (Thermo Xcalibur 4.2.47).

Only the elements C, H, O, N, S were considered for the elemental composition
calculations. The N:C was restricted to between 0 and 1.3, with a maximum of 10 nitrogen
atoms, the O:C to between 0 and 1.2, and the S:C to between 0 and 0.8, with a maximum
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of 2 sulfur atoms [30,43]. The calculated Ring Double Bond Equivalent (RDBE) value for
the neutral molecular formula was limited to integer numbers ranging from −1 to 20. The
maximum error for features with m/z > 130 was set to ±2.5 ppm. When multiple elemental
composition candidates were calculated, the relative abundance of the isotopic pattern
was the deciding factor. In positive mode, the ionization mechanism was assumed to be
the protonation, with no fragmentation of the molecules and single charge. Regarding
specific marker compounds, as our analysis was conducted in full MS mode, it was limited
to elemental composition for each feature. Identifying chemical structures would require
MS/MS spectra with multiple collision energy (CE) and library matching.

The Black Carbon (BC) concentration was continuously monitored in the urban station
with an AE33 Aethalometer (Magee Scientific, Berkeley, CA, USA) [44]. The values were
daily averaged and the Pearson correlation coefficient of BC with significant urban features
in the positive mode was calculated in the Excel environment.

3. Results and Discussion
3.1. Features Detection and Total Intensity Comparison

The Mzmine analysis process resulted in the detection of 2809 and 3823 features for
positive and negative modes, respectively. As a first step, the total intensity of every feature
for all samples was summed for both modes. Samples from the urban station showed a
higher total intensity compared to those from the suburban station. Specifically, compared
to the suburban samples, the urban samples had on average a 55% higher total intensity
in positive mode, and a 39% higher total intensity in negative mode (Figure 2). This is
expected due to the intense anthropogenic activity in the urban environment, which leads
to more particulate organic emissions. The higher percentage increase for the positive ion
mode, compared to the negative ion mode, in the urban samples than in the suburban
samples indicates that these wintertime anthropogenic emissions are richer in compounds
that ionize better in positive mode rather than in negative mode.
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Figure 2. Total intensity for both modes and for the two stations. The relative intensity was set as 1
for the sample with the highest intensity.

It has to be noted that the mentioned total intensity does not represent the total organic
molecules per sample. Ionization and transmission efficiencies for different compounds
can vary significantly, making estimates based on peak areas among compounds prone to
uncertainties [45].

For the urban samples, a significant correlation (r = 0.86, n = 24) was found between
the two modes, whereas in suburban samples that was not the case (r = 0.48, n = 24)
(Figure S1). This suggests that the urban environment may have more distinct sources
of pollution, resulting in a more uniform chemical profile detectable in both modes
than in the suburban samples. In the suburban area, the majority of air pollution is
transported and therefore chemically transformed in the atmosphere. At the top of
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this transported background atmospheric composition, which defines the baseline in
Heraklion, pollutants from regional sources are added in the suburban station and
further anthropogenic pollution is added in the city center. The long-range transported
air masses have a larger variety of origins, as discussed in Section 2.1, and are the same
for the two stations. This leads to a more diverse chemical profile at the urban station,
with some compounds ionizing in only one mode.

On average, a 42% increase in the total PM10 mass concentration (Figure S2) was
measured gravimetrically for the urban environment, highlighting the significant impact of
the local anthropogenic activities on total particulate matter concentrations. The urban en-
vironment had a PM10 average concentration of 29 µg/m3 and the suburban environment
20 µg/m3, respectively. These results agree with those of Sohrab et al. [13], who reported
higher urban than suburban PM10 levels in Europe, especially during the residential
heating periods.

3.2. Ion Detection Modes Comparison and Significant Feature Detection

To holistically compare the two ion modes, PCA was performed using the features
after blank subtraction from the positive ion mode and the negative ion mode, separately.

PCA showed a clear separation between urban and suburban samples for positive ion
mode features, unlike for negative ion mode ones (Figure 3). This is a first indication that
positive mode ionization may be more suitable for this urban environment and sampling
period for the detection of anthropogenic emission tracers.
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features (left) and negative ion mode features (right). Log10 data transformation was applied.

To further investigate the features responsible for this clustering, volcano plots were
created for both ionization modes. Significant features for each station (Figure 4), in
addition to the unique features, had at least a five times higher average concentration (fold
change FC > 5) at that station than at the other station, and this difference is statistically
significant by t-test with FDR (False Discovery Rate) corrected p < 0.05.

The results from the volcano plots also highlight the advantage of positive mode
ionization relative to negative mode for detecting features from local urban emissions.
Indeed, 20.5% of the features detected in the positive ion mode were classified as significant
for the urban environment, compared to only 3.3% in the negative ion mode.



Air 2024, 2 318

Air 2024, 2, FOR PEER REVIEW 8 
 

 

addition to the unique features, had at least a five times higher average concentration (fold 
change FC > 5) at that station than at the other station, and this difference is statistically 
significant by t-test with FDR (False Discovery Rate) corrected p < 0.05. 

  
Figure 4. Comparison of volcano plots of urban and suburban samples for the positive ion mode 
(left) and the negative ion mode (right). The upper-right rectangular area in both plots highlights 
the significant urban features, and the upper-left area highlights the significant suburban features. 
FC = ratio of urban-to-suburban average intensities for each feature. 

The results from the volcano plots also highlight the advantage of positive mode 
ionization relative to negative mode for detecting features from local urban emissions. 
Indeed, 20.5% of the features detected in the positive ion mode were classified as 
significant for the urban environment, compared to only 3.3% in the negative ion mode. 

Τhe number of significant suburban features is one order of magnitude lower than 
the significant urban features, for each ionization mode (Table 1). It should be noted that 
the suburban station is located in an area with agricultural activities, which could lead to 
the presence and therefore the detection of different organic compounds, compared to the 
urban environment where there are no such activities. 

Table 1. Comparison of significant urban and suburban features by ionization mode. 

Ionization Mode Total Features 
Urban  

Significant Features * 
Suburban  

Significant Features * 
Positive 2809 575 (20.5%) 65 (2.3%) 
Negative 3823 128 (3.3%) 14 (0.4%) 

* The percentages are relative to the total feature number for every mode at each location. 

3.3. Significant Urban Features Related to Combustion Processes 
During wintertime, the concentration levels of POA are expected to be higher 

compared to other seasons due to residential heating emissions. The average atmospheric 
BC concentration for the days studied was 1.5 µg/m3 (Figure S3). To narrow down the 
number of important features, the correlation coefficient (Pearson—r) between the daily 
averages of BC concentrations and the intensity values of each significant urban feature 
from the positive mode was calculated. Out of the 575 features, 409 features were found 
to have a correlation (r > 0.6) with BC. For these 409 features, the elemental composition 
was calculated (Table S2) to highlight the molecular fingerprint of these anthropogenic, 
possibly combustion-related, emissions that include the biomass burning and transport 
emissions. It should be noted that, in order to characterize a feature as a tracer for a 
pollution source with high confidence, more data points from observations over a longer 
time period and with higher temporal resolution are needed. 

It is possible for a molecule to correspond to more than one feature due to multiple 
charging, adduct formation, and fragmentation. The features that were highly correlated 
(r > 0.95) and with a retention time difference of <0.025 min were clustered for further 
inspection. Out of the 409 significant urban features, 32 clusters were identified with the 

Figure 4. Comparison of volcano plots of urban and suburban samples for the positive ion mode
(left) and the negative ion mode (right). The upper-right rectangular area in both plots highlights
the significant urban features, and the upper-left area highlights the significant suburban features.
FC = ratio of urban-to-suburban average intensities for each feature.

The number of significant suburban features is one order of magnitude lower than
the significant urban features, for each ionization mode (Table 1). It should be noted that
the suburban station is located in an area with agricultural activities, which could lead to
the presence and therefore the detection of different organic compounds, compared to the
urban environment where there are no such activities.

Table 1. Comparison of significant urban and suburban features by ionization mode.

Ionization Mode Total Features Urban
Significant Features *

Suburban
Significant Features *

Positive 2809 575 (20.5%) 65 (2.3%)

Negative 3823 128 (3.3%) 14 (0.4%)
* The percentages are relative to the total feature number for every mode at each location.

3.3. Significant Urban Features Related to Combustion Processes

During wintertime, the concentration levels of POA are expected to be higher com-
pared to other seasons due to residential heating emissions. The average atmospheric
BC concentration for the days studied was 1.5 µg/m3 (Figure S3). To narrow down the
number of important features, the correlation coefficient (Pearson—r) between the daily
averages of BC concentrations and the intensity values of each significant urban feature
from the positive mode was calculated. Out of the 575 features, 409 features were found to
have a correlation (r > 0.6) with BC. For these 409 features, the elemental composition was
calculated (Table S2) to highlight the molecular fingerprint of these anthropogenic, possibly
combustion-related, emissions that include the biomass burning and transport emissions.
It should be noted that, in order to characterize a feature as a tracer for a pollution source
with high confidence, more data points from observations over a longer time period and
with higher temporal resolution are needed.

It is possible for a molecule to correspond to more than one feature due to multiple
charging, adduct formation, and fragmentation. The features that were highly corre-
lated (r > 0.95) and with a retention time difference of <0.025 min were clustered for
further inspection. Out of the 409 significant urban features, 32 clusters were identified
with the above-mentioned settings. In one of these clusters, one feature was classi-
fied as doubly charged [M + 2H]2+, with the single-charged feature being on average
4.9 times more abundant.

The majority of these significant urban features have a measured m/z in the range
of 200–260 m/z (Figure 5). Regarding the intensity-weighted number of C, C10 clearly
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dominates the distribution. Molecules with a carbon number 20 or more have insignificant
levels relative to the overall intensity.
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3.4. Elemental Composition Analysis of Significant Combustion-Related Urban Features

To further investigate the molecular fingerprint (Figure 6) of the positive mode signifi-
cant features that correlate with combustion, the intensity-weighted average ratios of O:C
and N:C ratios were calculated according to the following equations

O:C = ∑((O:C)i × Ai)/∑Ai

N:C = ∑((N:C)i × Ai)/∑Ai

with Ai being the average peak area for each feature i.

Air 2024, 2, FOR PEER REVIEW 9 
 

 

above-mentioned settings. In one of these clusters, one feature was classified as doubly 
charged [M + 2H]2+, with the single-charged feature being on average 4.9 times more 
abundant. 

The majority of these significant urban features have a measured m/z in the range of 
200–260 m/z (Figure 5). Regarding the intensity-weighted number of C, C10 clearly 
dominates the distribution. Molecules with a carbon number 20 or more have insignificant 
levels relative to the overall intensity. 

  

Figure 5. Combined abundance of the positive mode urban significant features related to 
combustion as a function of the number of carbon atoms (left). The m/z histogram for these features 
(right). 

3.4. Elemental Composition Analysis of Significant Combustion-Related Urban Features 
To further investigate the molecular fingerprint (Figure 6) of the positive mode 

significant features that correlate with combustion, the intensity-weighted average ratios 
of O:C and N:C ratios were calculated according to the following equations 

O:C = ∑((O:C)i×Ai)/∑Ai 

N:C = ∑((N:C)i×Ai)/∑Ai 

with Ai being the average peak area for each feature i. 
Therefore, the O:C was estimated to be about 0.21 and the N:C about 0.09. 

 
Figure 6. Combined abundance of the positive mode urban significant features related to 
combustion as a function of the number of nitrogen atoms (left) and oxygen atoms (right) in the 
calculated elemental composition of the respective feature. 

It should be noted that these values for O:C and N:C are typical for local combustion-
related molecules. For instance, positive ion Orbitrap measurements in winter under high 
PM2.5 concentrations showed an O:C of 0.21 in Beijing, China, and of 0.27 in Mainz, 
Germany [46]. Gasoline car emissions have been reported to have an O:C = 0.04 and 

Figure 6. Combined abundance of the positive mode urban significant features related to combustion
as a function of the number of nitrogen atoms (left) and oxygen atoms (right) in the calculated
elemental composition of the respective feature.

Therefore, the O:C was estimated to be about 0.21 and the N:C about 0.09.
It should be noted that these values for O:C and N:C are typical for local combustion-

related molecules. For instance, positive ion Orbitrap measurements in winter under
high PM2.5 concentrations showed an O:C of 0.21 in Beijing, China, and of 0.27 in Mainz,
Germany [46]. Gasoline car emissions have been reported to have an O:C = 0.04 and
biomass burning OA an O:C = 0.31 [47]. In Zurich, the N:C ratio was determined to be
0.076 in winter and 0.029 in summer [30].
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3.5. Volatility of Significant Combustion-Related Urban Features

The volatility of the atmospheric organic compounds is another important parameter
that can characterize the pollution sources and chemistry processes such as aging [8].
Volatility of a compound can be quantified by the effective saturation mass concentration
(C*), which represents the concentration at which the compound exists in equal amounts in
the gas and in the particulate phases during equilibrium [48], and equals the saturation
mass concentration (C0) when assuming ideal thermodynamic mixing [16].

The saturation mass concentration (C0) was calculated for the significant combustion-
related urban features according to the parameterizations of Li et al. [16], based on the
calculated elemental composition (Table S2). According to the volatility value C0 (µg/m3),
the organic molecules can be categorized as follows [6,49]:

1. Volatile Organic Compounds (VOC) (C0 > 3 × 106);
2. Intermediate Volatility Organic Compounds (IVOC) (300 < C0 < 3 × 106);
3. Semi-Volatile Organic Compounds (SVOC) (0.3 < C0 < 300);
4. Low-Volatility Organic Compounds (LVOC) (3 × 10−4 < C0 < 0.3);
5. Extremely Low-Volatility Organic Compounds (ELVOC) (C0 < 3 × 10−4).

The volatility class distribution of the organics present in the aerosol phase shows
the abundance of the IVOC with a decreasing trend towards the ELVOC (Figure 7, left
panel). This has also previously been reported for highly polluted urban environments [49].
OA undergo chemical transformations that affect their volatility. As the organic molecules
age in the atmosphere, they typically become less volatile and more oxidized. This is also
shown in Figure 7 (right panel) where the O:C ratio tends to anticorrelate with the volatility.
Note that the presence of VOC species in the aerosol samples can be attributed to the
adsorption of volatile molecules onto the quartz-fiber filters during sampling [50].
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To obtain a holistic estimation of the average volatility and to compare it with
other studies, the intensity-weighted average log10C0 was calculated for the high-
lighted organic matrix, resulting in a value of 2.46. It has been shown that there is a
correlation between high concentrations of locally emitted urban PM2.5 and relatively
high volatility. For Beijing, China, the log10C0 was calculated to be 2.9 for high PM2.5
days and 1.6 for the low PM2.5 days. By comparison, Mainz, Germany, with the lowest
PM2.5, had a log10C0 = 0.9 [49]. This indicates that the combustion-related significant
urban molecules have, on average, a relatively high volatility as expected for fresh, low
oxidized winter emissions.
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4. Conclusions

This study used high-resolution Orbitrap mass spectrometry to analyze the PM10
organic aerosol composition in urban and suburban areas of Heraklion, Crete, Greece,
aiming to investigate the molecular fingerprint of the local anthropogenic emissions
during the winter pollution heating period in 2024. The results demonstrated that
positive ionization mode was effective in detecting molecules related to local combustion
processes, and 575 out of the total 2809 features were deemed significant. Urban samples
exhibited higher total intensities in both positive and negative ion modes compared
to suburban samples, indicating the influence of local anthropogenic activities. Also,
significant correlation was observed between the majority of urban features and black
carbon concentrations, underscoring the relevance of these features as potential tracers of
combustion-related pollution. Combustion related features had an O:C of about 0.21 and
an N:C about 0.09, similar to other studies. IVOC was found to be the major volatility
class of organics in the urban aerosol with O:C of 0.18, while LVOC, with a relative
intensity 6.6 times smaller, had the highest O:C ratio of about 0.32.

The findings emphasize the importance of advanced analytical techniques in under-
standing the complexities of urban air pollution. Analyzing samples from both urban
and suburban stations helped to differentiate effectively the urban emissions from the
long-range transported and background pollution. The elemental composition and
volatility calculations of the significant urban features confirmed that the corresponding
molecules are freshly emitted with low O:C ratios and relatively high volatility. Future
research should expand on these findings across different seasons and locations to pro-
vide a more comprehensive understanding of urban air pollution characteristics. Also,
efforts should be made to identify the associated molecules by conducting more detailed
mass spectrometric measurements.
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suburban stations in Heraklion, Crete, Greece, Figure S2. Daily average PM10 mass concentrations
for the study period for the two stations in Heraklion, Crete, Greece, Figure S3. Daily average urban
BC concentrations in Heraklion for the study period (left). Pearson r correlation values histogram
for BC-significant positive mode urban features (right), Figure S4. Correlation of BC with urban
total intensity of positive (left) and negative mode (right), Figure S5. Chromatographic peak of a
significant urban feature (207.1589 m/z and RT 7.32 min) as an example. Lower panels show the
corresponding full MS mass spectra at 7.31 min. Table S2. The calculated elemental composition for
each significant combustion-related urban feature in positive ion mode.
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