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Abstract: Museums play a vital role in preserving cultural heritage and for this reason,
they require strict indoor environmental controls. Balancing indoor environmental qual-
ity with reduced energy consumption poses significant challenges. Over the course of a
year (2023), indoor microclimate conditions, atmospheric pollutant concentrations (O3,
TVOC, CO, CO2, particulate matter), and energy use were monitored at the Archaeo-
logical Museum of Kavala. Maximum daily fluctuations in relative humidity were 15%
in summertime, while air temperature variations reached 2.0 ◦C, highlighting unstable
microclimatic conditions. Particulate matter was the primary threat to the preservation
of artworks, followed by indoor O3 and NO2, whose concentrations exceeded recom-
mended limits for cultural conservation. In 2023, the Energy Use Intensity (EUI) was
86.1 kWh m−2, a value that is significantly correlated with the number of visitors and
the outdoor air temperature. Every person visiting the museum was assigned an average
of 7.7 kWh of energy. During the hottest days and when the museum was crowded, the
maximum amount of energy was consumed. Over the past decade (2013–2023), the lowest
EUI was recorded during the COVID-19 pandemic at 53 kWh m−2. Energy consumption is
linked to indoor environmental quality; thus, both must be continuously monitored.
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1. Introduction
Museums store valuable artefacts of our cultural heritage, which must be meticulously

preserved to maintain their integrity over time. Consequently, maintaining adequate
indoor environmental quality (IEQ)—including low atmospheric pollutant levels and
microclimatic conditions suited to the artefacts—is essential. Furthermore, poor indoor
air quality endangers both human well-being and productivity. Thus, museums’ indoor
environments have to offer a healthy atmosphere, along with visual and thermal comfort for
both visitors and staff [1,2]. Following the COVID-19 pandemic, a surge in tourism led to
overcrowding in many museums and cultural heritage sites, introducing new management
challenges [3–8].

Indoor air pollution in museums originates from both outdoor and indoor sources.
Most museums are in urban areas, making them vulnerable to outdoor pollutants like
particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and
volatile organic compounds (VOCs). These pollutants enter museum spaces through venti-
lation systems and open doors or windows [9]. Additionally, numerous indoor atmospheric
pollutant sources exist, such as cleaning agents, building materials and furnishings that can

Air 2025, 3, 5 https://doi.org/10.3390/air3010005

https://doi.org/10.3390/air3010005
https://doi.org/10.3390/air3010005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/air
https://www.mdpi.com
https://orcid.org/0000-0001-8497-1629
https://orcid.org/0009-0005-5430-3781
https://orcid.org/0000-0002-7883-0894
https://doi.org/10.3390/air3010005
https://www.mdpi.com/article/10.3390/air3010005?type=check_update&version=1


Air 2025, 3, 5 2 of 15

emit dust and several VOCs. The human activities of the staff and of the visitors can add
to the indoor air several atmospheric pollutants, because they emit, for example, VOCs,
CO2 and skin flakes [7,10,11]. The movement of people in the exhibitions also provokes the
resuspension of the settled particles. Some artefacts themselves can release pollutants, such
as natural history specimens treated with preservatives [12]. Poorly designed display cases
and ineffective storage facilities can exacerbate pollution by restricting air flow and thus
allow atmospheric pollutant concentrations to build up [13].

Particulate matter (PM) is a less obvious but highly damaging component in the atmo-
sphere of a museum, affecting the preservation of housed collections [14–17]. Airborne PM
consists of solid and liquid particles of various sizes and chemical compositions, originating
from both indoor and outdoor sources. Common types of PM include soot, pollen, and soil
particles. Indoor PM sources within museums include human activity, fibres from clothing,
resuspended particles from foot traffic, emissions from maintenance activities (such as
cleaning and restoration), and emissions from building materials (like degraded plaster
and paint). The composition of PM varies widely, encompassing inorganic compounds
(e.g., salts), organic compounds (such as formic and acidic acid), and particles of biological
origin (including bacteria, viruses, and fungi). PM can cause various types of damage to
museum collections, including physical damage (surface degradation and soiling), chemi-
cal damage (corrosion and degradation of organic materials), and biodeterioration (such as
mould growth). Small solid particles (under 75 µm in diameter) that settle on surfaces but
may remain suspended temporarily are classified as ‘dust’, which poses a persistent chal-
lenge for museum curators [18–21]. For example, in 2010, the Conservation Department at
the Victoria and Albert Museum in the UK evaluated strategies to manage dust deposition
on exposed costumes from the Ballet Russes exhibition due to high visitor numbers [21].

PM is more than just an ‘atmospheric pollutant’; understanding its full impact requires
a range of analytical “off line” techniques. On the other hand, light-scattering devices offer
a simple and accurate means to determine the number concentration and size distribution
of PM [22,23].

In naturally ventilated museums—either modern or historical buildings—various
air pollutants have been found to threaten stored collections, as discussed in Loupa et al.
(2024) and referenced therein [7]. Atmospheric pollutant levels are not the only concern in
museums. Microclimatic conditions, air exchange rate and lighting have to be appropriate
for artefact conservation but also for the visitors’ thermal and visual comfort [24,25].

Operating these buildings requires substantial energy, posing both environmental
and economic challenges. Balancing appropriate indoor environmental quality (IEQ)
with minimized energy use presents significant difficulties [26,27]. In Greece, data for
primary energy use intensity (EUI) are taken from the energy performance certifications
for non-residential buildings. On average, the annual EUI in Greek exhibition halls and
museums is 312.5 kWh m−2 (ranging from a minimum of 65.8 kWh m−2 to a maximum
of 632.5 kWh m−2) [28]. Cooling demands the most energy, averaging 166.0 kWh m−2,
followed by lighting at 68.1 kWh m−2 and heating at 79.0 kWh m−2 [28]. Depending on
local environmental factors, some museums rely more heavily on heating, others on cooling,
and some buildings require energy primarily for dehumidification [29–31].

To improve energy efficiency in both historical and modern museum buildings, sev-
eral technical interventions are recommended, including HVAC (Heating Ventilation and
Air Conditioning) systems, ground-source heat pumps, and updated management pro-
grams [32,33]. Additionally, adopting renewable energy sources such as solar or wind
power can further enhance sustainability in museum operations [34]. Renewable tech-
nologies in museums present both technical and financial challenges, but they can be
overcome [35]. For example, in the modern museum of ancient Eleutherna, Crete, Greece,
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with a total annual energy consumption of 216,000 KWh, the installation of a geothermal
heat pump at 123.2 KW has been proposed for its air-conditioning requirements, in addi-
tion to a solar-PV system with nominal capacity at 144 KWpeak that could generate all the
electricity needed annually, which represents a cost-effective and reliable solution [36].

Strategies to enhance energy efficiency and sustainability in museums, as well as
effective conservation processes for works of art, must be based on data acquired on-
site [37,38]. Modern integrated environmental monitoring systems now continuously
track environmental conditions, including gas and particle concentrations, temperature,
and humidity, providing real-time data to guide and manage conservation strategies.
Alongside IEQ data, collecting EUI metrics for each museum is essential. This study on the
Archaeological Museum of Kavala, Greece, highlights the benefits of monitoring both IEQ
and EUI.

2. Materials and Methods
2.1. Site Description

The Archaeological Museum of Kavala hosts representative artefacts from the
Eastern Macedonia and Thrace in Greece, including mostly marbles and painted ce-
ramic objects (https://archaeologicalmuseums.gr/el/museum/5df34af3deca5e2d79e8c1
b8/archaeological-museum-of-kavala) (accessed on 6 December 2024).

The museum was established in 1934 and reopened in 1964 at the current building.
This building is a two-story building (with a basement) with a flat rooftop that has old
insulation. The windows and the glazing of the indoor atriums are not insulated. The main
material used in the construction was cement for the supporting structure, while bricks
were used for the walls. The floors in the exhibition areas are paved with marble. Heating
is provided by a central heating system with oil radiators, and cooling is achieved using a
central air conditioning system. Ventilation is natural.

The museum is open from 8:30 h to 15:00 h and remains closed every Tuesday.
Figure 1 presents the floor plan of the museum’s ground floor, showing the locations

of the monitoring stations. In location GF2 (ground floor, location 2), a staircase leads to
the basement (Bs), which serves as a refreshment area for visitors. A schematic illustration
of the surrounding areas of the building is also included.
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Figure 1. The floor plan of the ground floor of the museum and a schematic presentation its
surrounding area. Below the GF2 (ground floor, location 2) is the basement (Bs).
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The GF2 site covers an area of 97 m2. The GF1 features an atrium in the centre. The
two sides are approximately 45 m2 apiece. The number of individual visitors is small, i.e.,
less than ten people. In the case of an organised group, each tour should not include more
than thirty people.

2.2. Monitoring

The monitoring period spanned more than a year (from December 2022 to February
2024) to capture seasonal variations in indoor air quality parameters and corresponding
outdoor conditions. Air pollutants (TVOCs, CO, CO2, O3, NO, NO2) were monitored with
a multi-gas sensor probe (model DirectSense II; GrayWolf Sensing Solutions; Annacotty,
County Limerick, Ireland). Mass concentrations of particulate matter (PM) in six aerody-
namic diameter ranges (PM1, PM2.5, PM4, PM7, PM10, and TSP) were measured using an
Aerocet 531s sensor (Met One Instruments Inc., Washington, DC, USA). All instruments
were calibrated three times during the campaign. Both instruments also recorded air tem-
perature (AT) and relative humidity (RH) and were connected to a laptop, where their
instantaneous readings were recorded every five minutes (for 24 h per day).

On the ground floor (GF), measurements were conducted for twenty days in GF1
(ground floor, location 1), five days in the Bs and five days outdoors (location ‘out’, Figure 1)
every month during the year 2023. Furthermore, for two months (January and February of
2024), the monitoring station was moved every week between GF1 (two days) and GF2
(five days) to trace their differences in the air pollutant concentrations. Location GF2 is
near the building’s entrance, where tickets are sold. A detailed record of activities was
maintained at each monitoring location, and the daily visitor count was provided by staff.

Outdoor wind speed and wind direction were measured with an Atmos-41 weather
station (METER Group GmbH, 81379 München, DE, Germany) and logged on a ZL6 data
logger (METER Group GmbH, 81379 München, DE, Germany) every 15 min. This station
was on the roof of the building.

Data on the building’s electric energy consumption were sourced from the Public
Power Corporation S.A.-Hellas (DEH). Information on heating oil consumption, used
during the two or three coldest months of the year, was provided by the technical staff,
with an assumed energy yield of 10.6 kWh per litre of heating oil.

3. Results
3.1. Indoor Microclimate, Outdoor Meteorological Conditions and Energy Use Intensity

Figure 2 summarizes the monthly mean, maximum and minimum indoor air tempera-
ture and relative humidity in the ground floor exhibition (GF1) of the museum throughout
2023. Significant variations were recorded for both parameters.
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Kavala has a sunny, Mediterranean climate. Outdoor mean air temperatures around
the museum ranged from 13.3 ◦C to 33.5 ◦C and the outdoor mean RH between 47% and
62%, reflecting the museum’s coastal proximity. Indoor microclimatic conditions were
influenced by these outdoor factors, as well as by the building’s heating system in winter
and cooling system in summer. The indoor environment was primarily adjusted for visitor
thermal comfort rather than for artefact conservation [39,40]. Daily fluctuations in RH and
AT and their rates are critical indicators for assessing potential damage to artworks. During
August 2023, the highest daily AT variation was recorded at 2.0 ◦C, with an RH variation
of 15%. In winter, daily AT variation peaked at 3.1 ◦C, with a corresponding RH variation
of 8%.

Figure 3 illustrates the museum’s EUI in relation to the mean outdoor air temperature.
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Approximately 88% of the total consumed energy was electrical. The energy use in
this naturally ventilated museum is highly dependent on ambient weather conditions. The
relationship of the mean monthly EUI (kWh m−2) in the museum with the mean monthly
outdoor air temperature (Temp.out, ◦C) is of second order:

EUI = 0.51 (Temp.out)2 − 23.5 (Temp.out) + 316.1, R2 = 0.8189 (1)

Linear regression resulted in a low coefficient of determination (R2), and applying a
higher-order polynomial fitting did not improve the R2 value.

Another important parameter that affects the EUI is the number of people (visitors
and employees) present in the museum. Its relationship with the number of people present
in the museum (Pp, sum of people present per square meter, per month) is as follows:

EUI = 7.7 (Pp) + 17.6, R2 = 0.6036 (2)

By increasing the order of the polynomial fitting in the trend line, R2 was increased. For
example, for a second-order polynomial fitting, R2 = 0.7018. We demonstrate in Equation (2)
the simplest fitting, i.e., the linear relationship with a statistically significant R2.

Figure 4 illustrates the synergistic impacts of two parameters: outdoor air tempera-
ture (Temp.out) and the number of individuals per square meter on the EUI measured in
kWh m−2 per month, represented in a 3D contour map utilizing the distance-weighted
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least squares smoothing technique. Figure 4 demonstrates that with elevated temperatures
and heavy visitor attendance, the museum exhibited peak energy consumption.
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Figure 5 depicts the long-term EUI from 2013 to 2023. The linear relationship between
EUI and time is also provided.
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Figure 5. Yearly mean, max and mean EUI in the museum for a decade.

The yearly EUI ranged from 64 to 106 kWh m−2, with peak values occurring during
cultural events, such as lectures, music evenings, and special thematic exhibitions.

The museum staff’s efforts to reduce energy consumption, along with the switch to
more efficient lighting and possibly the impact of climate change—reflected in rising mean
outdoor temperatures—are evident in the trend of the mean EUI, which decreased by
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2.7 kWh m−2 over the examined decade [41]. This trend remained unchanged even when
the pandemic years, 2021–2022, were excluded from the dataset.

3.2. Indoor Atmospheric Pollutants

Indoor air quality (IAQ) was influenced by outdoor air quality, as the building lacks a
filtration system. Indoor pollutant sources, such as visitor presence and movement, also
played a significant role. Table 1 summarizes the indoor and outdoor atmospheric pollutant
concentrations at location GF1 for the year 2023, along with the respective indoor/outdoor
(I/O) concentration ratios.

Table 1. Indoor and outdoor atmospheric pollutant concentrations at GF1 (2023).

GF1 Out
PM

(µg m−2) Mean Std.Dev. Mean Std.Dev. I/O

PM1 13.33 8.01 5.60 2.78 2.38
PM2.5 17.61 11.35 9.85 4.79 1.79
PM4 26.99 25.17 24.84 11.44 1.09
PM7 33.47 34.54 45.18 19.37 0.74
PM10 35.19 37.31 53.76 22.77 0.65
TSP 36.70 39.65 63.07 26.00 0.58

Gases Mean Std.Dev. Mean Std.Dev. I/O
TVOC (ppb) 321.65 124.87 190.66 31.49 1.69

CO (ppb) 189.38 185.60 315.33 204.16 0.60
CO2 (ppm) 468.92 62.91 471.78 24.57 0.99

O3 (ppb) 6.46 12.78 13.77 18.20 0.47
NO (ppb) 124.91 24.63 184.80 15.45 0.68
NO2 (ppb) 46.64 32.12 85.05 21.21 0.55

The I/O concentration ratios for PM1, PM2.5, PM4 and TVOC were greater than one,
indicating the presence of indoor sources.

Figure 6a,b show a snapshot of the time series data for certain indoor PM and gaseous
pollutant concentrations on the ground floor (GF1) of the museum. Every Tuesday, the
museum was closed to the public, with only personnel present for cleaning, dusting, and
occasional repairs. On all other days, the museum closed at 15:00. On the Monday depicted
in these figures, 10 tourists visited the museum, while on Wednesday, a group of 120 tourists
visited, resulting in increased concentrations of indoor atmospheric pollutants.

3.2.1. Air Change Rate (ACH)

The decay of indoor CO2 concentrations after a group left GF1 or after the museum
closed at 15:00 allowed for the estimation of the ACH [7]. When the museum was open,
the ACH ranged from 0.32 to 0.54 h−1, while after 15:00, it dropped to between 0.08 and
0.12 h−1.

3.2.2. IAQ Comparison Between Two Locations

Certain areas of the museum experienced higher visitor concentrations than others.
At the entrance, where tickets are sold, all visitors in groups, wait for at least ten min-
utes, while in other areas, visitors are more dispersed. Figure 7 compares atmospheric
pollutant concentrations across multiple places, namely GF1, GF2, and Bs (January and
February 2024).
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Figure 6. Time series of indoor atmospheric pollutant concentrations (9, 10 and 11 January 2023).
(a) PM2.5 and PM10 mass concentrations; (b) TVOC and CO2 concentrations.

The GF2 had the highest PM concentrations. In the present study, pollutants from
outside sources, like CO, O3, and NOx, were more increased in the GF2 than in the other
sites, owing to the opening of the museum’s main door.
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Figure 7. Comparison of mean indoor air pollutant concentrations measured in different locations
(2024).). (a) PM mass concentrations; (b) Gaseous air pollutant concentrations.

4. Discussion
The Archaeological Museum of Kavala is a relatively new, naturally ventilated building

situated between the Gulf of Kavala on one side and a busy road on the other. The
prevailing wind direction from the South, coming from the sea, assists in limiting the
infiltration of elevated air pollutant concentrations from nearby traffic and the parking
lot. Indoor atmospheric pollutant concentrations in naturally ventilated museums (with
variable air exchange rate) are affected not only by indoor sources, but also depend on
the outdoor atmospheric pollution, and thus on the building location and the relevant
outdoor activities. Hence, I/O concentration ratios are highly variable. The most studied
pollutants in museums are O3, NO2 and PM. O3 and NO2 pose an established risk to
painting materials, textiles, and biological colorants in museums. PM can endanger any
material, ranging from simple soiling to chemical attack. For example, in the São Paulo
History Museum (Brazil; naturally ventilated), indoor O3 concentrations ranged between
10 and 14 ppb (I/O was 0.72 to 0.99), while indoor NO2 was 14.5 ppb with an I/O ratio of
0.57. The indoor fine PM concentration was 5.8 µgm−3, whereas the outdoor concentration
was 6.8 µgm−3 (I/O = 0.85). In the mechanically ventilated São Paulo State Art Museum
(Brazil), indoor O3 concentrations were 3 ppb (I/O = 0.22) and indoor NO2 concentrations
were 12 ppb (I/O =0.46), resulting in much reduced atmospheric pollutant concentrations.
The indoor fine PM concentration was 5.1 µgm−3, while the outdoor concentration was
8.4 µgm−3 (I/O = 0.61) [42,43]. In another recent study, in five site museums (two naturally
ventilated) of Yangtze River civilization, in Yangtze River area, China, in wintertime, indoor
O3 concentrations were between 2 and 9 ppb (I/O ranged between 0.26 and 1.5), NO2

concentrations were between 1 and 9 ppb (I/O ranged between 0.16 and 0.75), and fine
PM mass concentrations were between 33.9 and 79.6 µgm−3 (I/O ranged between 0.89 and
1.9). In the summertime, indoor concentrations ranged between 1 and 19 ppb (I/O ranged
between 0.14 and 0.95); NO2 concentrations 1–11 ppb (I/O ranged between 0.03 and 0.92);
fine PM mass concentrations were between 52.8 and 113.0 µgm−3 (I/O ranged between
0.61 and 0.94) [44]. Indoor PM emissions, dynamics, and chemistry have a substantial
impact on indoor PM mass concentrations, size distributions, and chemical composition.
The penetration factor, deposition velocity, resuspension rate, gas-to-particle conversion,
condensation, evaporation, and coagulation all have a different effect on PM concentrations
in each size bin [45–50]. Indoors, PM1 and PM2.5 concentrations were approximately
twice as high as outdoor levels. Visitors’ emissions probably contribute to the museum’s
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highest PM1 I/O ratio and elevated PM2.5 I/O ratio. People release PM in these size bins
through their clothing, skin, breathing, and speaking, including bioaerosol [45,51–54]. PM1

corresponds mainly to the accumulation mode (aerodynamic diameter between 0.1 µm to
2.5 µm), meaning that these particles tend to persist in the atmosphere. Airborne particles
in this size range are too large to undergo rapid Brownian motion, yet too small to settle out
quickly. Additionally, they do not readily agglomerate to form larger particles. In a review
of fine PM in indoor cultural heritage buildings, Grau-Bové and Strlič (2013) discovered that
the I/O ratio was higher for particles ranging from 0.1 to 1 µm [15]. Simultaneous indoor
and outdoor PM concentration measurements were performed in two medieval churches
in Cyprus. During guided tours at St. John Cathedral in Nicosia with tourists (20–30 each
tour), the greatest I/O mass concentration ratio of 2.51 was found in the 0.5–1.0 µm size
bin, without any services or candle burning. The respective I/O ratio for St. Paraskevi
in Yeroskipou, Paphos, was 1.88. It is important to note that these measurements were
obtained with a different instrumentation, but the most significant advantage was the
simultaneous indoor and outdoor measurements [45].

To preserve artefacts effectively, the annual average PM2.5 concentration should be
kept below 10 µg m−3 [55]. However, PM2.5 levels exceeded this recommendation, which is
similar to the findings from the Archaeological Museum of Abdera, Greece, as well as with
other museums [7]. Particulate matter consists of various organic, inorganic, and biological
compounds, some of which can chemically damage artefact surfaces or, at a minimum,
detract from the aesthetic value of the displayed items. The issue of PM deposition on
artworks is a longstanding global challenge [26,56]. Removing these particles from surfaces
is both difficult and costly [57].

Airborne PM is the worst enemy of aged marble and clay antiquities. The smaller the
particles, the more difficult they are to remove. To combat particle soiling, air cleaning
technologies, such as electrostatic precipitators or high efficiency filters in the HVAC system,
could be installed. Filters with a MERV (minimum efficiency reporting value) greater than
8 are regarded sufficient for capturing tiny particles [46,58–60].

In the museum under study, indoor concentrations of ozone (O3) and nitrogen dioxide
(NO2) also exceeded recommended guidelines, i.e., the O3 annual average value was above
5 ppb and NO2 above 10 ppb [6,55,61,62].

When the museum was closed, the low air change rate (ACH) limited the dilution of
atmospheric pollutants, allowing slow-rate chemical reactions to take place [63]. As a result,
total volatile organic compound (TVOC) concentrations from indoor and outdoor sources
were higher during closed hours, likely due to the low ACH, emissions from building
materials, and ongoing chemical reactions. For example, certain VOCs from cleaning
sprays can decompose, producing CO among other by-products [64]. This may explain
instances where indoor CO levels increased independently of outdoor concentrations, a
trend observed in both the Kavala and Abdera archaeological museums.

The microclimatic conditions were not stable as recommended and showed significant
daily and seasonal variations. In summer, air conditioning was active only during opening
hours, and relative humidity (RH) was higher when the museum was closed, with daily
variations reaching up to 15%. Meanwhile, air temperature (AT) increased by 2 ◦C during
closed hours. A similar pattern was observed in the Archaeological Museum of Abdera
during hot, sunny days. In winter, AT rose by 2 ◦C when the museum opened due to the
activation of the central heating system. RH varied by up to 8% daily, and on some days,
RH was higher during opening hours due to the intrusion of humid air from the nearby sea.
Uncontrolled AT and RH, especially rapid variations in these factors, as well as unmanaged
lighting, are capable of damaging works of art. Several standards are created to form the
advantageous environment for both visitors and works of art [65,66]. Note that there does
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not exist a range of microclimatic conditions suited for all types of exhibited materials.
It has become difficult for technical staff to meet stringent environmental standards that
attempt to address a variety of competing criteria, plus to achieve energy saving [40,67–70].

A two-month comparison in 2024 between three locations in the museum supported
that the GF2, near the entrance of the museum, was the most polluted location, affected by
the infiltration of untreated outdoor air as well as from the use of disinfection liquids and
by the emissions of accumulated people.

The EUI during the decade from 2013 to 2023 fluctuated between 64 kWh m−2 and
106 kWh m−2 which is near the lower end of the levels documented in Greek museums
(minimum 65.8 kWh m−2 and maximum 632.5 kWh m−2 [28]) and below the levels reported
for other museums [29,30]. In 2023, total energy consumption was 86,123 kWh, primarily
from electricity, with the largest portion used for cooling, followed by heating and lighting.
The energy consumption was correlated with the outdoor air temperature and the number
of people present indoors. The highest EUI was recorded during the hottest days with
the largest number of visitors, due to air conditioning operation. Each person visiting
the museum consumed on average 7.7 kWh of energy. In an extensive study of energy
consumption in 28 museums in the province of Barcelona (Catalonia, Spain), it was found
that the average EUI per person (per visit) in history museums, like the museum under
study, was 15.8 kWh [71]. An earlier study at museums, which aligned with the research of
Farreny et al. [71], reported values ranging from 0.35 to 28.89 kWh per visit [72].

Between 2013 and 2023, a slight decrease in energy of consumption of 2.7 kWh per
year, was observed. Light bulbs were gradually replaced with LED bulbs, climate change
increased the outdoor temperature, thus less heating was needed, and the pandemic
possibly decreased the number visitors for more than two years. All these factors could
contribute to this decrease over the last decade. However, it is uncertain as to whether
this trend will continue. Recent increases in local tourists, coupled with rising outdoor
temperatures, have led to heightened cooling demands [32]. Unfortunately, there are no
data on indoor air quality during this decade so that one can examine its fluctuations.

A study is now being developed to enhance the museum’s energy efficiency through
improved insulation and the integration of photovoltaic panels. Nonetheless, the assess-
ment of the effects of these modifications on indoor air quality remains uncertain [38].

5. Conclusions
This study investigated concerns about the management the Archaeological Museum

of Kavala, Greece, regarding energy consumption and indoor environmental quality. Oper-
ating naturally ventilated museums requires substantial energy, which poses challenges
both environmentally and economically. It is essential to implement measures that preserve
stable microclimatic conditions conducive to the housed artworks and mitigate atmo-
spheric pollutants concentrations, particularly suspended particulates. Simultaneously,
these measures should neither necessitate excessive energy use nor impose intolerable
financial burdens.

The management of a museum and the preventive conservation require data and tools
to make the best decisions on dealing with factors that threat works of art. These factors
are the microclimatic conditions, light, atmospheric pollutants, including dust and biologi-
cal aerosol, vibration, visitors and several organized events. The continuous monitoring
and the appropriate analysis of the recorded environmental conditions is fundamental
to achieve the best conditions for the works of art, the comfort of the visitors and energy
savings. The one year of monitoring in the museum has revealed that as the building
was operating, it was unprotected from external and internal threats. The implementation
of an HVAC system with sufficient filtration will improve indoor environmental qual-
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ity. This installation is costly. Also, the proper maintenance and operation of the facility
will result in increased energy usage. The utilization of renewable energy sources will
reduce operational costs. To maintain a balance, it is essential to monitor energy use and
interior environmental factors continuously by installing and operating the appropriate
instrumentation and sensors [38]. Considerations regarding the accessibility and open-
ing times of the museum can hence be adjusted for the benefit of the protection of the
exhibited artefacts.
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