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Abstract: Most of today’s educators are in no shortage of digital and online learning
technologies available at their fingertips, ranging from Learning Management Systems
such as Canvas, Blackboard, or Moodle, online meeting tools, online homework, and
tutoring systems, exam proctoring platforms, computer simulations, and even virtual
reality/augmented reality technologies. Furthermore, with the rapid development and
wide availability of generative artificial intelligence (GenAI) services such as ChatGPT,
we are just at the beginning of harnessing their potential to transform higher education.
Yet, facing the large number of available options provided by cutting-edge technology, an
imminent question on the mind of most educators is the following: how should I choose the
technologies and integrate them into my teaching process so that they would best support
student learning? We contemplate over these types of important and timely questions and
share our reflections on evidence-based approaches to harnessing digital learning tools
using a Self-regulated Engaged Learning Framework we have employed in our research in
physics education that can be valuable for educators in other disciplines.

Keywords: self-paced learning; digital learning; digital technology; GenAI; LLM;
ChatGPT; physics

1. Introduction
The development of educational theory and practice has long emphasized the impor-

tance of considering multiple dimensions in designing effective learning environments.
From Dewey’s emphasis on experiential learning [1] to Vygotsky’s sociocultural theory [2]
and Bandura’s work on self-efficacy [3], scholars have recognized that successful learning
requires attention to both internal cognitive processes and external environmental factors.
In 2020 and 2021, when almost every instructor was forced to adopt digital learning during
the COVID-19 pandemic [4–16], a significant body of studies has shown that students’
learning experiences varied drastically in online settings depending on the selection and
implementation of digital learning technologies. In addition, many Learning Management
Systems [17], online homework and tutoring systems, online meeting tools (e.g., Zoom),
exam proctoring platforms, computer simulations [18–22], and virtual reality/augmented
reality technologies [23–28] provide instructors with lots of freedom to design the learn-
ing experience for their students [29–33]. Moreover, in the last two years, the emerging
potential of generative artificial intelligence (GenAI), e.g., large language models (LLMs)
such as ChatGPT, in enhancing and personalizing learning is beginning to be recognized as
an exciting frontier for transforming education for students at all levels in all disciplines
worldwide [34–47]. While these recent advances in digital learning technology options
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present opportunities to provide effective education to a variety of learners from diverse
backgrounds [48], the potential of technology can never be realized without pedagogical
considerations of the in-person, remote, or hybrid [49] courses. Therefore, in this arti-
cle, we, two researchers in physics education, share our reflections on harnessing digital
learning technologies pedagogically to ensure that students from diverse backgrounds can
benefit from the wide range of digital tools that can be used to enhance learning across
different disciplines.

Before diving into the details of the framework for the selection and implementation
of digital learning technology, we will first clarify what we mean by “digital learning” in
this article, and what distinguishes it from all of its predecessors such as DVDs, video tapes,
and TV [50–55]. We use “digital learning” to refer to any computer-based learning system
that allows and requires the user to interact with it as an integral part of their learning
experience [56–62]. For example, an online homework platform is a digital learning system
because submitting an answer to a problem is an interaction that is essential to the learning
process. In contrast, we do not consider a standalone static webpage or a lecture video to be
a digital learning tool since the learners do not interact with them beyond passively reading
or watching. Rather than “digital learning tools”, those types of resources might be simply
referred to as “digital broadcasting” tools that are similar in nature to video tapes and TV.
On the other hand, if the webpage or video is embedded within a system that also includes
assessment tasks or online discussion that students must engage with, then they could
be considered as part of a digital learning system. The self-paced and interactive nature
of many digital learning tools makes it possible for today’s higher education students
with diverse backgrounds, learning needs, and levels of prior preparation to engage with
learning activities at different times, locations, and paces, and possibly with customized
content and personalized feedback. These aspects of digital learning tools are central for
supporting equity in learning. At the same time, these self-paced digital learning tools also
require a certain level of self-regulation from students for them to be used effectively and
be conducive to learning [63].

For instructors, evidence-based self-paced digital learning tools can provide a much
higher level of flexibility in the design of learning experiences for students with diverse
prior preparations. This can be achieved by adjusting a wide range of parameters ranging
from simple options such as flexible due dates, number of allowed attempts, and course
credit incentives to sophisticated features such as adaptive feedback based upon students’
level of mastery, the structure of discussion forums, and game rules in gamified learning
environments. On the other hand, this high level of flexibility also places an overwhelming
burden on the instructor to find the optimal design and implementation of digital learning
experiences that would result in a meaningful and engaging learning experience for stu-
dents from diverse backgrounds. From both our own extensive prior research experience,
as well as experience during the past few years since 2020 throughout the pandemic, even
the most advanced digital tools can end up not benefiting or even harming student learning
when not properly designed or implemented with student characteristics in mind. For
example, long synchronous online lectures delivered via Zoom can be even worse than their
in-person counterparts if no evidence-based active-engagement activities are incorporated
together with the lectures [64–66].

2. Framework for Self-Paced Digital Learning
We first discuss a framework to help educators think systematically about how to

select and implement digital learning tools in their courses, supplemented with multiple
examples from our research and classroom implementations [67–70]. The framework,
called Self-regulated Engaged Learning Framework (SELF) (see Figure 1), synthesizes
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decades of research on self-regulated learning [67–70], cognitive psychology [2,71–74], and
technology-enhanced education [75–77] into a holistic approach for the digital age. While
building on established educational principles, SELF is uniquely focused on addressing
the challenges that arise when learning is mediated through digital tools—particularly
with the increased demands for self-regulation and the potential for both enhanced en-
gagement and disengagement that technology can create. It is a holistic framework that
supports self-regulated learning and consists of four interrelated dimensions that collec-
tively determine how effectively students engage with and learn from learning tools. Each
dimension addresses specific aspects of the learning environment while acknowledging
their interconnections and suggests that an effective design of learning tools (factor I),
their implementation (factor II), student [78] internal characteristics (factor III), and their
social and environmental factors (factor IV) collectively determine how effectively students
from diverse backgrounds engage with and learn from instructional tools. Thus, while the
framework is valuable for self-regulated learning in general, it is applicable to learning
using almost all digital learning tools, as the often self-paced and interactive nature of
digital learning inevitably requires a certain level of self-regulation from students.
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3. Factors That Allow Digital Learning Tools to Promote
Self-Regulated Learning

Here, we will illustrate the use of this holistic framework for our own research in
physics education in the context of optimizing student engagement with, and learning
from, digital learning tools [67–70]. Figure 1 shows that the framework consists of four
quadrants, with each quadrant corresponding to one factor:

Factor I: the internal characteristics of a digital learning tool pertain to the features of
the tool itself, e.g., how effective and adaptive the tool is for knowledge and skills to be
learned by students for whom they are designed (whether the tool is evidence-based and
includes formative assessment).

Factor II: the external characteristics of a digital learning tool pertain to how the tool
is implemented as part of a course or a learning environment (e.g., whether the tool is inte-
grated appropriately as part of the instructional design of a course, implemented to account
for students’ self-efficacy, and incentivized to obtain students’ buy-in and engagement).

Factor III: the internal characteristics of the students pertain to their relevant prior
preparation, knowledge, skills, identity, and beliefs (e.g., self-efficacy [3]) relevant for
engagement with and learning from digital tools.
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Factor IV: the external characteristics of the students pertain to social and environmen-
tal factors such as encouragement and community support, e.g., from the course instructor
and peers, for engaging with digital learning tools, and managing time to balance the
multiple demands of everyday life.

In Figure 1, the four dimensions or quadrants focus on the characteristics of the
learning tools and students. The top and bottom rows focus on the internal and external
characteristics of the learning tools and the students. In particular, factors I and III involve
the internal and external characteristics of digital learning tools (e.g., how they should be
evidence-based and have adaptive features that provide opportunities to students with
diverse prior knowledge and skills to benefit from them) and how the tools are implemented
and incentivized to help students with diverse prior preparations, skills, identities, self-
efficacy, and beliefs to engage with them. Factors II and IV involve student characteristics.
To use digital learning tools to create a learning environment that supports effective and
equitable learning for a diverse group of students, all four quadrants must be considered
holistically. In the rest of this paper, we will present several examples from physics of
how consideration of all four factors, especially factors III and IV in the lower half that are
often ignored by instructors, could lead to improved learning for students with diverse
prior preparations.

4. Examples of Consideration of SELF Framework for Improving
Digital Learning
4.1. Mastery-Based Online Learning Modules: A Design That Considers Both the Internal and
External Characteristics of the Tools

To design effective digital learning tools, educators often first consider the internal
characteristics of the tools and students, i.e., factors I and II in the SELF framework.
For example, Schwartz, Bransford, and Sears’ [79] preparation for the future learning
model emphasizes that for students to engage appropriately with learning tools, there
should be elements of both efficiency and innovation embedded in the instructional tools
and design. One interpretation of efficiency and innovation in this model is that if the
students are asked to engage with learning tools that are too efficient and easy, students
will disengage, and learning will not be meaningful; on the other hand, if the learning tools
are too innovative and challenging, students will struggle so much while engaging with
them that they will get frustrated and give up. Thus, digital learning tools should have
an appropriate blending of both efficiency and innovation so that students engage and
struggle productively while learning. Ensuring an appropriate balance of efficiency and
innovation with a focus on equity requires that digital learning tools be able to provide
a productive learning experience for students with diverse prior knowledge and skills
(factor II). For example, effective digital learning tools can have formative assessments built
into them so that students can receive continuous feedback as they engage with them and
evaluate their own learning as they make progress.

We will use our design of mastery-based online learning modules [80,81] for introduc-
tory physics as an example of how factors I and II are considered during the design of a
digital learning tool, as illustrated in Figure 2.
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Regarding the internal characteristics of the tool (factor I), each online learning module
consists of an assessment component with just one or two questions and an “instruction
and practice” component that consists of text and practice problems focused on enabling
students to solve the problems in the assessment component. Students are given a total of
five attempts on the assessment of each module but are required to make a first attempt on
the assessment problems before being allowed to study the learning resources, a design that
is inspired by research on “preparation for future learning” and productive struggle, which
emphasize the importance of struggling with problems before being provided support [81].
Each module focuses on one topic, and a sequence of 7–12 modules cover the content of
one or two weeks of a typical course. One can roughly think of online learning modules as
blending the contents of a textbook with problems from the end-of-chapter quiz according
to sub-topics (See Figure 2A for a visual illustration).

The assessment components of each digital module serve as a formative self-
assessment tool. The assessment allows students to monitor their learning and be able to
self-regulate better based on their level of background preparation (factor II). Students with
higher incoming knowledge may quickly pass the easier modules at the beginning of the
sequence and start interacting with more difficult content toward the end; on the other
hand, those who have less incoming knowledge will have ample opportunity to engage
with more basic learning modules at the beginning of the sequence. This unique experience
is not possible in the traditional textbook (or digital textbook) format, where instructional
text and assessment problems are separated, and assessment follows instruction.

In one study analyzing students’ interactions with online learning modules in a
university-level introductory physics course, the data show that students spontaneously
use different strategies to engage with online learning modules, based on their incoming
knowledge and assessment outcomes [80]. As shown in Figure 2B, the analysis of data for
how students engaged with these self-paced modules identified four clusters of students,
with each cluster adopting a different strategy working through a sequence of eight learning
modules. The strategy used by students in each cluster is represented in one of the four bar
graphs shown in Figure 2B. Each vertical bar in a bar graph corresponds to one learning
module in the sequence, and different colors represent different types of strategies that
students adopted to engage with each module. For example, purple represents students
who pass a given module on their first one or two attempts without needing to access the
instructional content. As shown in the figure, almost every student in cluster 1–1 passed
modules M1 and M2 on their initial attempt, and the majority of students passed all of the
modules without interacting with the instructional materials. The students in that cluster
likely have high incoming knowledge of relevant content. On the other hand, students
who passed a given module after accessing the instructional content are represented using



Trends High. Educ. 2025, 4, 6 6 of 20

orange. As can be seen, most students in cluster 1–4 needed to study the instructional
materials starting from module M-1, whereas students in cluster 1–2 could pass the first
couple of modules but are much more likely to study the instructional materials toward
the end of the sequence. The red color represents students who either did not pass the
module after studying the content or made multiple very short guessing attempts before
passing. This mode of passing is seen on the last module of the sequence among students
in clusters 1–2 and 1–4. It is worth noting that students in cluster 1–2 seem to have changed
their engagement strategy between the first and last module in the sequence, which can be
seen as a sign of active self-regulation.

Another example that shows the importance of considering students’ internal char-
acteristics, e.g., their prior knowledge and skills, in the design of digital learning tools,
came from an online tutorial first implemented in the form of a sequence of online learning
modules [82], as illustrated in Figure 3.
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the two semesters.

The initial tutorial, designed based on the work of [70], consists of three online learning
modules, a Tutorial module, an Example module, and a Quiz module, which students are
required to complete in the given sequence as part of their homework. The instructional
component of the “Tutorial” module contains a step-by-step tutorial walking students
through the process of solving a challenging introductory-level physics problem. The
assessment component of the “Example” module contains a similar problem, and the
instructional component contains a worked-out solution of the problem. In both the
tutorial and the example module, students were required to make one initial attempt at the
problem before accessing either the tutorial or the worked-out solution. In the last module
(the Quiz Module), students were presented with another similar problem but with no
instructions available.

The fraction of students who could solve the assessment problem on each module
within the first three attempts is plotted in cyan dots connected by the dashed line in
Figure 3B. The dots labeled “Tutorial Pre”, and “Example 1 Pre” represent the fraction of
correct answers prior to accessing the instructional materials, and the “Tutorial Post” and
“Example 1 Post” represent the fraction of correct answers after students have accessed the
learning materials. Notably, while on the “Tutorial” module, the “Post” attempt correct rate
is close to 80%, on the “Example Pre” attempt, the correct rate dropped back to between
20 and 30%. A similar pattern is observed between “Example Post” and “Quiz”. Those
observations indicate that while most students can learn to solve the exact same problem
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after accessing either the tutorial or the worked-out solution, as demonstrated by the high
percentage on “Post”, they have limited ability to transfer their learning to a somewhat
different problem context even though the underlying physics principles are the same.

Based on those results, in the next semester, two new modules were added to the
tutorial sequence, as shown in Figure 3A. The first is an “on-ramp” module that contains
two problems that are simpler than the problem in the first tutorial module. The addition
of the “on-ramp” module is based on the consideration that many students may need an
opportunity to either learn or be reminded of basic problem-solving steps before they are
ready to learn from the more complicated problem in the tutorial module (considerations
of both factors I and II in the SELF framework). The second module is the “example 2”
module, which is designed in a similar fashion as the “example 1” module but with a
different problem. This module provides students with another practice opportunity before
they access the last module (“Quiz”) in the sequence.

Students’ performance on the updated tutorial sequence is plotted in Figure 3B in red
dots and a solid line. Their performance on the on-ramp modules is not shown since it is
not part of the comparison. As seen in the figure, significant performance improvements
are observed for “Tutorial Pre”, “Example 1 Pre”, and “Example 1 Post”. Notably, the
largest improvement was observed for the “Example 1 Pre” attempt, which took place
after students finished the Tutorial module and before accessing the worked solution in
the “Example 1” module. This indicates that with more preparation of basic skills from the
on-ramp module, students are more likely to transfer what they have learned to similar
new problems.

4.2. Considering the External Characteristics of Digital Learning Tools to Support Student
Self-Regulation (Factors III and IV)

While carefully developed adaptive interactive learning tools that account for students’
prior knowledge and different backgrounds are more likely to engage students in the
learning process, our research shows that if students are not adequately supported and
incentivized, they may not take advantage of the self-paced digital tools to learn in an
effective manner, thus, the tools will not necessarily help them learn. In fact, the top two
quadrants of the SELF framework in Figure 1 (internal characteristics of the learning tools
and students) are often considered in the development of evidence-based digital learning
tools; however, the equally important lower two quadrants of SELF focusing on effective
implementation of the tools and ensuring that students receive encouragement and support
from instructors and peers to self-regulate and engage meaningfully with the tool are often
given less attention. These lower two quadrants are likely to play a critical role in whether
students, especially those with lower prior knowledge and self-efficacy, take advantage
of them.

The lower left quadrant of the SELF framework (factor III) pertains to external learning
tool characteristics for self-regulated learning, i.e., how the tools are implemented and
incentivized to optimize student motivation to engage with them as part of a course.
Consideration of the various types of support in factor III during the implementation of the
learning tools is critical to ensure that most students are motivated to engage with them
effectively. For example, to help students engage effectively with the self-paced digital
learning tools, an instructor could incentivize participation in learning via better grade
incentives to ensure that students work on them as prescribed. A good example showing
how a lack of proper grade incentives can negatively impact student learning even with
well-designed digital learning tools comes from our interviews with students about their
experiences learning from the course videos in flipped courses [83].

The flipped or hybrid course model has been widely implemented at many colleges
and universities, especially during the last decade. This approach requires an instructor to
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completely move away from the traditional “sage on the stage” role and instead devote
class time to interacting with students more as a coach to help with problem-solving or
other concrete skill development while developing a robust knowledge structure. In a
typical flipped classroom setting, students first engage with content through instructional
materials such as video lectures, textbooks, or reading assignments. In our interviews
with 37 students taking college introductory physics courses at the end of the fall 2020
semester when all courses were being taught remotely due to the COVID-19 pandemic [83],
we found overwhelmingly that when students had no grade incentive for doing out-of-
class or in-class activities in a flipped course, and if the solutions to all problems and
in-class assignments were posted on the course website after each class, many students had
difficulty in self-regulating and simply stopped doing the weekly out-of-class and in-class
activities early on in the semester. They only watched the relevant videos and browsed
through all assessments right before each exam. They admitted that the lack of a grade
incentive led them to deprioritize the weekly course activities. In other words, a negative
feedback loop occurred: students quickly realized that going to the class was “useless” if
they had not completed the out-of-class work involving watching videos and engaging
with the corresponding assessments because the instructor immediately put them in a
Zoom breakout room and expected them to discuss their answers with their peers in small
groups. A handful of students who had completed the out-of-class work dominated the
discussion, while the unprepared majority were disengaged. Since prior engagement with
video lectures was expected, the general discussions after each peer discussion in the Zoom
breakout rooms were not productive for them, either.

In essence, the implementation of digital tools such as course videos in flipped courses
without proper incentivization mechanisms such as grade incentives to motivate mean-
ingful engagement devolved the course into a learning experience akin to taking an asyn-
chronous massive open online course (MOOC) [84] but with a few high-stakes synchronous
exams for most students [83]. Many students did not keep up with the course videos and
other course materials and crammed a few days before each exam, something that has
been shown to be detrimental to long-term retention in some studies [85]. The lack of
engagement and learning did not stem from a lack of effort on the part of the instructors,
who in good faith spent a tremendous amount of time and effort to make customized
flipped videos for their course [83]. Rather, consistent with the SELF framework, it resulted
from the implementation of the different components of the course without grade incen-
tives (consistent with factor III in the framework), which was not conducive to effective
engagement. For most students, keeping a consistent and high level of engagement with
the course content over an extended period can be challenging due to the high level of
self-regulation that is required. By contrast, most students found flipped courses in a
remote format that were otherwise similar yet had a grade incentive to be effective, and
they kept up with those courses [83]. This sentiment of the students is consistent with our
prior research, which shows that a majority of students have difficulty engaging with online
evidence-based self-paced learning tools unless there is a grade incentive associated with
out-of-class engagement with online tools [68,70]. It should be pointed out that properly
designed grade incentives are just one of the many aspects in the implementation of digital
learning tools, such as online videos in a flipped course, that can serve as an effective
scaffold that continues to motivate students. As discussed later in this section, other aspects
such as student self-efficacy [3] must also be accounted for appropriately in the effective
implementation of digital learning tools consistent with the SELF framework.

Interviewed students also noted that some instructors had made their courses com-
pletely asynchronous with video lectures and had turned their allocated class time into
office hours [83]. All that counted toward a grade in their course were a few exams. Many



Trends High. Educ. 2025, 4, 6 9 of 20

students confessed that they did not go to the office hours because they did not keep up
with the video lectures and crammed the material right before the exams [83]. The inter-
viewed students were in general very dissatisfied with their learning in the asynchronous
courses due to the manner in which the course modules were implemented (consistent
with factor III of the SELF framework).

In a different study [68,70], students were given opportunities to work through web-
based adaptive tutorials in introductory physics courses outside of class as self-study
tools. Students were provided these optional tutorials after traditional instruction in
relevant topics and were then given quizzes that included problems identical to the tutorial
problems regarding the physics principles involved but had different contexts. We find that
many students who worked through the tutorials as self-study tools engaged with them
superficially and struggled to transfer their learning to solve quiz problems that used the
same physics principles. On the other hand, students who worked on the same web-based
tutorials in supervised, one-on-one situations performed significantly better than them
regardless of their physics grade in the course at the time they engaged with the web-based
tutorial in a supervised manner. These empirical research findings suggest that many
introductory physics students may not engage effectively with self-paced digital learning
tools unless they are provided additional incentives and support to aid with self-regulation
consistent with factor III in the SELF framework in Figure 1.

On the other hand, a positive example of using grade incentives to encourage produc-
tive self-regulation with digital learning tools among students (consistent with factor III of
the framework in Figure 1) is using extra credit to encourage work-planning and reduce
due-date cramming, shown in Figure 4.
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Figure 4. Improving students’ work distribution using credit and non-credit incentives. (A) Schematic
illustration of treasure troves. (B) Comparison of the start of study sessions before and after the
implementation of treasure troves. The assignment is due on day 0. The red lines indicate dates on
which extra credit incentives were provided. (C) Change in average extra credit points earned before
and after implementation of “nudging” survey. Blue line shows the data before implementation,
orange dashed line shows the best estimate based on previous year’s data, and orange solid line
shows the actual measured extra credits earned after the implementation of “nudging” on the Energy
module’s sequence.

As reported by Felker et al. [86], when assigned to complete a sequence of 10 online
homework assignments over a period of 14 days, many students chose to start all of the
assignments close to the due date and spend a relatively short time working on each as-
signment. To encourage better work distribution, the researchers implemented extra credit
incentives in the form of “treasure trove” quizzes. Each treasure trove quiz contains only
one question: “Would you like to claim your extra credit for completing the assignments
early?”, and students earn some extra course credit if they answer yes. As illustrated in
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Figure 4A, treasure trove assignments are embedded into a sequence of multiple online
homework assignments that are due on the same day, and students can only access each
treasure trove after they finish all the preceding assignments. However, the due date of
each treasure trove is set to several days before the assignment due date, so only when
students finish all preceding assignments earlier than the due date can they obtain an extra
credit assignment.

To illustrate how incentivizing students to engage with digital learning tools consistent
with factor III in the framework increases student engagement, in Figure 4B, we plot the
fraction of study sessions started each day for a homework assignment sequence and
compare the data before and after adding the treasure troves. A study session is defined
as a period of continued engagement with the online homework by a student. As shown
in Figure 4B, in 2018, which was before the implementation of treasure troves, most study
sessions tended to be started either 2–4 days before or on the same day as the assignment
due date (day 0 on the figure). After adding the treasure troves in 2019, there was a clear
shift of study sessions toward earlier dates and concentrated on days −10, −7, and −2,
which were the treasure trove due dates. Further analysis in the paper also found that both
high-performing and low-performing students are equally likely to take advantage of the
treasure trove opportunities. In their course evaluation, some students noted that the extra
credit simply gave them a reason to start the assignment early.

While credit incentives can be easy and effective to help students engage with self-
paced digital learning tools, they are far from the only external implementation factor
(factor III of the framework in Figure 1) that could facilitate students’ self-regulation. In
some cases, non-credit incentives such as “nudging” could be highly effective methods for
motivating students. For example, in the same introductory physics course administered
in 2020 and 2021, students were asked to complete a survey on their intention and plan
to obtain extra credits for one homework sequence. Students were in no way obliged to
follow their stated plan, nor was there any requirement for the quality or level of detail of
their plan. However, when comparing the average amount of extra credit points acquired
for each homework sequence with students from the previous semester, we were surprised
to find that students who answered the survey acquired significantly more extra credit
points on that particular homework sequence. In Figure 4C, we show the amount of extra
credit earned each week. The dashed orange line represents the best prediction of extra
credit that students would have earned each week, based on data from the previous year
(blue line), and the estimated year-to-year difference (see Felker 2023 for details of the
modeling process [86]). The solid orange line shows the actual amount of extra credit
earned by students, who were nudged to write a plan during the week labeled “Energy”.
In other words, simply asking students to make a plan for completing the assignments
(with no grade incentive) was enough to encourage more students to actually complete
assignments earlier than expected [86]. This serves as an example of how factor III of
the framework could be integrated into the implementation of digital tools without using
grades as an incentive.

4.3. Adding the Human Touch to Digital Learning Tools (Factor IV)

The lower right quadrant of the SELF framework, or factor IV, focuses on character-
istics related to student–environment interaction, e.g., how students interact with their
surroundings, how they manage their time, and how they regulate themselves. Factor IV
also includes community support, e.g., support students may receive from their environ-
ments such as help from the instructors, peers, family, and advisors to manage their time
better and engage in learning effectively. In particular, students’ engagement with digital
learning tools can be impacted by how students self-regulate and manage their time, which
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can further be impacted by human elements including whether students feel like they are
part of the classroom community. Furthermore, encouragement and support from others
to engage with the tools can enhance their self-efficacy. Therefore, a critical consideration
in scaling online education is humanizing it and ensuring that students feel like they are
part of the classroom community. Students want to feel supported by human beings, and
they thrive when they feel a bond with their instructors and peers. Building the classroom
community and facilitating effective interactions among students and instructors do not
necessarily require instructors to spend a lot of time. Our research involving interviews
with 37 students during the online classes of the pandemic suggests that what matters is the
genuine positive intent and effort [83]. Instructors will be surprised at how much students
are touched by their small gestures and time commitments to empathetic discussions as
well as personal support in online courses. In other words, when instructors spend a small
amount of time connecting meaningfully with students and creating a classroom commu-
nity, it can incentivize students to prioritize course content even in remote courses, reduce
procrastination and time-management issues, and increase their attention and engagement
(consistent with factor IV in the framework in Figure 1).

Our interviews with 37 students in the fall of 2020 semester during the COVID-19
period [83] suggest that while access to digital technology made online instruction possible
during the pandemic, the most important factors that were tied to student satisfaction and
performance were those related to human connections with instructors and peers. Students
reported that in courses with a synchronous component, they appreciated the opportunities
to be part of the classroom community, especially during the synchronous components of
the course but also via asynchronous Q and A platforms such as Piazza. This humanistic
feeling of being part of the classroom community had several advantages. The social
aspects of such courses, including the opportunity for interactions and communications
with the instructors and peers, reduced procrastination, improved time-management and
self-regulation, and increased student attention and engagement in the course when they
participated. Students were so starved for human interaction that they overwhelmingly
pointed out even minute efforts made by instructors to inject some human element into
their interactions, such as spending a few minutes at the beginning of their classes checking
in with them for student well-being and asking how they were doing and even talking
to them about their own adversity during the challenging times. Thus, these empathetic
discussions over Zoom were usually quite short but they had an outsized impact on student
morale. Some students noted that they wished that this type of humanistic connection
with instructors and peers at the beginning of each class was the norm, even in regular
courses during normal times. Students did not want to miss the classes in which instructors
incorporated these short check-ins with students as a regular feature.

Asynchronous communication platforms such as Slack and Microsoft Teams, which
provide instant messaging and threaded conversation, can be a highly useful tool for
“humanizing” communication with students and building the sense of community in a
physics course. Compared to the traditional email, these messaging platforms significantly
lower the barrier of communication by reducing the (often implicit) need for formalism
and instilling a sense of informal and casual dialogue. Put in simpler terms, the use of these
platforms speeds up communication by saving a large amount of “Dear professor/Student”
and “Sincerely” in the dialogue. Furthermore, as shown in Figure 5, the use of emojis
and animated GIFs during threaded messaging facilitates the expression of emotion and
adds a human touch to the conversation, where a “perfect, thank you” email can now be
simply replaced by a thumbs up or a heart emoji. For the majority of the current generation
of students who grew up immersed in social media and instant messaging, this type of
communication feels very natural and comfortable.
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In one instance that took place during an introductory physics class in the fall of 2020
during the COVID-19 period, many students experienced a widespread network outage on
the day of an online mid-term exam due to a construction accident near a student dorm.
The instructor of the course was immediately aware of the scale and nature of the disruption
by glancing through the large number of instant messages received on MS Teams, and
quickly made an announcement in Teams to extend the due date of the exam by one day
(Figure 5). As a result, several students expressed their appreciation for the quick response
via emojis and figures in the same threaded post.

Whether performed as part of in-person, remote, or hybrid courses, humanizing digital
learning will increase student enthusiasm and commitment to be part of the community,
their sense of belonging, and concentration to participate regularly. Interactions with
instructors and peers can help students engage meaningfully with the course materials
and manage their time better. Instructors should have a synchronous component in their
courses, as in the flipped courses, and incentivize students with many low-stakes grade
incentives interspersed throughout the course. However, if the entire course must be
asynchronous, then asynchronous platforms can play a central role in humanizing learning
and increasing student interactions with instructors and peers. This can ensure that students
feel like a part of the community and self-regulate and engage in learning from digital tools
productively, consistent with the SELF framework for guiding the design/curation and
implementation of digital learning.

4.4. Usefulness of SELF Framework for Harnessing Generative AI for Learning

For the past few years, the excitement around generative AI, in particular LLM-based
services such as ChatGPT, has led to increased interest in effectively using digital learning
pedagogically to improve learning at all levels, e.g., see [34–47]. While the emergence of
generative AI presents both unprecedented opportunities and challenges for education, the
SELF framework proves particularly valuable for guiding the implementation of GenAI
tools because it provides a structured approach to addressing the unique challenges this
technology presents while maximizing its potential benefits.

For example, our prior research suggests [83] that the effectiveness of digital learning
tools will not go as far as many people have envisioned in the past unless the human
element is woven into how to integrate and implement these tools in a meaningful way,
keeping in mind all four dimensions of the SELF framework. In particular, generative AI
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has great potential to enhance learning, including personalizing it and making it suited for
students’ needs if one keeps in mind, e.g., the internal and external characteristics of the
students and the learning environments to ensure that a variety of students from diverse
backgrounds can benefit from it [87,88]. Ensuring self-regulation is essential for maximizing
the potential of generative AI to personalize learning for diverse student groups. Thus,
to achieve this, all four aspects of the SELF framework must be considered holistically,
including the design and implementation of learning tools while accounting for students’
internal and external characteristics.

The internal characteristics of GenAI tools demand careful consideration in educational
settings. While these tools offer powerful capabilities for personalized feedback and adap-
tive learning, they also present risks of hallucinations and misinformation [89,90]. Recent
studies have demonstrated varying accuracy across different types of questions [34,38], and
while some research shows promise for enhanced learning experiences through AI-generated
feedback [40,41], other studies reveal the potential for compromised learning outcomes [36].
Understanding these affordances and limitations can help educators design appropriate learn-
ing activities that leverage AI’s strengths while mitigating its weaknesses. In particular, while
research on the use of generative AI to improve student learning in STEM disciplines has
been relatively limited until now, its use is likely to grow rapidly. Researchers have also
looked into using generative AI to grade [40,91,92] students’ written responses, and generate
personalized feedback based on each student’s written response to questions, which com-
bines factors I (tool characteristics) and II (student characteristics) of the SELF framework.
Some early studies have shown that students sometimes prefer AI-generated feedback over
human-generated [41]. Education researchers and educators are also considering ways in
which students can engage with ChatGPT effectively by asking good questions and learn the
basics of prompt engineering [93] to enhance and personalize student learning.

There is also growing interest in considering restricting the types of information from
which the generative AI model can draw from when answering questions, to minimize
the negative impact of misinformation and bias in online materials not properly vetted
for student learning. These could be achieved via techniques such as fine-tuning [94,95]
and Retrieval Augmented Generation (RAG) [96]. For example, Khan Academy is using
generative AI in a way that allows the language models to base their answers on vetted
databases and materials within Khan Academy [97]. If a student attempts to work on
a tutorial on that platform and makes certain types of mistakes in the assessment tasks,
then based upon their mistakes, the generative AI may recommend that they work on
other more basic tutorials relevant to their topic of interest to strengthen their basics before
coming back to their original tutorial. Similarly, there is growing interest in understanding
the impact of generative AI hallucinations on student learning. For example, temperature
is one of several parameters that can impact the level of creativeness of the model [98].
In particular, while generative AI can potentially be leveraged to foster creativity among
students, it can also produce answers that are misleading. If the students have not been
given the opportunity to develop the ability to recognize responses that are misinformed
or biased, they are likely to be misled. Thus, investigating pedagogical approaches to
helping students develop the ability to distinguish between correct and incorrect feedback
(as well as biased feedback) from generative AI would be valuable for enhancing critical
thinking skills. Researchers and educators are also contemplating how to help students
develop skills so that they can ask generative AI good questions and how to make the
dialogue between the generative AI and students more Socratic, e.g., for each question
that a student asks the generative AI, the generative AI first answers the question, and
then asks the student a related question to reflect upon. This type of interaction between
the generative AI and students is reminiscent of reciprocal teaching approaches, such as
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those promoted by Palincsar and Brown [99] and adapted in physics, e.g., via the Personal
Assistant to Learning (PAL) tutor [100,101]. Investigations of student learning in controlled
studies involving different interventions such as these can be valuable for harnessing the
true potential of generative AI in enhancing and personalizing student learning.

On the other hand, many researchers and instructors are concerned about the potential
negative impact that generative AI could have on the development of students’ problem-
solving, reasoning, and meta-cognitive skills. For example, one concern is that students
can receive too much help from generative AI on their take-home assessments or practice
tasks, such as using generative AI for writing their essays and computer codes and solving
their mathematics and physics problems [36]. Since class time is limited, self-paced home-
work plays a key role in helping students learn both the content and skills and develop
self-reliance in being able to solve problems. However, generative AI services such as
ChatGPT could significantly compromise the learning experience and thwart learning and
knowledge organization as well as skill development by generating complete solutions
for the student [102]. Similarly, even when students only use GenAI for reference rather
than obtaining solutions during practice, there is still the risk of them being exposed to
hallucinations, misinformation, and bias inherent to LLMs [103–105]. We believe that this
is a case where the tool (generative AI) is being implemented in learning, utilizing only its
internal character (factor I) but neglecting all other three factors in the SELF framework. In
other words, generative AI has not been integrated into the learning experience with proper
consideration of students’ internal and external characteristics in its implementation.

We would also like to argue that by fully considering all four factors of the SELF frame-
work, including the affordances and constraints of generative AI, the above-mentioned
situations could actually present new and valuable opportunities for creatively developing
key skills for students. For example, instructors could task generative AI to generate the
initial computer coding for a specific task, embedding specific types of coding errors within
it [106], then use it as an opportunity for students to learn to debug either individually or as
a group. A second GenAI assistant could then be tasked to either grade students’ reasoning
on the debug task, or provide personalized feedback and hints during the process. In this
example, GenAI as a tool is an integral part of the learning experience aiming at learning
to debug (factor III), while providing students with the opportunity and assistance to
practice reflection individually (factor II) or as a group (factor IV). Similarly, while asking
generative AI to write essays for students would be unethical and thwart learning [102],
instructors could design a task in which generative AI writes the same essay from multiple
perspectives and ask the students to either critically assess those perspectives, synthesize
the different perspectives, or ask students to combine their own unique background and
experience with the draft writing provided by generative AI.

Investigations related to other issues such as how to get students to collaborate mean-
ingfully and learn while having generative AI participate can also be valuable [107]. Other
investigations that focus on how to help students develop critical thinking and creative
thinking skills [108,109] can be useful in this regard. Furthermore, these types of issues can
be valuable not only for developing critical thinking skills but also for training in ethics.

In summary, by utilizing the SELF framework to ensure that students with different
internal and external characteristics can be adequately supported and by tailoring the
internal and external characteristics of the learning environments, researchers and educators
will be able to harness the power of generative AI and digital technology productively,
safely, and creatively to not only overcome the potential concerns but also greatly enhance
students’ learning experience and learning outcomes.
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5. Summary
The educational crisis caused by the COVID-19 pandemic in 2020 demonstrated that

considering evidence-based approaches to harness digital learning is essential. Digital
learning tools, from basic online homework systems to sophisticated AI assistants, have
become integral to higher education. As we look to the future, digital learning tools, includ-
ing emerging technologies like generative AI, will likely become increasingly integrated
into both online and in-person courses.

The SELF framework provides a comprehensive approach for maximizing the benefits
of these tools while minimizing potential pitfalls. Our research demonstrates that effec-
tive implementation requires attention to tool design, implementation strategies, student
characteristics, and community support. In particular, the effectiveness of digital learning
tools depends on careful consideration of all four dimensions of the SELF framework.
First, the tools themselves must be designed with evidence-based adaptive features that
accommodate diverse learners. Second, proper implementation with appropriate grade
incentives and support structures is essential—as shown by our studies of online tutorials
and flipped classrooms. Third, careful attention must be paid to students’ internal charac-
teristics, including their prior knowledge and self-regulation abilities. Finally, and equally
critically, student external characteristics must be considered, and the human elements
must be thoughtfully woven into digital learning implementations. This includes build-
ing the classroom community, facilitating meaningful peer interactions, and providing
instructor support based upon student internal and external characteristics—factors that
our research shows are vital for helping students engage productively with digital tools.
By holistically considering these four dimensions, educators can better harness digital
learning tools to create more equitable and inclusive learning environments that support
students from diverse backgrounds and prior preparations. This comprehensive approach
will be especially important as institutions continue integrating new technologies into their
instructional practices while maintaining a focus on evidence-based pedagogical principles
that promote effective learning for all students.

Furthermore, given its potential, the use of generative AI in personalizing and enhanc-
ing learning is likely to show tremendous growth in the coming decades. In the era of
generative AI, researchers and educators should investigate effective approaches to assess-
ing student learning, including how to ensure that student learning is maximized through
self-paced digital homework assignments and tasks that productively utilize generative
AI. In the future, even in-person courses are increasingly likely to use self-paced digital
learning tools, including those involving generative AI. Research involving generative AI
along different dimensions of the SELF framework, including those suggested in Section 4,
can go a long way to harnessing the potential of digital learning and generative AI to
personalize learning for students with diverse backgrounds.

Evidence-based adaptive self-paced digital learning tools when incentivized appro-
priately will go a long way in helping students from diverse backgrounds and prior
preparations excel and can be central in supporting equitable and inclusive learning in
an era of generative AI. Without leveraging these self-paced digital learning tools, which
are likely to be increasingly enhanced by generative AI, it is difficult for educators to level
the playing field due to the difficulty in designing in-class instruction alone to cater to
students with diverse prior preparations, keeping in mind that students with systemic
advantages are more likely to have higher levels of prior preparation. Providing students
with appropriate incentives and support is vital for ensuring that instructors’ efforts in
bolstering student learning by incorporating self-paced digital learning tools in their in-
structional design bear fruit so that students from diverse prior preparations learn the



Trends High. Educ. 2025, 4, 6 16 of 20

content and develop critical thinking skills by engaging with digital learning tools as part
of their course.
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