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Description of FCFit

FCfit is program for the simulation and fit of vibronic absorption and emission spectra based

on the evaluation of relative Franck-Condon (FC) factors and/or Franck-Condon-Herzberg-

Teller (FCHT) theory. The program computes the FC integrals of multidimensional, har-

monic oscillators mainly based on the recursion formula given in the papers of Doktorov,

Malkin, and Man’ko.1,2 For further theoretical background of the theory as well as similar

approaches see also refs.3–7 A minor correction of a typo in the original publication is given

in ref.8

The fit of vibronic spectra can greatly be improved if independent information for the

geometry change upon electronic excitation is available. This information can be the change

†Dedicated to Henry Mantsch
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of the rotational constants upon electronic excitation. While geometry fits to the rotational

constants alone are possible and routinely made, using non-linear fits in internal coordinates

as basis for the geometries, the combination of rotational constant changes and vibronic

intensities allows for determination of much more geometry parameters. In contrast to the

separate geometry fits of the two states using rotational constants, in the combined FC fit

geometry changes (relative to one of the states, usually the ground state) are determined in

the basis of selected normal modes.

Basic program features

According to the FC principle the probability of a vibronic transition and thus the relative

intensity of a vibronic band depends on the overlap integral of the vibrational wave functions

of both electronic states. This overlap integral is determined by the relative shift of the two

potential energy curves connected by the vibronic transition along the normal coordinates

Q of both states:

FC =

∣∣∣∣∫ [Ψ′(Q′)]
∗
Ψ′′(Q′′)dQ′

∣∣∣∣2 = ⟨v′ . . . v′N |v′′ . . . v′′N ⟩2 (S1)

where the Ψ(Q) are the N -dimensional vibrational wavefunctions. The normal coordi-

nates Q′ of the excited state and Q′′ of the ground state are related by the linear orthogonal

transformation given by Duschinsky:9

Q′′ = SQ′ + d⃗ (S2)

where d⃗ is a displacement vector and S a rotation matrix, which rotates the coordinate

system of one state into that of the other state. This matrix is called the Duschinsky matrix.

Using the matrix L, which contains the eigenvectors from the diagonalization of the force

constant matrix, S can be expressed as:
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S = (L′′)TL′ (S3)

and d⃗ as:

d⃗ = (L′′)
T
M1/2

(
R⃗′′

eq. − R⃗′
eq.

)
(S4)

where M is a diagonal matrix, which contains the square roots of the atomic masses on

the diagonal and R⃗eq. is the geometry of the respective state.

Doktorov, Malkin und Man’ko deduced a recursion formula, which allows to compute

Franck-Condon integrals considering the Duschinsky effect.1,2 Starting point of the recursion

is the Franck-Condon integral of the electronic origin:

⟨0′′|0′⟩ = 2
Nvib

2

[
Nvib∏
j=1

(
ω′′
j

ω′
j

) 1
2

]
detQ

1
2 exp

[
−1

2
δ (1−P) δ

]
(S5)

The recursion formula for absorption is:

⟨v′′|v′, ..., v′i + 1, ..., v′Nvib
⟩ =

= 2

Nvib∑
k=1

Rki

(
v′′k

v′i + 1

) 1
2

⟨v′′1 , ..., v′′k − 1, ..., v′′Nvib
|v′1, ..., v′i, ..., v′Nvib

⟩+

+

Nvib∑
j=1

(2Q− 1)ki

(
v′j

v′i + 1

) 1
2

⟨v′′|v′, ..., v′i − 1, ..., v′Nvib
⟩−

−(Rδ)

(
2

v′i + 1

) 1
2

⟨v′′|v′, ..., v′i, ..., v′Nvib
⟩ (S6)

and for emission:
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⟨v′′1 , ..., v′′i + 1, ..., v′′Nvib
|v′⟩ =

= 2

Nvib∑
k=1

Rik

(
v′i

v′′k + 1

) 1
2

⟨v′′1 , ..., v′′k , ..., v′′Nvib
|v′1, ..., v′i − 1, ..., v′Nvib

⟩+

+

Nvib∑
l=1

(2P− 1)kl

(
v′′l

v′′k + 1

) 1
2

⟨v′′1 , ..., v′′l − 1, ..., v′′Nvib
|v′⟩+

+(1−Pδ)

(
2

v′′k + 1

) 1
2

⟨v′′1 , ..., v′′i , ..., v′′Nvib
|v′⟩ (S7)

The recursive character of Doktorov’s equations suggests to save already computed FC

integrals in an appropriate manner for further use. An efficient method is realized using so

called Hash tables. The entries in a Hash table are administered using keys. The entries of

the Hash tables used in FCfit are the energy and the FC factors of a vibronic transition. A

quantum string, describing initial and final state is used as key. This quantum string can

be compared to an n-digit number, where n is the number of vibrations of the molecule,

sorted by their frequency. The i-th position shows, with how many quanta the i-th mode

is excited. E.g. the quantum string ”001021” represents the vibrational state of a molecule

with the third and sixth mode excited with one quantum and the fifth mode with two quanta.

Each vibronic transition can be represented by two quantum strings for the initial and final

state, respectively. We use the bracket notation, the bra being the initial state, the ket

the final state of the transition. The transition from the vibrationless ground state to the

vibrational state of the above example would read then: ⟨000000|001021⟩. N.b., that ”final”

and ”initial” refers to the direction of the transition and not to the energetic ordering of

states. Using spectroscopic notation this means in absorption ⟨001021⟩′ ← ⟨000000⟩′′ and

⟨001021⟩′′ ← ⟨000000⟩′ in emission. Thus, the complete description of the transition requires

both quantum strings of bra and ket and additionally the information if the transition is in

absorption or emission. E.g. ⟨001000|001000⟩ in emission describes the diagonal transition

from the singly excited third mode to the respective ground state mode.
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Calculation of the emission and absorption spectra

The intensities of the transitions between two vibronic states m and n are proportional

to the square of the transition moment Mmn and to the frequency νmn of the transition

for absorption spectra and the fourth power of the frequency νmn for emission spectra,

respectively.1

Imn ∝ |Mmn|2νmn (Absorption) (S8)

Imn ∝ |Mmn|2ν4
mn (Emission) (S9)

In the present version absorption spectra are calculated only originating from the vi-

brationless ground state, i.e. a molecular beam experiment is assumed, and no thermal

population of vibrational levels of the ground state is taken into account.

Franck-Condon-Herzberg-Teller theory

Within the frame of the Born-Oppenheimer approximation the vibronic wavefunction is

factorized in a vibrational part which depends only on the nuclear coordinates Q and an

electronic part which depends on the electronic coordinates q and parametrically on the

nuclear coordinates:

Φmn(q,Q) = Ψm(q,Q)ν(Q) (S10)

where m describes the electronic and v the vibrational quantum number. The transition

dipole moment for a transition between an initial electronic state m and a final electronic

state n is defined as:

1this refers to energy detecting schemes, while for counting schemes (as for example for the nowadays
very common CCD detection in optical multichannel analyzers) the intensity depends on the third power of
the frequency ν3.10
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Mmn(q,Q) = ⟨ν ′′

(m)|µmn(Q)|ν ′

(n)⟩ (S11)

with the electronic transition dipole moment µmn(Q):

µmn(Q) = ⟨Ψm|µ|Ψn⟩ ; µ =
∑
g

erg (S12)

where rg is the position vector of the gth electron. The dependence of the electronic tran-

sition dipole moment µmn from the nuclear coordinates can be approximated by expanding

µmn in a Taylor series about the equilibrium position at Q0. Truncation of the expansion

after the second expansion term and inserting into equation 11 yields:

Mmn(q,Q) = µmn(Q0) ⟨ν
′′

(m)|ν
′

(n)⟩+
∑
i

(
δµmn

δQi

)Q0 ⟨ν
′′

(m)|Qi|ν
′

(n)⟩ (S13)

The displacement of the excited state geometry of the state n along the normal modes Qi

electronically mixes the wavefunctions of all neighboring electronically excited states p that

are sufficiently close to the excited state. Through these displacements, the excited state

gains orbital character from the perturbing state(s). The derivatives of µmn are determined

numerically from TDDFT/MRCI calculations of the respective state using the method of

symmetric finite differences:

(
δµmn

δQi

)Q0 =
µmn(Q0 +∆Qi)− µmn(Q0 −∆Qi)

2∆Qi

(S14)

The Frank-Condon integrals ⟨ν ′′

(m)|ν
′

(n)⟩ are calculated using the recursive relations of

Doktorov [2], which uses the Duschinsky transformation [9] to reduce the integrals over the

vibrational ground and vibrational excited state to integrals over the ground state vibrational

wave functions only. The integrals ⟨ν ′′

(m)|Qi|ν
′

(n)⟩ from the HT terms in equation 13 can be

calculated from the FC integrals using the following relation:
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⟨ν ′′

(m)|Qi|ν
′

(n)⟩ =
√

h̄

2ωi

(
√

ν(n),i + 1 ⟨ν ′

(m)|ν
′′

(m),i, ..., ν
′′

(n),i + 1, ..., ν
′′

(n),i⟩

+
√
ν(n),i ⟨ν

′

(m)|ν
′′

(m),i, ..., ν
′′

(n),i − 1, ..., ν
′′

(n),i⟩)
(S15)

Program features

FCFit is capable of computing simulations or fits of vibronic spectra in the FC or FCHT

approximation for absorption or emission, using a set of transitions, which can be user-

defined. If a simulation is to be performed some of the keys needed are placed in the [General]

section, while the same keys are placed in the section [Fit] in case of a fit. Furthermore, the

geometry change can also be fit to the change of rotational constants from a rotationally

resolved electronic spectrum or to both intensities and rotational constant changes (combined

fit). Since from a single spectrum only three rotational constants can be extracted, only

two geometry parameters can be determined. This limitation can be overcome if rotational

constants of more isotopologues are available. For N isotopologues a total of 3N−1 geometry

parameters can be fit. The fits can be performed with local optimizers as NL2SOL11 (an

extended Levenberg-Marquardt-Algorithm) or PRAXIS12 (an implementation of the non

gradient based method of Brent),13 or with global optimizers as PGA14 (a genetic algorithm)

or SIMANN15 (a simulated annealing algorithm). The global minimizer has been extended to

allow for intermediate local minimization steps rather than simple cost function evaluations.

The cost function

In a pure FC fit, the geometry of the excited state is varied, until the weighted sum of the

squared errors χ2 of the intensities is minimized:

χ2
Int. =

∑
i

wi

(
Icalc.i − Iexp.i

)2
(S16)
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Here, the Icalc.i and Iexp.i are the i calculated and experimental intensities, respectively,

weighted with individual weight factors wi. The reduced standard deviation is calculated

via:

σred =

√
χ2

n− p
(S17)

with n as the number of data points and p the number of parameters.

For a combined fit of intensities and changes of the rotational constants ∆Bg, the total

χ2 is defind as follows:

χ2 = χ2
Int. + χ2

Rot. (S18)

with

χ2
Rot. =

c∑
g=a

wg

(
∆Bcalc.

g −∆Bexp.
g

)2
(S19)

Ab initio computational prerequisites

For FC simulations of an absorption or emission spectrum several preliminary ab initio

calculations are necessary: (i) An optimized geometry for each of the electronic states,

connected by the transitions in form of Cartesian coordinates in units of Å. (ii) The second

derivative of the energy (Hessian) for both states, calculated at the same level of theory. Since

the output of the Hessian matrix differs between the various common ab initio program

packages two tools are available for conversion of the Hessian into the notation needed

for FCfit. Those are: TurboMol2ZmtHess.exe, which expects output from the turbomole

program and MolCAS2ZmtHss.exe, which converts MolCAS hessians to FCfit.

Availability

An executable of the FCFit program for Windows, a detailed manual, and the necessary

conversion programs can be downloaded from:

http://dx.doi.org/10.25838/d5p-33 (Program),

http://dx.doi.org/10.25838/d5p-34 (Manual), and
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http://dx.doi.org/10.25838/d5p-35 (Example Input).

For time restrictions, no technical help can be offered.
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Table S1: SCS-CC2 optimized ground state geometry of 1,3-Dicyanobenzene in Å.

Cartesian Coordinates
C -1.4852238496 -1.0845310473 -0.0003392045
C -2.3565406780 0.0036864811 -0.0005188583
C -1.8408266382 1.3076708260 0.0000894958
C -0.4585575769 1.5238740064 0.0009392780
C 0.4055233516 0.4233892445 0.0011607213
C -0.1059090487 -0.8822678352 0.0005177037
H -0.0620614138 2.5297417219 0.0013654472
C 1.8277492078 0.6358702608 0.0020867416
N 2.9909302602 0.8065457040 0.0028691588
H 0.5754647156 -1.7219621569 0.0008088118
H -1.8811811610 -2.0905884376 -0.0009597141
H -3.4273990385 -0.1466739885 -0.0012042712
C -2.7370485133 2.4322723001 -0.0002918263
N -3.4730275422 3.3490734656 -0.0006974834
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Table S2: SCS-CC2 optimized excited state (S1) geometry of 1,3-Dicyanobenzene in Å.

Cartesian Coordinates
C -1.4945546329 -1.1085400838 -0.0003421890
C -2.3936323587 -0.0033510591 -0.0005820764
C -1.8702225554 1.3329719879 0.0000605325
C -0.4477211846 1.5516059024 0.0010497784
C 0.4442944941 0.4221846533 0.0012466184
C -0.0833963206 -0.9124583350 0.0005381404
H -0.0521413451 2.5570589022 0.0016273797
C 1.8442587061 0.6382114029 0.0020854169
N 3.0114190912 0.8170845840 0.0027737220
H 0.5937743414 -1.7537255213 0.0006698109
H -1.8902582346 -2.1140757362 -0.0008638166
H -3.4625350520 -0.1574256027 -0.0012292415
C -2.7475252505 2.4451507965 -0.0003927694
N -3.4798676235 3.3714086540 -0.0008153060

Table S3: Dimensionless displacement values with standard deviation σ of the 12 normal
modes used in the fit of the 1,3-Dicyanobenzene.

Mode Displacement σ
Q1 +0.01642 ± 0.033549
Q2 +0.028429 ± 0.054316
Q7 −0.020391 ± 0.0018296
Q10 −0.038291 ± 0.0023941
Q14 −0.0093164 ± 0.0077066
Q20 +0.0031984 ± 0.0011586
Q21 +0.01451 ± 0.0218
Q24 −0.0075859 ± 0.0017354
Q27 +0.0054897 ± 0.0077783
Q29 +0.0066046 ± 0.013485
Q31 +0.00090465 ± 0.0053162
Q36 +0.015176 ± 0.016146
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Figure S1: Visual representation of the ground state vibrational modes used in the calculation
of the final Fit. All modes with the exception of Q2 are totally symmetrical.
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Table S4: SCS-CC2/cc-pVTZ calculated and experimental wavenumbers of the 36 normal
modes of the ground and first electronically excited state of 1,3-Dicyanobenzene along with
the coefficients of the Duschinsky matrix, larger than 0.25 for the S1 ←S0 transition.

Mode S0 S1 Duschinsky-Coefficients
Sym. Calc. Obs. Sym . Calc. Obs.

Q1(S0) a1 114.1 113 b1 106.0 Q1(S1) = −0.99 Q2(S0)
Q2(S0) b1 132.1 127 a1 111.2 Q2(S1) = −1.00 Q1(S0)
Q3(S0) a2 170.1 a2 132.9 Q3(S1) = +0.98 Q3(S0)
Q4(S0) b2 186.5 b2 181.9 Q4(S1) = +1.00 Q4(S0)
Q5(S0) a2 370.6 b1 290.6 Q5(S1) = +0.95 Q6(S0) +0.29 Q9(S0)
Q6(S0) b1 388.4 a2 302.6 Q6(S1) = +0.97 Q5(S0)
Q7(S0) a1 454.3 455 b2 399.4 404 Q7(S1) = +0.99 Q8(S0)
Q8(S0) b2 454.8 456 b1 401.0 Q8(S1) = +0.84 Q9(S0) −0.46 Q13(S0)
Q9(S0) b1 502.5 a1 425.9 Q9(S1) = −0.97 Q7(S0)
Q10(S0) a1 502.8 510 a1 488.6 497 Q10(S1) = +0.97 Q10(S0)
Q11(S0) b2 575.5 a2 508.6 Q11(S1) = −0.98 Q12(S0)
Q12(S0) a2 622.1 b1 513.7 Q12(S1) = −0.45 Q9(S0) −0.84 Q13(S0)
Q13(S0) b1 694.8 b2 568.8 Q13(S1) = −0.96 Q11(S0)
Q14(S0) a1 705.1 703 b1 645.7 Q14(S1) = −0.94 Q15(S0) −0.28 Q17(S0)
Q15(S0) b1 825.8 a1 659.1 662 Q15(S1) = +0.99 Q14(S0)
Q16(S0) b2 898.0 894 a2 708.0 Q16(S1) = −1.00 Q18(S0)
Q17(S0) b1 924.7 b1 709.6 Q17(S1) = +0.32 Q15(S0) −0.93 Q17(S0)
Q18(S0) a2 946.2 b1 787.5 Q18(S1) = −0.99 Q19(S0)
Q19(S0) b1 991.7 974 b2 848.1 Q19(S1) = −0.98 Q15(S0)
Q20(S0) a1 1007.6 1004 a1 962.2 954 Q20(S1) = +1.00 Q20(S0)
Q21(S0) a1 1111.8 1111 a1 1009.2 Q21(S1) = +0.98 Q21(S0)
Q22(S0) b2 1160.8 b2 1109.2 Q22(S1) = +0.97 Q22(S0)
Q23(S0) b2 1195.8 b2 1176.8 Q23(S1) = +0.98 Q23(S0)
Q24(S0) a1 1253.1 1244 a1 1249.2 Q24(S1) = +0.99 Q24(S0)
Q25(S0) b2 1314.5 b2 1295.3 Q25(S1) = −0.84 Q25(S0) −0.41 Q26(S0)
Q26(S0) b2 1362.1 a1 1343.3 Q26(S1) = −0.98 Q27(S0)
Q27(S0) a1 1442.8 1427 b2 1426.5 Q27(S1) = −0.97 Q28(S0)
Q28(S0) b2 1509.5 a1 1532.6 Q28(S1) = −1.00 Q29(S0)
Q29(S0) a1 1614.6 1618 b2 1560.9 Q29(S1) = −1.00 Q30(S0)
Q30(S0) b2 1637.7 b2 1814.5 Q30(S1) = −0.50 Q25(S0) +0.84 Q25(S0)
Q31(S0) a1 2155.3 2150 b2 2091.6 Q31(S1) = +0.50 Q31(S0) −0.86 Q32(S0)
Q32(S0) b2 2155.9 2158 a1 2097.5 Q32(S1) = −0.86 Q31(S0) −0.50 Q32(S0)
Q33(S0) a1 3215.3 a1 3225.7 Q33(S1) = −0.98 Q33(S0) +0.21 Q30(S0)
Q34(S0) b2 3227.0 a1 3238.1 Q34(S1) = +0.99 Q35(S0)
Q35(S0) a1 3230.9 b2 3239.6 Q35(S1) = +1.00 Q34(S0)
Q36(S0) a1 3237.4 3237 a1 3247.9 Q36(S1) = −0.21 Q33(S0) −0.97 Q36(S0)

Figure S2: Duschinsky matrix between the ground and first excited state vibrational modes
of 1,3-DCB.
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Figure S3: Dispersed fluorescence spectrum of the 0,0+404 excited state mode of 1,3-
Dicyanobenzene.
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Figure S4: Dispersed fluorescence spectrum of the 0,0+497 excited state mode of 1,3-
Dicyanobenzene.
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Figure S5: Dispersed fluorescence spectrum of the 0,0+662 excited state mode of 1,3-
Dicyanobenzene.
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Figure S6: Dispersed fluorescence spectrum of the 0,0+954 excited state mode of 1,3-
Dicyanobenzene.
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Table S5: Relative intensities of the observed ground state vibrational modes of 1,3-DCB that
were assigned in the final fit. Experimental wavenumbers of the overtones & combination
modes are derived from the single excited modes.

S0 Mode Exp. 0,0 +404 +497 +662 +954

Q1 113 0.02

Q2 127 0.02

Q7 455 0.56 0.11

Q8 456 1.00

Q10 510 0.20 1.00

Q14 703 0.05 1.00

Q16 894 0.04

Q2
7 910 0.10

Q7+Q8 911 0.56

Q7+Q10 965 0.05 0.37

Q8+Q10 966 0.13

Q19 974 0.04 0.45

Q20 1004 1.00 0.06 0.16

Q21 1111 0.02

Q2
10 1120 0.37

Q7+Q14 1158 0.45

Q10+Q14 1213 0.13

Q24 1244 0.61 0.05 0.09

Q3
7 1365 0.04

Q2
7+Q8 1366 0.10

Q27 1427 0.09

Q7+Q20 1459 0.33 0.24

Q8+Q20 1460 0.46

S18



Table S5: Continued

Q10+Q20 1514 0.13 0.56

Q2
7+Q14 1613 0.08

Q29 1618 0.03

Q7+Q24 1699 0.20 0.11

Q8+Q24 1700 0.04

Q14+Q20 1707 0.51

Q10+Q24 1754 0.09 0.29

Q2
7+Q20 1914 0.07

Q7+Q8+Q20 1915 0.22

Q14+Q24 1947 0.27

Q7+Q10+Q20 1970 0.16

Q8+Q10+Q20 1970 0.06

Q2
20 2008 0.21 1.00

Q2
10+Q20 2024 0.16

Q31 2150 0.04

Q7+Q8+Q24 2155 0.13

Q32 2158 0.03

Q7+Q14+Q20 2162 0.20

Q7+Q10+Q24 2209 0.11

Q20+Q24 2248 0.29 0.14

Q2
20+Q24 2264 0.10

Q7+Q14+Q24 2402 0.13

Q20+Q27 2431 0.04

Q7+Q2
20 2463 0.06 0.40

Q8+Q2
20 2464 0.09

Q2
24 2488 0.08
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Table S5: Continued

Q10+Q2
20 2518 0.04 0.11 0.17

Q24+Q27 2671 0.03

Q7+Q20+Q24 2703 0.08

Q8+Q20+Q24 2704 0.12

Q14+Q2
20 2711 0.15

Q10+Q20+Q24 2758 0.05 0.15

Q7+Q2
24 2943 0.04

Q14+Q20+Q24 2951 0.20

Q3
20 3012 0.04 0.41

Q36 3237 0.04

Q2
20+Q24 3252 0.07 0.25

Figure S7: Dispersed fluorescence spectrum of the 0,0+657 excited state mode of 1,3-
Dicyanobenzene. This spectrum was not included the final Fit because no valid combination
of excitation energy, vibrational mode symmetry & simulation pattern was found.

S20



References

(1) Doktorov, E. V.; Malkin, I. A.; Man’ko, V. I. Dynamical symmetry of vibronic tran-

sitions in polyatomic molecules and the Franck-Condon principle. J. Mol. Spec. 1975,

56, 1–20.

(2) Doktorov, E. V.; Malkin, I. A.; Man’ko, V. I. Dynamical symmetry of vibronic tran-

sitions in polyatomic molecules and the Franck-Condon principle. J. Mol. Spec. 1977,

64, 302–326.

(3) Sharp, T. E.; Rosenstock, H. M. Franck—Condon Factors for Polyatomic Molecules. J.

Chem. Phys. 1964, 41, 3453–3463.

(4) Warshel, A.; Karplus, M. Vibrational structure of electronic transitions in conjugated

molecules. Chem. Phys. Letters 1972, 17, 7–14.

(5) Islampour, R.; Dehestani, M.; Lin, S. A New Expression for Multidimensional Franck-

Condon Integrals. J. Mol. Spec. 1999, 194, 179–184.

(6) Berger, R.; Fischer, C.; Klessinger, M. Calculation of the Vibronic Fine Structure in

Electronic Spectra at Higher Temperatures. 1. Benzene and Pyrazine. J. Phys. Chem.

A 1998, 102, 7157–7167.

(7) Dods, J.; Gruner, D.; Brumer, P. A genetic algorithm approach to fitting polyatomic

spectra via geometry shifts. Chem. Phys. Letters 1996, 261, 612–619.

(8) Cromp, B.; Triest, M.; T. Carrington, J.; Reber, C. A direct-operation time-dependent

method for calculating absorption spectra involving multiple electronic states and its

application to trans-OsO2(oxalate)22. Spectrochim Acta A, special issue entitled Theo-

retical Spectroscopy: State of the Science 1999, 55, 575–583.

(9) Duschinsky, F. Zur Deutung der Elekronenspektren mehratomiger Moleküle I. Über
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