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Abstract: The adsorption of p-aminothiophenol (PATP) on metallic nanostructures is a very interesting
phenomenon that depends on many factors, and because of that, PATP is an increasingly important
probe molecule in surface-enhanced Raman spectroscopy (SERS) due to its strong interaction with
Ag and Au, its intense SERS signal, and its significance in molecular electronics. In our study, the
SERS spectra of PATP on silver colloids were investigated and we considered several factors, such as
the effect of the adsorbate concentration, the nature of the metallic nanoparticles, and the excitation
wavelength. Differences between the SERS spectra recorded at high and low concentrations of PATP
were explained and DFT calculations of different species were performed in order to support the
experimental results. Additionally, time-dependent density-functional theory (TD-DFT) calculations
were used to simulate the UV spectra of each species and to determine the MOs involved in each
transition. The presence of different species of PATP adsorbed onto the metal surface gave rise to the
acquisition of simultaneous SERS signals from those species and the consequent overlapping of some
bands with new SERS bands coming from the dimerization of PATP. This work helped to discern
which species is responsible for each SERS spectrum under particular experimental conditions.
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1. Introduction

Since surface-enhanced Raman spectroscopy (SERS) was casually discovered by Fleis-
chmann et al. in 1974 [1–3], many improvements to the Raman technique have occurred.
Currently, SERS spectroscopy is one of the main tools used for surface analyses, and studies
have evolved two principal aims: on one hand, focusing on the origin and mechanisms
of the Raman enhancement or on the magnitude of the SERS enhancement factor, and on
the other hand, focusing on the direct use of the SERS intensity of the target molecule for
analytical purposes. Regarding the first issue, the magnitude of the SERS enhancement is a
very important aspect to be considered in order to understand the origin of the SERS signal
and the nature of the SERS mechanisms. The main contribution to SERS enhancement is
due to the huge electromagnetic field induced by the localized surface plasmon resonances
(LSPRs) of their nanometric particles or clusters [4,5], and this singular characteristic makes
possible its wide use for the study of many organic molecules adsorbed on colloidal metal
solutions and substrates. Therefore, the high sensitivity of this technique allows detailed
information to be obtained concerning the adsorbed species at very low concentrations that
is directly related to their adsorption mechanism. Now, fifty years after the discovery of the
SERS phenomenon, its applications have experienced a huge increase with an improvement
in substrates and devices at the nanoscale level in different fields, for example, biochemistry
and biosensing, catalysis, and electrochemistry [6–8]. However, the systematic interpreta-
tion of a particular SERS spectrum can be a challenge, given that different surface selection
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rules have been proposed in order to explain the selective enhancement of the SERS bands.
The most commonly used SERS rules are derived from the so-called electromagnetic en-
hancement mechanism (EM), which allows us to guess the orientation and geometrical
configuration of an adsorbate on a metal surface [9,10]. Far more complex selection rules
are derived from additional enhancement mechanisms related to resonance Raman effects
involving excited electronic states of the molecule (surface-enhanced resonant Raman
scattering, SERRS), metal–adsorbate photoinduced charge transfer (CT) processes, or other
electronic resonances of the surface complex [11–13]. Depending on the particular molecule–
metal system studied and on the experimental conditions, these mechanisms can operate
simultaneously; in these circumstances, it is difficult to recognize each one and to evaluate
their relative contribution to the enhancement of a certain spectrum.

In the present work, we focused the discussion on the experimental and theoretical
SERS spectra of the organic compound p-aminothiophenol (PATP, HS-Ph-NH2) recorded
on silver and gold nanoparticles. This molecule has become a target molecule for checking
the enhancement capability of different SERS substrates due to its very intense SERS
spectra in a large number of investigations [14–17]. Additionally, due to the fact that the
SERS spectrum of PATP on metal substrates is significantly different from its ordinary
Raman spectrum, a historical discussion started almost a decade ago to try to explain its
adsorption due to the formation of a new species, namely p,p’–dimercaptoazobenzene
(DMAB) [18,19]. The presence of a new compound after adsorption is quite common in
surface spectroscopies and, especially in some SERS studies, chemical transformations have
taken place, e.g., polymerizations, isomerizations, or dehydrogenation [20–22]. However,
the features of the SERS spectra of PATP are strongly dependent on many factors, such as
the laser power density, the laser wavelength, the exposure time, the surface roughness,
and the concentration of the molecule [18,19,23]. Although all of these factors determine
the final SERS spectrum of PATP, there are still important aspects to understand, e.g., the
effect of the morphology of the nanoparticles, together with the effect of the concentration
of the PATP, which have not received great attention in published papers. In a previous
work, we found that the SERS spectra of PATP on a silver electrode were dependent on
the adsorbate concentration and dominated by a resonant charge transfer (CT) mechanism,
where the charge was always transferred from the adsorbate to the metal [23]. Furthermore,
we observed that the Raman signals of the SERS recorded at a low concentration arose from
at least three different molecular species, but we analyzed the SERS signal only at 785 nm.
In the present work, we delved further into the visible excitation range and recorded the
SERS spectra of PATP on silver nanoparticles obtained by different procedures at 532 nm,
which were also capable of detecting DMAB dimers and analyzing the adsorption behavior
of this adsorbate in depth. In order to compare the SERS results with previous work in
which we recorded the SERS spectra of PATP on a silver electrode, we also analyzed the
effect of the concentration of PATP and the experimental SERS spectra were associated with
the calculated Raman spectra of different silver complex species of PATP.

2. Materials and Methods
2.1. Chemicals and Instruments

All the reagents used in this work were purchased from Sigma-Aldrich with purity
grades up to 99%. In the case of p-aminothiophenol, the purity grades were up to 97%. All
the solutions were prepared by using Milli-Q-quality water (resistivity over 18 MΩcm).

UV–Vis spectra were acquired with an Agilent 8453 UV–Vis spectrophotometer. Ra-
man and SERS spectra were recorded using a Renishaw Invia Qontor micro-Raman spec-
trometer equipped with a charge-coupled device (CCD) camera, employing the following
different excitation lines: 488 nm, 532 nm, and 785 nm. The resolution was set to 2 cm−1 and
the geometry of the micro-Raman measurements was 180◦. In the case of liquid samples, a
quartz cell with a 1 cm path length was used and the solid samples were directly analyzed
through the microscope by using the Renishaw-specific macro device. This macro-cell
system was equipped with an objective with a focal length of 30 mm (NA = 0.17), which
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caused a laser spot of 3.82 µm at 532 nm and 5.63 µm at 785 nm. The output of the laser
was set to 100% of its power in both cases, giving rise to approximately 5 mW at the 532 nm
and 28 mW at the 785 nm excitation line on the sample place.

Transmission electron microscopy (TEM) images were obtained using a JEOL JEM
1400 (JEOL, Tokyo, Japan) microscope working at 80 kV.

2.2. Preparation of Silver Colloids

Two different silver colloids were prepared. Ag-BH was obtained according to the
method described by J.A. Creighton et al. [24], which basically consists of reducing one
volume of 10−3 M AgNO3 with three volumes of 2 × 10−3 M NaBH4 that has been previ-
ously cooled to a temperature between 0 and 5 ◦C. The Ag-Hx colloid was prepared using
the method of N. Leopold et al. [25], in which AgNO3 was reduced by hydroxylamine
hydrochloride in a slightly alkaline medium, so that the proportion of hydroxylamine
hydrochloride/silver nitrate was chosen to obtain concentrations of 1.5 × 10−3/10−3 M in
the final reaction mixture. Additionally, we followed one of the procedures proposed by
these authors as follows: we added 10 mL of hydroxylamine/sodium hydroxide dropwise
to 90 mL of silver nitrate. Figure 1 shows the absorbance spectra of the silver colloids of
nanoparticles obtained by using methods presented above, together with their correspond-
ing images.
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Figure 1. UV–Vis absorption spectra of Ag-BH and Ag-Hx silver colloids and their corresponding
TEM images.

2.3. Theoretical Calculations

All the calculations carried out in this study were performed using the Gaussian
16 suite of programs [26]. The GaussView 5.0 software [27] was used for pre-processing,
structure modification, and post-processing analyses of structures, frequencies, and forces.
The B3LYP functional with the Pople-type basis set (6-311++G (d,p)) was applied. The
PATP and DMAB molecular structures were optimized and no imaginary frequencies were
found. In the case of silver complexes, the optimization was carried out with the use of the
same DFT method coupled with a mixed basis set: 6-311++G (d,p) for C, O, and H atoms
and LanL2DZ for silver. For the TD-DFT, a hybrid functional B3LYP was used with the
same mixed basis sets.
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3. Results

The UV–Vis spectra of both the silver colloids represented in Figure 1 exhibited a band
in the visible region around 400 nm, with a maximum at 387 nm and 437 nm, near the
resonance with the 532 nm excitation line, but far away from the NIR excitations. However,
when PATP adsorbed onto these colloids, the corresponding absorption maximum was
red-shifted and a secondary maximum arose around 800 nm, allowing overlap between
the excitation wavelengths and the SERS spectra at both laser lines. Figure 2 shows the
UV–Vis absorption spectra of PATP on Ag-BH and Ag-Hx at different concentrations, and
we observed a secondary maximum around 768 nm on Ag-BH and around 861 nm on
Ag-Hx when the concentration of PATP was 10−5 M or 10−6 M in both cases.
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Figure 3 shows the SERS spectra of PATP obtained at several concentrations on the
Ag-BH and Ag-Hx silver colloids. Despite these colloids having different morphologies and
sizes of nanoparticles, as can be observed in Figure 1, the SERS spectra of PATP underwent
a similar behavior in both cases. At a cursory glance, it can be observed in Figure 3 that the
SERS bands of PATP recorded at 532 nm were different from those obtained by exciting in
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the NIR at 785 nm. This is a very characteristic behavior of this molecule because of the
azo dimerization of PATP [19]. The specific bands from DMAB can be observed on both
silver colloids at 532 nm, acquired at 1574, 1435, 1391, and 1144 cm−1. The strong peaks
around 1391 cm−1 and 1435 cm−1 (recorded at a low concentration) are related to the N=N
vibration of DMAB, so their intensity can best describe the formation of DMAB [19,28].
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532 nm and 785 nm excitation wavelengths. Note (*) as PATP bands.

The SERS band at 1076 cm−1 is due to the C-S stretching vibration, which can be
generated by both PATP and DMAB with a comparable intensity. Interestingly, as we
observed in Figure 3, the SERS bands of DMAB exhibited a higher enhancement when we
recorded the SERS at a lower concentration. It is also very fascinating that the SERS of
DMAB species was detected at 532 nm, but it was almost imperceptible at 785 nm, and was
only detectable when we recorded the SERS spectra of PATP at a very low concentration, i.e.,
10−6 M or 10−7 M. In this sense, the limit of detection (LOD) was lower when we recorded
the SERS spectra at 785 nm, and in this case, the most intense SERS bands belonged to
the PATP species. These results show that the dimerization process is favored at low
concentrations, perhaps because of more active sites being available on the metal surface.
The same behavior was observed on both the silver colloids.

In order to clarify the adsorbed chemical species of PATP that give rise to the SERS
spectrum, DFT calculations for different silver complexes of PATP and DMAB were per-
formed and their Raman spectra were compared with the experimental one. Therefore,
Table 1 shows the corresponding species considered for this study and the UV–Vis plot
for the first excited state from the TD-DFT calculations that were used to simulate the UV
spectra and to determine the MOs involved in each transition [29].
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Table 1. Optimized geometries of PATP and DMAB silver complexes and UV–Vis plot for the first
excited state from the TD-DFT calculations of each silver complex.

PATP1 PATP2

Optimized structures
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A simulation of the experimental SERS spectra was performed at 532 nm and
785 nm by applying an average algorithm of several curves from the theoretical spec-
trum of each species (see Figure 4) using the OriginPro 2023b SR1 [30]. In Figure 4, a very
good similarity can be observed between the experimental and the theoretical spectra by
combining different percentages of the whole Raman intensity of each species. Based on
these theoretical results, it was confirmed that the main species that contribute to the SERS
signal at 532 nm are DMAB1 and DMAB2, and in the case of the SERS recorded at 785, it
was mainly the PATP1 species.

As has been seen previously, the intensity of the SERS signal of monomer (PATP) or
dimer (DMAB) species is sensitive to the excitation wavelength, and this fact was supported
by the use of the DFT calculation, as shown in Figure 4.

These calculations were performed with the B3LYP functional methods. It was ob-
served that the theoretical absorption electronic spectra of dimer species had lower wave-
lengths than those of the PATP. This fact means that PATP silver complexes will preferen-
tially be SERS-active at higher wavelengths, which fits quite well with the experimental
SERS results shown in Figure 3. It was established that, when recording the spectra at
532 nm, we obtained a more intricate SERS spectrum coming from the DMAB mixture of at
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least two metal complexes, and when we recorded at 785 nm, we basically obtained the
SERS of the PATP adsorbed mainly through the sulfur atom.
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Figure 4. Theoretical average of different PATP and DMAB Raman spectra and experimental SERS
spectra of PATP 10−5 M on Ag-BH recorded at 532 nm and 785 nm.

On the other hand, the presence of different species adsorbed onto the metal surface
gave rise to the acquisition of simultaneous SERS signals from those species and the
consequent overlapping of some bands. This was the case for the aromatic vibrational
mode 8a, around 1600 cm−1, which was a very characteristic SERS band that was acquired
simultaneously from DMAB and PATP at 532 nm. In this wavenumber range, it was also
observed that the SERS bands split when there was a greater contribution of DMAB (see
Figure 4b at 532 nm). This was due to the asymmetry of the aromatic rings of the dimer
when it was linked to the surface through one sulfur atom, generating the theoretical SERS
bands at 1620 cm−1 and 1632 cm−1, which were related to the experimental SERS bands at
1574 cm−1 and 1590 cm−1, respectively. In SERS spectroscopy, it is very common that, when
a molecule is adsorbed onto a metal surface, there is a break in the molecular symmetry,
generating new bands that were not observed before.
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4. Conclusions

The SERS spectra of PATP obtained at several concentrations and different wavelengths
on Ag-BH and Ag-Hx silver colloids were analyzed. It was observed that the SERS spectra
were quite similar for both metal colloids, with only some small differences regarding the
relative intensities, and the SERS bands of DMAB exhibited a higher enhancement when
we recorded the lower SERS at 532 nm. The dimer was almost imperceptible at 785 nm,
and was only detectable when the SERS spectra of PATP were recorded at a very low
concentration, i.e., 10-6 M or 10-7 M. Based on these results, it can be concluded that the
dimerization process is favored at low concentrations due to the presence of more active
sites available on the metal surface. Considering the theoretical simulation of the SERS
spectra, it has been demonstrated that, when the spectra at 532 nm were acquired, we
obtained a more intricate SERS spectrum coming from a DMAB mixture of at least two
metal complexes. However, when the SERS spectra of PATP were acquired at 785 nm, we
basically obtained the SERS of the PATP species adsorbed mainly through the sulfur atom.
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