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Abstract: This study assesses the performance of the Copernicus Atmosphere Monitoring Service
(CAMS) reanalysis dataset in estimating ground-level concentrations (GLCs) of aerosols and criteria
pollutants across the Himawari-8 observational area, covering China, Indonesia, and Australia, from
2016 to 2023. Ground-based monitoring networks in these regions are limited in scope, making
it necessary to rely on satellite-derived aerosol optical depth (AOD) as a proxy for GLCs. While
AOD offers broad coverage, it presents challenges, particularly in capturing surface-level pollution
accurately during episodic events. CAMS, which integrates satellite data with atmospheric models,
is evaluated here to determine its effectiveness in addressing these issues. The study employs
square root transformation to normalize pollutant concentration data and calculates monthly–hourly
long-term averages to isolate pollution anomalies. Geographically weighted regression (GWR)
and Jacobian matrix (dY/dX) methods are applied to assess the spatial variability of pollutant
concentrations and their relationship with meteorological factors. Results show that while CAMS
captures large-scale pollution episodes, such as the 2019/2020 Australian wildfires, discrepancies
in representing GLCs are apparent, especially when vertical aerosol stratification occurs during
short-term pollution events. The study emphasizes the need for integrating CAMS data with higher-
resolution satellite observations, like Himawari-8, to improve the accuracy of real-time air quality
monitoring. The findings highlight important implications for public health interventions and
environmental policy-making, particularly in regions with insufficient ground-based data.

Keywords: CAMS reanalysis; ground-level concentrations (GLCs); geographically weighted regres-
sion (GWR); Jacobian matrix; data normalization; spatiotemporal analysis; aerosol

1. Introduction

Ground-level concentrations (GLCs) of air pollutants are critical for human health [1],
yet accurate monitoring remains challenging due to sparse surface measurements and limi-
tations in modeling [2]. Globally, air pollution is a significant issue, impacting public health,
climate change, and economies worldwide. Effective monitoring and management of GLCs
are essential for mitigating these impacts. This study evaluates the Copernicus Atmo-
sphere Monitoring Service (CAMS) reanalysis dataset [3] over an eight-year period for the
Himawari-8 Observational Area [4], which includes China, Indonesia, and Australia. These
regions experience significant pollution from both natural and anthropogenic sources [1,5],
making accurate GLC monitoring essential for public health and policy-making. Current
methods for GLC monitoring, including surface measurements [6] and traditional model-
ing [7,8], often carry significant uncertainties due to the limited availability of ground-based
measurements, particularly in remote areas. The CAMS reanalysis dataset, which integrates
multiple sources of data, may provide a comprehensive resource for determining pollution
dynamics in regions where traditional methods are insufficient [9].
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This study aims to assess the accuracy and resolution of CAMS in capturing annual,
seasonal, and episodic pollution trends. Key results include statistical summaries, composi-
tional analyses, vertical profile analysis of GLC to aerosol optical depth (AOD) ratios, and
identification of significant pollution events and trends. This study considered a recent
review advocating for increased use of satellite remote sensing for monitoring air pollution
and sustainable development goals [10], and it examined the effectiveness of geographi-
cally weighted regression (GWR) and Jacobian matrix (dY/dX) methods to determine the
accuracy of pollutant concentration determinations as a function of aerosol speciation and
their correlations with meteorological factors [11].

1.1. Context and Importance of Air Pollution Monitoring and Modeling

Effective air quality monitoring and modeling are crucial for protecting public health
and formulating environmental policies. Understanding ground-level concentrations
(GLCs) of criteria air pollutants, such as particulate matter (PM1, PM2.5, and PM10) and
gases (ozone, nitrogen oxides, and sulfur dioxide), which directly impact human health in
urban areas through higher pollution levels [1], is critical in reducing the adverse impact of
air pollution. However, traditional ground-based monitoring systems cover limited areas,
lack real-time data reporting, and often fail to capture short-term episodic pollution events,
such as wildfires, volcanic eruptions, or seasonal agricultural burning [2]. These systems
also face logistical and financial challenges in maintaining widespread sensor networks,
particularly in remote or underdeveloped regions [12].

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset integrates
satellite remote sensing, ground-based measurements, and atmospheric modeling with the
aim of creating a detailed and consistent global dataset [9] that provides comprehensive air
quality information, tracking air quality across local and regional scales. CAMS data have
been claimed to be able to monitor air quality trends and detect transient pollution spikes,
and may provide data essential for timely public health responses [3].

The Himawari-8 satellite, which has been operational since mid-2015, provides ten-
minute near-real-time monitoring of the observational area at a 2 km resolution (at nadir) [4].
These data offer the ability to provide near-instantaneous updates on events, like wildfires,
dust storms, and volcanic eruptions, with unparalleled temporal resolution [5]. However,
Himawari data are not as yet utilized in CAMS reanalysis.

The study period spans eight years, from 2016 to 2023, during which significant global
events, like the 2019/2020 Australian bushfires and the COVID-19 pandemic, occurred.
These occurrences provide scenarios to observe natural and anthropogenic impacts on air
quality, which is essential for evaluating CAMS efficacy in varied environmental conditions.
By addressing the challenges of sparse surface measurements and modeling uncertainties,
this study aims to enhance understanding of air quality dynamics and support targeted
public health interventions and robust environmental policies through advocating for
greater use of the CAMS data [7].

1.2. Challenges in Modern Air Quality Monitoring and Determining GLCs

As discussed, modern air quality monitoring systems struggle to provide compre-
hensive, real-time data. The limited number of publicly available ground-based stations
leads to data gaps in the coverage and underreporting of air quality issues. These fixed
monitoring stations focus on common pollutants, like sulfur dioxide, nitrogen oxides, and
particulate matter, while overlooking harmful substances, like volatile organic compounds,
and ultrafine particles. These overlooked pollutants can impact health, and their omission
creates gaps in public health data and an inability to adapt to rapid changes in air quality
due to weather, traffic, and industrial activities. In contrast, continuous, real-time monitor-
ing is challenging due to the high costs of expanding and maintaining a dense network of
monitoring stations.

Air pollution modeling has evolved with recent approaches, such as land use regres-
sion (LUR) [13], which uses the homogeneous assumption Y = f(X), and geographically
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weighted regression (GWR), which operates on a per-point basis Yi = fi(Xi) where fi is a
function of the temporal correlation of Yi with Xi [14]. These methods predict pollution
levels but often focus on long-term averages [15], overlooking short-term incidents crucial
for public health, i.e., they are useful for determining chronic but not acute events. They
fail to incorporate dynamic variables, such as the atmospheric pressure changes that drive
wind patterns and air turbulence which drive pollutant dispersion. Regressors, like terrain
height [16], wind direction through north [17], or categorical data [18], can misrepresent
pollution drivers due to their static nature and co-correlation effects (e.g., terrain height
does not influence air pollution levels as PM10 is not a function of height, but terrain
does affect the siting of emission sources. These models may also ignore source–receptor
contributions, assuming a homogeneous concentration [19] proportional to wind speed
and ignoring emission strength [20] when atmospheric dynamics are overlooked. This
study has examined the application of the Jacobian matrix, which evaluates the sensitivity
of model outputs to various input parameters [21,22], with the aim of refining pollution
models’ predictive capabilities and identify which factors affect air quality.

In addition to monitoring and statistical approaches, dispersion models (including the
output of CAMS) rely on input data that can be inaccurate due to changes in weather, traffic,
and industrial activity. Remote sensing techniques, particularly those using satellite data,
offer broader coverage but struggle to accurately assess ground-level pollutants due to their
columnar nature. Aerosol optical depth (AOD) measurements from remote sensing estimate
total columnar particulate matter concentrations but may face difficulties due to variability
in aerosol types and sizes, atmospheric conditions, and cloud cover uncertainties [23].
Furthermore, AOD data requires complex algorithms to infer ground-level concentrations,
often leading to uncertainties.

1.3. CAMS Reanalysis: Rationale and Limitations

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis integrates satel-
lite and ground-based observational data with numerical models, creating a statistically
consistent atmospheric dataset that uses 4D-Var data assimilation to enhance model accu-
racy [3]. Studies have used ERA5 reanalysis data to predict tropical cyclones with high
accuracy, demonstrating reanalysis data’s utility in severe weather forecasting [24]. CAMS
provides meteorological variables, such as wind components, temperature, mean sea level
pressure, and relative humidity. Studies have confirmed the CAMS data’s reliability for
environmental AI and stochastic modeling [25].

CAMS offers atmospheric composition data crucial for air quality and climate studies,
including gases, like carbon monoxide, isoprene, formaldehyde, nitrogen dioxide, nitrogen
monoxide, ozone, and sulfur dioxide, and aerosols, such as dust, sea salt, hydrophilic
and hydrophobic black carbon, and organic matter [3]. Meteorological data in CAMS are
more reliable for model validation compared to atmospheric chemistry data due to their
easier measurability, greater number of measurement sites, and global data assimilation.
These meteorological data support methodology testing and predictive capability enhance-
ment [26,27]. However, the accuracy of CAMS outputs depends heavily on the quality
and consistency of the input data, including the specific satellite products used [3,28], as
discussed in the previous section.

1.4. Specific Problems in Environmental Modeling

In addition to the lack of surface monitoring and the dependency of models on input
data, there are further methodological challenges which need to be addressed to ensure
accurate environmental modeling and analysis. Data have to be normalized, multifactorial
regression techniques must be enhanced, and methods to evaluate large spatiotemporal
datasets need development.

Normalizing atmospheric concentration data, which may vary by four to five orders
of magnitude across a domain, is crucial for accurately modeling pollutant dispersion
across diverse geographical scales. Many studies simply attempt to determine annual
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averages ignoring short term chronic events. Sources and environmental conditions vary
widely in location and magnitude, necessitating standardization to manage the exponential
decay that occurs in pollutant dispersal—as described by Gaussian dispersion models.
Normalization mitigates biases and enhances the comparability of datasets from different
sources and times. Without normalization, variations in data scales can obscure actual
environmental patterns and trends. Employing normalization ensures that conclusions
reflect actual atmospheric behaviors rather than fluctuations above a mean [29].

Gaussian dispersion models describe the spread of pollutants in the atmosphere as
a bell-shaped curve, proportional to the exponential of the square of the distance from
the source [30–32]. The square root transformation addresses the skewed distribution of
concentrations typically observed downwind from emission sources. Unlike logarithmic
transformations, which can create errors by attempting to process log (0), the square
root transformation maintains zero values—sqrt (0) remains zero. This adjustment scales
dispersion to a more linear scale, reducing the range and impact of extreme values and
simplifying computational analysis. This method furthermore maintains accuracy in
datasets with zero values and avoids distortions in environmental data analysis by methods
that add plus one (eliminating log (0)) or mentally computing the exponential of a number.

Large spatiotemporal datasets, including CAMS, require accurate validation. Met-
rics, like root mean square error (RMSE) and mean absolute error (MAE) are typically
used to quantify prediction errors [33]. However, some metrics, like RMSE and MAE, are
point-based, and do not capture spatiotemporal interdependencies within large datasets.
Advanced techniques, such as spatiotemporal cross-validation, highlight the importance of
assessing model robustness [34]. The accuracy of land use regression (LUR) models, which
typically assume homogeneity (i.e., pollution concentrations are a global function of param-
eters), may be improved by considering localized anomalies, like specific source–receptor
pairs of high-concentration pollution plumes and high-resolution spatiotemporal data (i.e.,
dY/dt and dX/dt), rather than simply dY/dX to capture atmospheric dynamics [35].

Visualization tools, like Taylor plots, compare model predictions with actual obser-
vations, providing insights into model performance through visual representations of
correlation, RMSE, and standard deviation. However, Taylor plots are point-based statistics
and do not address the dY/dX variability. Proper understanding of the source of variability
is critical in facilitating targeted improvements in environmental modeling and ensuring
the realistic representation of observed data [36].

The sensitivity of the predicted to observed parameters is given by the Jacobian matrix
(dY/dX) which evaluates the sensitivity of model outputs to various input parameters
and identifies which factors may affect air quality and can assist in fine-tuning models to
improve predictions [37]. The Jacobian matrix, which is the crux of land use regression
models assumes homogeneity; however, geographically weighted regression (GWR), which
assesses spatial variability in pollutant concentrations using the localized Jacobian matrix
and represents how pollutants disperse and accumulate, does not assume homogeneity [38].

1.5. Research Question and Hypothesis

This research evaluates the capability of CAMS reanalysis data to capture temporal
and seasonal air quality trends and major pollution events. It has investigated the accuracy
of CAMS in documenting incidents, like the 2019 Australian bushfires, pollution episodes
in cities, like Beijing, and emissions reductions during the COVID-19 lockdowns. The hy-
pothesis is that CAMS, through its integration of satellite data, ground-based observations,
and advanced modeling, may provide a reliable framework for air quality monitoring. The
aim is to evaluate the validity and precision of CAMS model estimates in the absence of
empirical verification data, i.e., to determine whether the results are consistent with known
events and what the data indicate regarding input sensitivities.

This was achieved by employing and assessing the localized Jacobian matrix (dY/dX),
i.e., GWR, to assess the apparent spatial variability in pollutant concentrations and their
correlations to meteorological factors. Additionally, vertical profiles of ground-level con-
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centration (GLC) to aerosol optical depth (AOD) ratios were analyzed to understand the
relationship between ground-level pollution and columnar aerosol measurements. Spa-
tiotemporal pollution episodes with significant short-term impacts on air quality were
investigated to evaluate CAMS’ response to sudden atmospheric changes caused by ex-
treme weather and large-scale human activities.

2. Materials and Methods
2.1. Study Area and Timeframe

The study focuses on the observational area of the Himawari-8 satellite (Figure 1a),
which provides high-spatiotemporal-resolution data. The area was cropped to reduce non-
habitable areas (sea, space, and earth curvature), resulting in a dataset approximately 45%
the size of the original Himawari-8 dataset (Figure 1b). The selected region extends from 85◦

to 160◦ east longitude and from −45◦ to 50◦ north latitude, covering Australia, Indonesia,
and significant portions of China, each with unique environmental characteristics impacting
air quality.

Australia features diverse climates from deserts to forests, affecting local and regional
air quality. Topography influences pollutant dispersion, especially from bushfires and
mining. Coastal areas, particularly in the southeast, experience marine aerosol influxes that
interact with urban pollution. Indonesia, which is an archipelago of over 17,000 islands,
experiences volcanic activity and biogenic burning which generate significant amounts of
particulate matter, and the country’s coastal nature impacts dispersion patterns. China has
experienced rapid industrialization and urbanization which have caused severe pollution in
cities, like Beijing and Shanghai. Large mountain ranges influence atmospheric circulation,
affecting pollutant transport. Seasonal winds and dust storms from northern deserts impact
regional air quality.

The dataset covers the eight-year period from 2016 to 2023 and includes major envi-
ronmental events, like the 2019 Southeast Asia haze, the 2019/2020 Australian bushfires,
Melbourne’s 2016 pollen events, and industrial reductions during the 2020 COVID-19
lockdowns. These events offer insights into aerosol composition variability and its impact
on regional and global climate patterns. The extensive selection of geographical extent and
timeframe ensures a detailed analysis of pollution sources and environmental conditions in
China, Indonesia, and Australia.

2.2. CAMS Reanalysis Data

This study uses CAMS reanalysis data, integrating extensive observational data with
advanced numerical models for a consistent dataset crucial for global air quality and climate
studies. The data, accessed on 26 April 2024, include three-hour timesteps saved into eight
yearly netCDF files, covering a comprehensive range of atmospheric composition and
meteorological variables. The dataset included only single-level data (at the ground level
of the 60 available atmospheric pressure levels) for surface and total columnar parameters
to determine GLCs and total column statistics. Key variables include wind components,
temperature, mean sea level pressure (MSLP), relative humidity, carbon monoxide, nitrogen
oxides, sulfur dioxide, and various particulates.

Variables were chosen based on their relevance to the study’s goals, which were to
examine the temporal and spatial trends in respirable air pollution and to assess responses
to significant pollution events. Ground-level air quality was prioritized, excluding vertical
profile data and secondary pollutants, to focus on aerosols and criteria pollutants which
may provide insights into regional air quality dynamics.

While the study relies on CAMS reanalysis data, supplementary ground-based data
from monitoring stations and AERONET were considered but not used. AERONET’s
17 Australian sites provide insufficient AOD coverage, and the focus was on GLCs, not
columnar AOD. Australian surface data are too sparse, and while China’s extensive monitor-
ing network could verify grid variability, data access issues prevented its use. Furthermore,
the mismatch between point-based ground data and the CAMS grid size further compli-
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cates direct calibration. The study acknowledges these constraints and highlights the need
for improved data availability to enhance verification and air quality modeling.
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Figure 1. (a) Himawari-8 observational area (pseudo true color) and study domain (white-box
cropped at (x1 = 500, x2 = 3500; y1 = 500, y2 = 5000 to exclude outer edges), and (b) approximate
geographic extent of the study area from 85◦ E to 160◦ E and 45◦ S to 50◦ N displayed as equal
area projection.

2.3. Detailed Methodological Approach

This study processed and analyzed atmospheric data from the CAMS Reanalysis
Dataset using BASH and Python scripts as provided in the Supplementary Files. Key steps
included data normalization, statistical summarization, compositional analysis, anomaly
detection, and visualization. Data were processed annually from 2016 to 2023. Ground-level
and total column data were downloaded into annual files from the CAMS servers. CDO
(climate data operator) commands were used to adjust units and standardize atmospheric
parameters to common units [39].

Normalization was performed using the square root transformation to mitigate skew-
ness and handle zero values, thus avoiding computational challenges. Visual examination
shows a balanced representation across the domain of concentration levels, highlighting sig-
nificant pollution areas. Monthly–hourly means were calculated for each month and hour
combination and subtracted from the normalized values to reduce background variation
and focus on air quality changes.

In-depth statistical analyses were conducted on the consolidated datasets, including
metrics, such as maximum, mean, minimum, and standard deviation over the study
period. Specifically, we examined the maximum hourly concentration, which is the highest
pollutant level recorded in any single hour, the maximum daily concentration, which is
the highest average concentration over a 24 h period, and the year mean, which represents
the average concentration of pollutants across the entire year. Additionally, the standard
deviation (“std dev”) was calculated to measure the variability or dispersion of pollutant
concentrations from the mean, indicating how much the concentrations fluctuate over time.
This was achieved using CDO operations, like timmax, timmean, timmin, and timstd, with
data divided into smaller segments (monthly, daily, hourly) using splitmon, splitday, and
splithour commands. Monthly datasets examined variations and anomalies and identified
significant deviations that indicated unusual pollution events or changes in atmospheric
conditions. Composition spatiotemporal analysis identified short-term, seasonal, and
long-term pollution trends.
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The dataset included concentrations of sulfur dioxide (SO2), nitrogen oxides (NOx),
carbon monoxide (CO), ozone (O3), and speciated aerosols, like sulfate, nitrate, ammonium,
black carbon, organic carbon, sea salt, and mineral dust. This provided a comprehensive
view of pollutant distribution and concentrations over time. Mean sea level pressure
(MSLP) and specific humidity were evaluated for their impact on air pollution dynam-
ics. MSLP influences air mass movement and stability, while specific humidity impacts
cloud formation and precipitation, crucial for pollutant dispersion and removal. Carbon
monoxide (CO) and ground-level ozone (O3) concentrations were analyzed, focusing on
urban and industrial areas. Nitrogen dioxide (NO2) and sulfur dioxide (SO2) were studied
for their anthropogenic sources and impacts on health and the environment. Nitric oxide
(NO) and isoprene were analyzed to understand their roles in atmospheric photochemical
reactions. Particulate matter (PM2.5 and PM10) concentrations were examined across Asia
and Australia to understand their sources and impacts. Aerosol speciation considered black
carbon (BC) and organic carbon (OC) aerosols to identify pollution sources, particularly
from industrial activities and wildfires. The distributions of sulfate (SU) and sea salt (SS)
aerosols were examined to understand their sources and effects.

The relationship between ground-level concentrations (GLCs) and aerosol optical
depth (AOD) was analyzed to highlight the limitations of using satellite data for ground-
level air quality. These included specific humidity, sea salt, dust aerosol, organic matter,
black carbon, and sulfate aerosol. The goal was to assess how the vertical ratio of these com-
ponents is influenced by environmental factors and to evaluate the feasibility of computing
GLC data from AOD columnar data.

Anomalies in NO2, SO2, PM10, and organic carbon (OC) were analyzed over an eight-
year period to identify significant changes and events affecting air quality. Isopleth maps
were used to highlight deviations from typical conditions, providing insights into the
impacts of events, like the COVID-19 pandemic and wildfires, on air quality. Maximum
hourly concentrations per day for various pollutants were analyzed using time-series
plots. The analysis utilized the square root transformation and anomaly removal based on
monthly–hourly averages to focus on specific pollution incidents rather than long-term
averages. This aimed to identify and analyze acute pollution episodes in major cities across
the region.

Geographically weighted regression (GWR) approaches using the Jacobian matrix
(dY/dX) and temporal correlation were employed to illustrate the spatial variability be-
tween air pollutants and meteorological factors across the study domain. GWR operates
on a by-pixel basis, making it ideal for capturing local variations in data. This method
determines the Jacobian matrix for selected species-factors, highlighting the complexity
of air pollution dynamics and the need for localized air quality strategies. The analysis
focused on key meteorological variables and GLCs, including specific humidity (q), mean
sea level pressure (msl), temperature in Kelvin (1/T), and wind components (U10m and
V10m). Pollutants, such as organic matter (OM, aermr07), black carbon (BC, aermr09),
nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM1, PM2.5, PM10),
were included to assess their responses to environmental changes. The spatial and temporal
changes in these parameters, their correlations, and the evolution of the Jacobian matrix
(dY/dX) over space and time were examined.

3. Results

Given the extensive study domain—covering approximately one-eighth of the globe—
along with the eight-year timeframe and the inclusion of multiple pollutants and atmo-
spheric variables, it is impractical to present high-resolution figures within this article.
Readers are, therefore, directed to the Supplementary Information, which includes individ-
ual images of the compound plots as well as additional plots that could not be included
here due to space constraints.

Figure 2 presents the normalized maximum hourly concentrations for NO2, SO2, PM10,
and OM through isopleth maps. The original, squared, and log-transformed values are
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depicted for each pollutant. The normalization process highlights distinct spatial patterns
and concentration gradients, which are crucial for identifying high-risk areas. The square
root transformation effectively maintains a coherent plume and simplifies the identification
of pollution hotspots. This approach ensures that significant pollution incidents are clearly
visible, making it easier to focus on areas that require targeted interventions.
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Figure 2. Data normalization (depicting maximum hour). Columns left to right are NO2, SO2, PM10,
and OM, respectively. Rows top to bottom are X, square root (X), and Log10 (X), respectively.

Using climate data operators (CDOs), statistical summaries, including minimum and
maximum hourly, maximum daily mean, and annual average and variance for various
factors were derived as depicted in Table 1. These environmental parameters were grouped
into meteorological parameters, criteria pollutants, particulate matter, aerosol speciation,
and other pollutants. The information was depicted spatially in Figures 3–7 showing the
maximum hourly, maximum daily mean, annual averages, variance, and average monthly
(January, April, July, October) isopleths. Due to space constraints, only one month per
season (January, April, July, October) is displayed in the figures. Figure 3 depicts this for the
U and V wind components, mean sea level pressure, and specific humidity, and revealed
significant spatial and seasonal variations. For example, stronger winds over Australia
compared to China indicated differences in pollutant dispersion, while seasonal patterns
showed how variations in wind strength and direction impacted pollutant transport.

Figure 4 depicts isopleths of CO, O3, NO2, and SO2 exhibiting distinct spatial and
temporal patterns. CO and NO2 levels were highest in urban and industrial areas, par-
ticularly in China. Seasonal variations highlighted the influence of heating emissions and
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atmospheric conditions on pollutant levels. For example, higher levels of NO2 during
winter months were associated with increased heating activities and stable atmospheric
conditions that trap pollutants close to the ground.

The isopleths of CO, O3, NO2, and SO2 in Figure 4 reveal significant regional dif-
ferences and seasonal variations. China shows the highest pollutant levels, driven by
industrial and urban activities. Seasonal peaks are evident for different pollutants, empha-
sizing the need for targeted air quality management strategies. Indonesia and Australia
have lower pollutant levels, with specific events, like regional fires, influencing local
air quality.

Figure 5 depicts isopleths of particulate matter (PM1, PM2.5, PM10) and dust aerosols.
Visual analysis reveals that non-industrial sources, such as wind-blown dust and fires,
significantly contribute to high PM concentrations in Australia and northern China. Sea-
sonal variations indicate consistent high concentrations in interior Australia, with transient
dust events from fires and storms impacting short-term readings. In contrast, long-term
averages highlight persistent industrial emissions, particularly in China, where industrial
areas show consistently higher concentrations.

Table 1. Data statistics across the study region grouped according to parameter type.

Parameter CAMS Min Hourly Max Hourly Max Daily Annual Average Std Dev

Meteorological parameters

2 m dewpoint temperature (◦C) d2m −1.36 24.49 23.51 14.54 1.96

Mean sea level pressure (kPa) msl 98.93 103.08 102.87 101.33 0.71

Specific humidity (g/kg) q 2.07 4.39 4.28 3.31 0.62

Temperature (◦C) t 7.13 30.55 28.22 19.85 1.85

2 m temperature (◦C) t2m 7.25 31.02 28.34 20.10 1.87

Total column water vapor (kg/m2) tcwv 9.60 65.39 61.05 31.86 3.09

10 m U wind component (m/s) u10 −13.02 14.25 11.00 −0.54 1.85

10 m V wind component (m/s) v10 −13.25 13.53 10.48 0.48 1.81

Criteria Pollutants (µg/kg PM µg/m3)

Carbon monoxide mass mixing ratio co 38.05 1373.0 754.93 110.44 1.89

Ozone mass mixing ratio (full chemistry
scheme) go3 8.84 142.44 105.97 45.80 1.14

Nitrogen dioxide mass mixing ratio no2 0.00 18.65 6.77 0.69 0.30

Particulate matter d ≤ 1 µm pm1 0.00 116.92 60.84 4.99 29.05

Particulate matter d ≤ 2.5 µm pm2p5 0.00 198.35 105.16 11.24 41.80

Particulate matter d ≤ 10 µm pm10 0.00 315.69 166.03 17.86 53.80

Sulfur dioxide mass mixing ratio so2 0.02 8.47 4.34 0.63 0.25

Other Pollutants (µg/kg)

Ethane c2h6 0.15 8.73 4.55 0.47 0.16

Propane c3h8 0.02 4.50 2.24 0.14 0.12

Isoprene c5h8 0.04 36.63 13.52 1.47 0.42

Hydrogen peroxide h2o2 0.00 6.10 3.64 0.67 0.30

Formaldehyde hcho 0.14 10.67 5.17 0.78 0.22

Nitric acid hno3 0.00 8.19 3.79 0.21 0.23

Nitrogen monoxide mass mixing ratio no 0.00 12.77 2.58 0.05 0.16

Hydroxyl radical oh 0.00 0.00 0.00 0.00 0.00

Peroxyacetyl nitrate pan 0.01 9.51 4.80 0.41 0.26

GLC of AOD of constituents (µg/kg)

Sea salt aerosol (0.03–0.5 µm) mixing ratio aermr01 0.00 3.02 1.82 0.17 0.20
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Table 1. Cont.

Parameter CAMS Min Hourly Max Hourly Max Daily Annual Average Std Dev

Sea salt aerosol (0.5–5 µm) mixing ratio aermr02 0.00 253.32 152.47 14.51 1.79

Sea salt aerosol (5–20 µm) mixing ratio aermr03 0.00 207.73 120.80 7.11 1.40

Dust aerosol (0.03–0.55 µm) mixing ratio aermr04 0.00 18.22 10.63 0.29 0.45

Dust aerosol (0.55–0.9 µm) mixing ratio aermr05 0.00 38.59 21.52 0.55 0.64

Dust aerosol (0.9–20 µm) mixing ratio aermr06 0.00 80.23 35.48 0.70 0.71

Hydrophilic organic matter aerosol mixing
ratio aermr07 0.00 82.96 44.53 2.90 0.80

Hydrophobic organic matter aerosol mixing
ratio aermr08 0.00 41.80 17.78 0.84 0.43

Hydrophilic black carbon aerosol mixing ratio aermr09 0.00 4.79 2.53 0.11 0.18

Hydrophobic black carbon aerosol mixing ratio aermr10 0.00 5.44 2.19 0.04 0.12

Sulfate aerosol mixing ratio aermr11 0.00 15.48 9.54 1.16 0.44

Total Column (mg/m2)

GEMS total column ozone gtco3 4880.98 7738.72 7520.36 6029.06 2.68

Total column ethane tc_c2h6 1.42 14.35 11.19 2.79 0.24

Total column propane tc_c3h8 0.12 6.28 4.50 0.48 0.19

Total column isoprene tc_c5h8 0.02 16.10 9.37 0.64 0.33

Total column methane tc_ch4 9415.60 9966.03 9944.68 9713.68 0.39

Total column hydrogen peroxide tc_h2o2 0.27 34.59 28.48 6.79 0.70

Total column nitric acid tc_hno3 0.36 26.86 18.99 2.53 0.44

Total column nitrogen monoxide tc_no 0.00 3.29 0.83 0.19 0.40

Total column hydroxyl radical tc_oh 0.00 0.01 0.00 0.00 0.02

Total column peroxyacetyl nitrate tc_pan 1.11 28.84 20.65 4.97 0.43

Total column carbon monoxide tcco 405.9 2678.6 2161.8 726.7 2.7

Total column formaldehyde tchcho 0.61 11.89 8.04 2.07 0.27

Total column nitrogen dioxide tcno2 0.29 10.12 5.09 1.40 0.29

Total column sulfur dioxide tcso2 0.10 9.56 6.37 0.93 0.28

AOD

Black carbon aerosol optical depth at 550 nm bcaod550 0.000 0.141 0.096 0.006 0.077

Dust aerosol optical depth at 550 nm duaod550 0.000 0.440 0.279 0.016 0.130

Organic matter aerosol optical depth at 550 nm omaod550 0.002 0.845 0.606 0.062 0.218

Sea salt aerosol optical depth at 550 nm ssaod550 0.000 0.410 0.252 0.034 0.156

Sulfate aerosol optical depth at 550 nm suaod550 0.001 0.500 0.318 0.051 0.180

Total aerosol optical depth at 469 nm aod469 0.006 1.772 1.239 0.197 0.344

Total aerosol optical depth at 670 nm aod670 0.004 1.261 0.857 0.139 0.291

Total aerosol optical depth at 865 nm aod865 0.003 1.031 0.683 0.109 0.262

Total aerosol optical depth at 1240 nm aod1240 0.002 0.847 0.542 0.079 0.231

The isopleths of black carbon (BC), organic carbon (OC), sulfate, and sea salt aerosols
in Figure 6 revealed the influence of both anthropogenic and natural sources. Higher BC
and OC concentrations were observed in industrial regions, while sea salt aerosols were
prominent in coastal areas. Other pollutants, including NO, isoprene, formaldehyde, and
ethane, showed significant spatial and temporal variability, as in Figure 7. Higher concen-
trations were observed in urban and industrial regions, influenced by both anthropogenic
and biogenic sources. Figure 8 illustrates the ratio of ground-level concentration (GLC) to
aerosol optical depth (AOD) for various aerosols, including specific humidity, sea spray,
dust aerosol, organic material, black carbon, and sulfate aerosol. This ratio reflects how
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different aerosol sources influence the vertical distribution of pollutants. For instance,
aerosols from wildfires, which generate significant heat, often result in a lower ratio at
the surface, indicating higher concentrations aloft. In contrast, dust storms tend to have a
more uniform vertical profile, leading to a stronger correlation between GLC and AOD.
Understanding these variations is essential for accurately assessing air quality and the
environmental impact of different aerosol sources. This ratio is not spatially constant, and
varies by four orders of magnitude across parameters, indicating that calibration must
be location- and parameter-specific, thus supporting the use of geographically weighted
regression (GWR) over land use regression (LUR). The ratio reaches a maximum correlating
with specific events, such as fires and dust storms, as evidenced by the different maxima
across the panels. It is the temporal variation of source strengths that dictates this ratio,
causing it to change both spatially and temporally as the plume dissipates.

Anomalies from monthly–hourly means for NO2, SO2, PM2.5, and PM10 over an eight-
year period (2016–2023) (Figure 9) highlighted significant changes and events affecting
air quality. The analysis revealed the impact of events, such as the COVID-19 pandemic
(2020 column five) and wildfires (2019 column four), on pollutant levels and lower 2023
(column eight) levels.

The timeseries plots in Figure 10 of the maximum hourly concentration per day for
different pollutants revealed distinct pollution patterns in cities across Australia, China,
and Southeast Asia. The 2019/2020 Australian bushfires and the COVID-19 lockdown’s
impact on pollution levels were evident in the data. These plots illustrated how specific
events lead to sharp increases or decreases in pollutant concentrations, providing valuable
insights for air quality management.

Geographically weighted regression (GWR) analysis illustrated the spatial variability
in the correlation in Figure 11 between air pollutants and meteorological factors. The
analysis revealed significant relationships in the Jacobian matrix (dY/dX) in Figure 12
between wind components, specific humidity, and pollutant concentrations. This high-
lighted the need for localized air quality management strategies that consider the unique
environmental conditions of each region. By understanding these spatial relationships,
policymakers can develop more effective interventions to reduce pollution and protect
public health.
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Figure 10. Timeseries of maximum hourly concentration per day for the pollutants (columns)
NO2, SO2, PM2.5, PM10, OC, and BC, respectively, and for the cities (rows) of Sydney, Melbourne,
Perth, Beijing, Shanghai, Guangdong, Kuala Lumpur, Bangkok, and Hanoi, respectively, over the
eight-year period.
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PM10 over the eight-year period, respectively.

4. Discussion

Evaluating CAMS data offers insights into the strengths and limitations of such
datasets for supporting air quality monitoring and policy decisions. Importantly, in the
absence of dense monitoring data in certain regions, this study validates that CAMS
data aligns well with anticipated patterns, with certain constraints. Key findings related
to normalization techniques, interactions between atmospheric dynamics and pollutant
distribution, and broader environmental implications are examined, along with a discussion
of limitations and directions for future research.

Normalization techniques, particularly the square root transformation, were effective
in reducing skewness due to low mean values and helped to identify critical pollution
incidents, which are often significantly above mean levels. By preserving zero values and
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providing a more intuitive interpretation compared to exponential transformations, the
square root approach facilitated a more accurate visualization of pollution events.

Our study identified complex interactions between atmospheric dynamics—such as
wind components, humidity levels, and pollutant dispersion—across different regions.
For instance, analysis of U and V wind components highlighted the impact of seasonal
winds, such as the winter monsoon in China, on pollutant distribution, emphasizing the
importance of these factors for air quality modeling. The analysis of mean sea level pressure
(MSLP) and specific humidity underscored their roles in pollution dispersion, with high-
pressure systems typically leading to pollutant accumulation and low-pressure systems
enhancing dispersion. Specific humidity also plays a role in cloud formation, which affects
photochemical reactions and pollutant dispersion, demonstrating the need to integrate
these variables for accurate predictions in air quality models.

The evaluation of CO and ground-level O3 concentrations provided insights into
urban pollution, particularly in China and Southeast Asia, where high CO levels are
indicative of significant vehicular and industrial emissions, precursors for ozone formation.
Mapping NO2 and SO2 concentrations highlighted combustion-related hotspots, suggesting
that regions with high values may benefit from stricter emission standards and cleaner
industrial technologies.

Analysis of PM2.5 and PM10 highlighted distinct geographical patterns, reflecting both
industrial activity and natural events. High particulate matter levels in Asia were primar-
ily driven by industrial and urban sources, whereas natural sources, like the 2019/2020
Australian bushfires, contributed significantly to particulate pollution in Australia. These
findings underscore the necessity of integrating dynamic meteorological data into air qual-
ity models to accurately capture the interactions between environmental conditions and
pollutant behaviors.

The study’s analysis of aerosol components, such as black carbon (BC), organic carbon
(OC), sulfates, and sea salt aerosols, revealed the influence of both anthropogenic and
natural sources on air quality. Source–receptor relationships varied by region, illustrating
the non-uniform nature of air pollution. The use of geographically weighted regression
(GWR) demonstrated the importance of accounting for spatial variability, contrasting with
the limitations of traditional land use regression (LUR), which assumes homogeneity and
may misinterpret the factors driving pollutant dispersion.

Vertical profile analysis provided a deeper understanding of how specific atmospheric
components, like specific humidity and dust aerosols, vary both spatially and temporally.
These observed variations reinforce the need to incorporate multiple atmospheric variables
to accurately assess air quality dynamics.

Examining anomalies over eight years revealed correlations with major regional events,
such as reductions in pollutant levels during the COVID-19 pandemic and increases from
natural events, like wildfires. For example, pollutant reductions in 2020, except in regions
affected by the Australian wildfires, highlight the impact of reduced human activity and
natural pollution sources. These findings suggest that anomaly analysis can provide critical
insights into the environmental impacts of disruptive events.

A notable contribution of this study is the application of the Jacobian matrix to evaluate
the sensitivity of pollutants to atmospheric factors, offering insights into source–receptor
influences. This approach, unlike LUR, which assumes uniform conditions, highlighted the
location-specific and often non-linear relationships between emission sources and pollutant
concentrations. The per-pixel approach of GWR, as shown in Figure 11, captured spatial
variability more effectively than LUR, while Figure 12 demonstrates the temporal and
spatial variability of the Jacobian matrix, reinforcing the need for comprehensive datasets
when developing global air quality methodologies.

The study emphasizes the necessity of location-specific air quality modeling to inform
public health interventions and policy decisions. Improved air quality monitoring has
broader implications for public health, economic factors, and climate action. Accurate
monitoring can help reduce respiratory and cardiovascular illnesses, lower healthcare costs,
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and enhance workforce productivity. Although the CAMS data resolution is sufficient for
large-scale analysis, it may not capture fine-scale pollution dynamics essential for local
policy. Integrating higher-resolution data sources, like Himawari-8, could provide more
localized insights. Future research should investigate the feasibility of such integrations
and further assess the applicability of advanced normalization techniques across varied
datasets to adapt to different pollutants and atmospheric conditions.

5. Conclusions

This study underscores the significant potential of the Copernicus Atmosphere Moni-
toring Service (CAMS) reanalysis for monitoring ground-level concentrations (GLCs) of
aerosols and criteria pollutants across varied regions, including China, Indonesia, and
Australia. The accuracy of CAMS data is fundamentally dependent on the quality of input
data, which varies widely by region. For instance, China’s dense monitoring network
may contribute to more reliable CAMS data, while Australia’s sparse network could intro-
duce data uncertainties. Despite these challenges, CAMS remains a valuable resource for
assessing broad air quality trends in regions that otherwise lack sufficient data.

The evaluation indicates that normalization techniques, such as the square root trans-
formation, enhance data clarity by highlighting extreme pollution events, potentially
enabling more targeted air quality interventions. Additionally, geographically weighted
regression (GWR) has proven effective for capturing spatial variability in pollutant concen-
trations, illustrating how meteorological factors—including wind direction, humidity, and
pressure—can drive pollutant dispersion across different areas. This method, in accounting
for local conditions, provides a more balanced approach to modeling air quality than
traditional models, such as land use regression (LUR).

While CAMS has limitations in detecting localized pollution events due to its reliance
on dispersion models and existing ground-based data, integrating CAMS with satellite
observations, like Himawari-8, could address these limitations. The high spatial and
temporal resolution of satellite data may enhance CAMS’s capability to detect episodic
pollution events and improve monitoring accuracy in areas where ground data are sparse.

In conclusion, although CAMS’s accuracy is regionally dependent due to differences
in data density, it remains a critical tool for monitoring regional air quality. Future efforts
should focus on combining CAMS data with high-resolution satellite observations to
strengthen local monitoring capacity and capture pollution events more effectively. This
integrated approach has the potential to provide more robust data for public health and
environmental policy decisions, ultimately leading to more efficient and responsive air
quality management.

Supplementary Materials: The following supporting information can be downloaded at https:
//github.com/MilesSowden/CAMS_Him8, accessed on 26 April 2024, all high resolution images of
each individual subplot; Cams.sh (the main processing code); PlotStats.sh (the main plotting code);
plot_netcdf.py (the python script per subplot); plot_timeseries.py (plotting timeseries); and gws.sh
(the GWR code).
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