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Abstract: Fluorescence resonance energy transfer (FRET)-PCR is widely recognized for its high
sensitivity and specificity in pathogen detection. However, there are some gaps in probe design
when it is applied for simultaneous detection and differentiation of similar targets. This study aims
to investigate the effects of the numbers and position of nucleotide mismatches (NM) in probe on
PCR efficiency and melting temperature (Tm). The results indicated that NM at the center reduces
amplification efficiency and Tm more significantly than NM at the 5′-terminal or 3′-terminal of
the probe.
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PCR is widely utilized for its high sensitivity and specificity in amplifying targets,
particularly in pathogen detection [1]. However, discriminating closely related organisms
poses significant challenges. It is important to differentiate the cross-species (e.g., five Ebola
virus species) and cross-genus (e.g., Babesia and Theileria) pathogens as they significantly
differ in pathogenicity and multiple species/genus can be present in a geographical area [2,3].
Addressing this challenge, researchers have developed a cost-effective and convenient
method utilizing the melting temperature (Tm) from fluorescence resonance energy transfer
(FRET)-PCR. The FRET-qPCR system includes specific primers (similar to conventional
PCR) and a pair of probes (1–5 bp apart) located internally to the primers. A donor
fluorophore (e.g., 6-Carboxyfluorescein (6-FAM)) was labeled at the 3′-terminal of the
upstream probe and an acceptor fluorophore (e.g., LC®Red640) was labeled at the 5′-terminal
of the downstream probe. During annealing, both probes bind to the template, positioning
the fluorophores close together. Therefore, the acceptor fluorophore can absorb the energy
of the donor fluorophore, leading to its excitation. On the opposite one, during denaturation,
the probes dissociate, preventing the excitation of the acceptor fluorophore. FRET probe
signals are real-time signals during annealing, directly corresponding to the amount of
template. Base mismatches introduced in the probe-binding region will decrease the Tm,
enabling the differentiation of pathogen genotypes. However, the optimal design of probes
remains uncertain.

To tackle this uncertainty, we deliberately designed varying numbers of nucleotide
mismatches (NM) at the 5′-terminal (1-6 consecutive NM), center (4–6 consecutive NM),
or 3′-terminal (1-6 consecutive NM) of the 6-FAM-labeled probes, respectively, in a well-
evaluated Chlamydia pneumoniae 23S rRNA FRET-PCR assay [4]. Subsequently, 16 6-FAM-
labeled probes (1 perfect match and 15 with NM, emitted at 510 nm), one LC®Red640-
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labeled probe (excited at 498 nm), and the primers were synthesized using Integrated DNA
Technologies (Figure 1) (Coralville, IA, USA).
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Figure 1. Amplification (left) and melting (right) curves of the fluorescence resonance energy transfer
(FRET)-qPCR when amplifying 100 (~25 cycles) and 10 (~29 cycles) copy numbers of Chlamydia
pneumoniae 23S rRNA with the introduction of 1–6 consecutive nucleotide mismatches (NM) at the
5′-terminal (A), 1–6 consecutive NM at the 3′-terminal (B), or 4–6 consecutive NM at the center (C) of
the 6-Carboxyfluorescein (6-FAM)-labeled probes. The y-axis denotes the log scale of the ratios for the
negative first derivative of the fluorescent signal in two channels (F4 as LC®Red640 /F1 as 6-FAM).
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A FRET-PCR was performed to amplify varying copy numbers (100 and 10) of C. pneu-
moniae 23S rRNA using a LightCycler 480-II platform (Roche, Basel, Switzerland). The
findings revealed that 1–6 consecutive NM at the 5′-terminal or 3′-terminal did not signifi-
cantly reduce the amplification efficiency (Figure 1A,B). Interestingly, the introduction of
5–6 consecutive NM at the center of the probe resulted in the absence of an amplification
curve (Figure 1C). These results differed significantly from the impact of NM in primers,
where the NM at the 3′-terminal primarily reduce the amplification efficiency [5].

In addition, we found that 1–3 consecutive NM at the 5′-terminal and 1–2 NM at the
3′-terminal had little impact on the change in Tm. When the number of NM increases, the Tm
decreases gradually. Importantly, NM introduced at the center (∆Tm (0–4 NMs) = 9.82 ◦C,
∆Tm (4–5 NMs) = 6.07 ◦C, ∆Tm (5–6 NMs) = 3.08 ◦C) had the most pronounced effect
on the change in Tm compared to those at the 5′-terminal (∆Tm (0–4 NM) = 3.17 ◦C,
∆Tm (4–5 NM) = 2.78 ◦C, ∆Tm (5–6 NM) = 1.14 ◦C) and 3′-terminal (∆Tm (0–4 NM) = 3.43 ◦C,
∆Tm (4–5 NM) = 2.26 ◦C, ∆Tm (5–6 NM) = 2.49 ◦C) (Figure 1).

In cases where NM introduction is unavoidable, it is advisable to design them at
either the 5′-terminal or 3′-terminal of the probe. For applications in differential diagnosis
or molecular typing, the presence of ≥4 consecutive NM at the 5′-terminal or ≥3 con-
secutive NM at the 3′-terminal of the probe is required to significantly reduce the Tm.
Although the NM at the center of the probe has a greater impact on the Tm, it is not rec-
ommended to introduce them in order to avoid the disappearance of amplification curves.
The findings presented herein significantly contribute to the rational design of FRET-PCR
probes, facilitating the convenient differentiation of similar targets without the necessity of
DNA sequencing.
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