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Abstract: Fluorinated organic compounds have demonstrated remarkable utility in medicinal chem-
istry due to their enhanced metabolic stability and potent therapeutic efficacy. Several examples
exist of fluorinated non-steroidal anti-inflammatory drugs (NSAIDs), including diflunisal, flur-
biprofen, and trifluoromethylated pyrazoles celecoxib and mavacoxib. These trifluoromethylated
pyrazoles, which are most commonly constructed through the cyclocondensation of a trifluorinated
1,3-dicarbonyl and an aryl hydrazine, are also found in numerous other drug candidates. Here, we
interrogate the effects of solvents and the presence of Brønsted or Lewis acid catalysts on catalyzing
this process. We highlight the utility of benchtop 19F NMR spectroscopy in enabling the real-time
quantification of reaction progress and the identification of fluorinated species present in crude
reaction mixtures without the need for cost-prohibitive deuterated solvents. Ultimately, we find that
the reaction solvent has the greatest impact on the rate and product yield, and also found that the
relationship between the keto-enol equilibrium of the dicarbonyl starting material pyrazole formation
rate is highly solvent-dependent. More broadly, we describe the optimization of the yield and kinetics
of trifluoromethylpyrazole formation in the synthesis of celecoxib and mavacoxib, which is made
possible through high-throughput reaction screening on benchtop NMR.

Keywords: benchtop 19F NMR spectroscopy; keto-enol tautomerism; NSAIDs; trifluoromethylated
pyrazole; Knorr pyrazole cyclocondensation; organofluorine

1. Introduction

Since the initial success of fluorinated corticosteroids in the 1950s and fluoroquinolones
in the 1980s, the number of FDA-approved fluorinated pharmaceuticals has steadily
increased and now accounts for twenty percent of all FDA-approved pharmaceutical
agents [1–6]. This can be attributed to the improved metabolic stability, bioavailability,
and therapeutic profiles associated with fluorinated motifs [4–11]. Among these, trifluo-
romethylated pyrazoles have demonstrated particular pharmacological potency [12–16],
being referenced over twenty-six thousand times in patents and peer-reviewed publications
concerning the preparation and use of various therapeutics and agrochemicals as of 2024.
FDA-approved celecoxib (Celebrex) and EU-approved mavacoxib (Trocoxil), examples of
trifluoromethylated pyrazole-containing compounds, are non-steroidal anti-inflammatory
drugs (NSAIDs) that act through the inhibition of cyclooxygenase (COX) enzymes that
mediate the conversion of arachidonic acid into inflammatory prostaglandins [17–22]
(Figure 1A).

Numerous methods have been described for the preparation of these and other fluori-
nated pyrazoles, including the fluorination of methylpyrazoles using electrophilic or radi-
cal fluorination reagents and the fluorination of aminopyrazoles using a Balz–Schiemann
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nucleophilic substitution involving a diazonium salt [13,23–26]. However, the most di-
rect and common synthesis involves the Knorr cyclocondensation of 1,3-dicarbonyls and
hydrazines [27–30] (Figure 1A). This Knorr synthesis has been industrially applied to
the kilogram scale of celecoxib, prepared from the condensation of 4,4,4-trifluoro-1-(4-
methylphenyl)butane-1,3-dione and 4-sulfonamidophenylhydrazine [31–33].
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Lewis and Brønsted acid catalysts have demonstrated broad utility in accelerating
various cyclocondensation constructions of heterocycles including Knorr pyrazole syn-
thesis, likely through electrophilic activation by protonation or coordination to the 1,3-
dicarbonyl [34–42]. Additionally, Brønsted acids may disrupt the intramolecular hydrogen
bonding that stabilizes the less reactive enol tautomer and facilitates the protonation of
the electrophilic carbonyl, enhancing its susceptibility to nucleophilic attack by the hy-
drazine [37–41].

Initial reaction condition screening performed by Reddy et al. has previously demon-
strated that the efficiency and yield of the uncatalyzed Knorr pyrazole synthesis in the
industrial-scale preparation of celecoxib can be significantly influenced by solvent ef-
fects [31]. Our laboratory has previously reported the utility of benchtop 19F NMR spec-
troscopy in high-throughput condition screening for the reaction optimization and quan-
titative reaction monitoring of fluorinated pharmaceutical agents [43–45], solvent effects
on Keq (keto/enol) of fluorinated dicarbonyls [44], and the mechanistic deconvolution of
heterocycle-forming multicomponent cyclocondensation reactions, such as the Biginelli
condensation reaction through the real-time quantification of even transient intermediates
and products of complex multicomponent reactions that can be directly measured from
crude reaction aliquots in non-deuterated solvents [45] (Figure 1B).

Here, we sought to determine the role of solvents and catalysts on the rate and effi-
ciency of trifluoromethylated pyrazole formation and to understand how perturbations
of the keto-enol tautomerization equilibrium of the trifluoromethylated 1,3-dicarbonyl
starting materials influence the efficiency of pyrazole formation. In this study, we utilize
benchtop 19F NMR spectroscopy as a high-throughput condition screening platform to
identify the optimal catalyst, solvent, and mechanistic trends in the preparation of two tri-
fluoromethylated pyrazoles: celecoxib and mavacoxib. The presence of the trifluoromethyl
motifs conveniently serves as spectroscopic handles with which to quantitatively monitor
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reaction kinetics [46–50]. With this workflow, we screened for potential applications of nine
common Lewis and Brønsted acid catalysts across a representative selection of protic and
aprotic solvents in the preparation of fluorinated pyrazoles from 1,3-dicarbonyl substrates.
Through this reaction screening, we identified that pyrazole formation occurs the fastest in
dimethylformamide (DMF), irrespective of the presence of Lewis or Brønsted acid catalysts,
suggesting that solvents play the most critical role in reaction efficiency. Additionally, we
show that the direct effect of keto-enol equilibrium on the reaction rate is most pronounced
in polar protic solvents. More broadly, we show the applicability of benchtop 19F NMR
spectroscopy as an analytical screening platform that provides rapid, quantitative mecha-
nistic insight into tautomerization and cyclocondensation kinetics without the necessity
of deuterated solvents, and which cannot be easily or as rapidly observed through other
means. This enables the condition optimization of these and potentially other fluorinated
heterocycles.

2. Materials and Methods
2.1. General Synthesis Procedure (Micro-Scale)

To a standard 5 mm NMR tube an initial solution of trifluoromethylated 1,3-dicarbonyl
(0.20 mmol/mL), catalyst (0.02 mmol/mL), and solvent (0.25 mL) was added. The reaction
mixture was placed into a 60 ◦C water bath and was allowed to equilibrate over a 30 min
period. Another separate solution of 4-sulfonamidophenylhydrazine HCl and solvent
(0.20 mmol/mL, 0.25 mL), as well as the addition of α,α,α-trifluorotoluene (0.10 mmol/mL)
directly into the reaction mixture as a chemical shift reference and integration standard
due to its compatibility with reaction conditions [45], was then added. An initial 60 MHz
19F NMR was taken and the reaction mixture was placed into a 60 ◦C water bath, and 19F
NMR spectra were taken at 30 min intervals over a 4.5 h period with a Nanalysis NMReady
60-Pro benchtop nuclear magnetic resonance spectrometer.

2.2. Kinetic Parameters

Kinetics were run in a water bath heated to a temperature of 60 ◦C and maintained on
a thermocouple heat plate. Data points are reported as the Keq of a single data experiment
at which the concentrations of each tautomer reach equilibrium. NMR spectra were taken
with a 200 ppm spectral width and a 1.0 s scan delay with 32 scans.

3. Results and Discussion
3.1. Initial Rate

The initial keto-enol equilibration of the fluorinated 1,3-dicarbonyls 2 and 3 under
different reaction conditions was found to be dependent on both the solvent and catalyst.
Consistent with expectation and with previous reports, solvents capable of hydrogen
bonding gave predominantly the ketone tautomer (19F δ = −80 to −84 ppm, depending on
the solvent, and assigned by the corresponding 1H NMR (Figure S28)), whereas the enol
tautomer (19F δ = −71 to −77 ppm, as assigned by the corresponding 1H NMR (Figure S28))
was observed to dominate the equilibrium in aprotic polar solvents (DMSO, NMP, and
DMF). When dicarbonyl 2 or 3 is subjected to reaction with 4-sulfonamidophenylhydrazine
1, direct conversion into the trifluorinated pyrazole celecoxib 6 or mavacoxib 7 was observed
by aliquot reaction 19F NMR (Figure 2); the identity of the product peak by NMR was
deemed to be identical to an authentic sample of celecoxib or mavacoxib and verified
by liquid chromatography–mass spectrometry (LC-MS) (Figure S27). From these initial
solvent investigations, we observed that the formation of both celecoxib and mavacoxib is
most rapid in DMF compared to other solvents, while the slowest rates of conversion are
observed in ethanol (Figure 2B). Remarkably, there is no generalizable correlation between
the solvent-driven solution phase equilibrium constant of the dicarbonyl and the initial
rate of pyrazole formation (Figure 3A), though specifically among the two protic solvents
screened (methanol and ethanol) a greater Keq in methanol versus ethanol (0.67 vs. 0.24)
resulted in a much faster rate of conversion (8.83 µM/s in MeOH, as opposed to 3.33 µM/s
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in EtOH). Subsequently, we screened a number of common Brønsted acids, including
hydrochloric acid, p-toluenesulfonic acid, and acetic acid, along with five transition metal
Lewis acid catalysts, including LaCl3, Yb(OTf)3, Sc(OTf)3, In(OTf)3, Er(OTf)3, and Cu(OTf)2.
Within trials performed in protic solvents, this general positive correlation is retained
between the Keq and the initial reaction rate (Figure 3B). However, in aprotic solvents, no
consistent positive trend is observed consistently across all five solvents (Figure 3C).
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It is possible that this behavior of the fluorinated dicarbonyls 2 and 3 in protic solvents
(MeOH, EtOH) is attributed to the increased availability of the reactive keto tautomer,
which is aligned with the proposed reaction mechanism, which proceeds through an initial
nucleophilic attack of the keto tautomer while the enol tautomer remains unreactive at
the desired trifluoromethyl ketone center. However, polar aprotic solvents, such as DMF
and DMSO, do not strictly follow this trend, demonstrating that the rate of reaction is
not solely dependent on the Keq. We attribute this inconsistency in the initial reaction
rate to a solvent’s ability to stabilize the reaction intermediates by acting as a hydrogen
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bond acceptor, such as in DMF. Some notable conditions include Er(OTf)3 and being
uncatalyzed in DMF, which have the fastest initial formation of product in celecoxib and
mavacoxib, respectively. Additionally, the lack of a keto tautomer present in all polar
aprotic solvents, such that Keq is almost zero, highlights the lack of catalyst effects on
keto-enol tautomerization and the determinant factor being the solvent.
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The lack of these observable intermediates by 19F NMR suggests that the initial
nucleophilic attack of hydrazine 1 to the trifluoromethylated ketone of 2 or 3 is rate-
determining, and that subsequent cyclization through intramolecular condensation from
hydrazone 4 or 5 is a much faster process. This is consistent with first-order kinetics
observed for both hydrazine and 1,3-dicarbonyl.

3.2. Final Conversion

Irrespective of the presence of a catalyst, methanol conditions resulted in the greatest
yield of both compounds (celecoxib: 96%, mavacoxib: >99%), notably Cu(OTf)2 and being
uncatalyzed for the formation of celecoxib and mavacoxib, respectively. Consistent with
expectation, solvents that favor the keto tautomer result in greater formation of the desired
product, which can be attributed to the more efficient formation of the product (Figure 4B).
However, despite DMSO and ethanol being able to stabilize the keto tautomer at a higher
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rate than NMP and DMF, these conditions have shown the least conversion into celecoxib
and mavacoxib, respectively (Figure 4A). The accelerated conversion of intermediate 5
into mavacoxib can be ascribed to its heightened reactivity with the phenylhydrazine
starting material. This is likely due to the electron-withdrawing effects of the para-fluorine
substituent, which increases the electrophilicity of the 1,3-dicarbonyl, thus promoting
nucleophilic attack by the hydrazine.
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3.3. Regioisomer

Previously, the undesired 1,3-aryl regioisomers of 1G have been reported as a byprod-
uct (19F δ = −58.85 ppm in methanol) [31], most likely resulting from a nucleophilic attack
of the hydrazine to the less electrophilic aryl ketone rather than the trifluoromethyl ketone
(Figure 5). We observed the formation of this regioisomer exclusively when the reaction was
conducted in methanol. The formation of the regioisomer is attributed to the competing
nucleophilicity of solvents such as methanol and ethanol; however, this phenomenon is
not observed in ethyl or isopropyl alcohol solvents, presumably due to their greater steric
bulk, resulting in decreased favorability of the formation of these solvates. Therefore, we
attribute the formation of the regioisomer to methanol being added to the 3-dicarbonyl,
forming a dimethyl acetal, and thereby reducing electrophilicity at that site, forcing a
nucleophilic attack by the hydrazine on the 1-dicarbonyl 1A (Figure 5). Additionally, the
formation of the regioisomer is not catalytically affected and not consistent across both
compounds (Table 1).
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Figure 5. Mechanism for the formation of fluorinated pyrazoles and their regioisomers. (1) The
phenylhydrazine condenses with the 3-dicarbonyl to form the hydrazone intermediate 3C. This
undergoes a 5-exo-trig cyclization 3D with subsequent dehydration to form the 3-trifluoromethyl
pyrazole 3E. (2) The 1,3-dicarbonyl is in equilibrium with the dimethoxy intermediate 1A. The
phenylhydrazine condenses with the 3-hydroxy-3-methoxy intermediate carbonyl to form the hydra-
zone dimethyl acetal intermediate 1C. This is in equilibrium with the hydrazone intermediate 1E,
which undergoes a 5-exo-trig cyclization with subsequent dehydration to form the 5-trifluoromethyl
regioisomer 1G.

Table 1. Percent of the regioisomer observed after 4.5 h.

Catalyst Celecoxib Mavacoxib

Uncatalyzed 4.5% 0.0%
LaCl3 3.2% 2.8%

Yb(OTf)3 2.2% 3.0%
Sc(OTf)3 3.9% 4.0%
In(OTf)3 4.4% 3.2%
Er(OTf)3 3.4% 3.3%
Cu(OTf)2 2.5% 2.7%

Acetic acid 4.4% 3.3%
p-toluenesulfonic acid 3.9% 3.7%

Hydrochloric acid 2.7% 3.6%

4. Conclusions

In summary, we demonstrate through benchtop 19F NMR that the kinetics of the Knorr
pyrazole cyclocondensation of trifluorinated diketones and aryl hydrazines towards the
preparation of celecoxib and mavacoxib are heavily influenced by reaction solvents over
the presence of Lewis or Brønsted acid catalysts. In the protic solvents screened in this
study, the rate of pyrazole formation was found to be directly dependent on the relative
concentration of the 1,3-dicarbonyl ketone tautomer in solution. We observed that the
aprotic solvents DMF and NMP favor the initial formation of celecoxib and mavacoxib,
while the protic solvent methanol results in greater overall conversion. Additionally, we
found minimal to no consistent catalytic effect of both Lewis and Brønsted acids on the
initial rate and total product formation. This trend might be attributed to the differences in
each solvent to stabilize key reaction intermediates.

Ultimately, we demonstrated the utility of benchtop 19F NMR for real-time kinetic
analysis for high-throughput condition screening in the preparation of two trifluoromethy-
lated phenylpyrazoles of pharmaceutical importance. Beyond the preparation of celecoxib
and mavacoxib, the workflow for high-throughput solvent and catalyst screening described
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here is broadly applicable to the synthesis of other heterocyclic constructions containing
key fluorinated motifs.
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