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Abstract: This study characterized the level of oxidative metabolism in skeletal muscle during
whole-body activity as a percentage of the muscle’s maximum oxidative rate (mVO2max) using
near-infrared spectroscopy (NIRS). Ten healthy participants completed a progressive work test and
whole-body walking and lunge exercises, while oxygen saturation was collected from the vastus
lateralis muscle using near-infrared spectroscopy (NIRS). Muscle oxygen consumption (mVO2) was
determined using arterial occlusions following each exercise. mVO2max was extrapolated from the
mVO2 values determined from the progressive exercise test. mVO2max was 11.3 ± 3.3%/s on day
one and 12.0 ± 2.9%/s on day two (p = 0.07). mVO2max had similar variation (ICC = 0.95, CV = 6.4%)
to NIRS measures of oxidative metabolism. There was a progressive increase in mVO2 with walking
at 3.2 Km/h, 4.8 km/h, 6.4 Km/h, and with lunges (15.8 ± 6.6%, 20.5 ± 7.2%, 26.0 ± 6.6%, and
57.4 ± 15.4% of mVO2max, respectively). Lunges showed a high reliability (ICC = 0.81, CV = 10.2%).
Muscle oxidative metabolism in response to whole-body exercise can be reproducibly measured
with arterial occlusions and NIRS. This method may be used to further research on mitochondrial
activation within a single muscle during whole-body exercise.
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1. Introduction

Whole-body aerobic capacity, commonly termed VO2max, is a frequently used mea-
sure to evaluate health and athletic performance [1,2]. Skeletal muscle oxidative metabolism
is a key factor that contributes to whole-body VO2max. Increasingly, the health of skeletal
muscle, and in particular skeletal muscle mitochondrial function, has also been shown to
be important in health and disease [3,4]. This is true for resting muscle metabolism [5], but
also for muscle metabolism during exercise [6].

Traditionally mitochondrial function has been measured using biochemical approaches
in vitro with muscle biopsies [7–9]. Because of the invasive nature of the muscle biopsy pro-
cedure and artificial conditions employed during in vitro biochemical assessments, several
noninvasive methods have been developed to assess skeletal muscle oxygen consumption
in vivo. Magnetic resonance spectroscopy (31P MRS) can characterize muscle oxidative
metabolism and changes in muscle pH [10–12]. However, 31P MRS is limited to exercise
that can be performed in the constraints of the magnet bore. The advancement of near-
infrared spectroscopy (NIRS) provides an additional noninvasive means of monitoring
skeletal muscle oxygenation [13,14]. Skeletal muscle oxygen consumption (mVO2) can be
measured by NIRS at rest and during exercise using an acute arterial occlusion [15–22].
However, most studies have been performed using an exercise ergometer in a seated or
supine position. Measurements of muscle oxygen levels can be made during free-standing
or untethered exercise [23]. What is needed is to incorporate measurements of muscle
metabolism into free-standing exercise.

NDT 2024, 2, 417–429. https://doi.org/10.3390/ndt2040025 https://www.mdpi.com/journal/ndt

https://doi.org/10.3390/ndt2040025
https://doi.org/10.3390/ndt2040025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ndt
https://www.mdpi.com
https://orcid.org/0000-0001-9850-487X
https://orcid.org/0000-0003-0780-029X
https://doi.org/10.3390/ndt2040025
https://www.mdpi.com/journal/ndt
https://www.mdpi.com/article/10.3390/ndt2040025?type=check_update&version=1


NDT 2024, 2 418

The purpose of this study was to characterize muscle oxygen consumption (mVO2)
in the vastus lateralis muscle during free-moving exercise: consisting of walking on a
treadmill at different speeds and free-standing bodyweight lunges. Values of mVO2 during
walking and lunging exercise were normalized to maximal mVO2 estimated from mVO2
measurements made during a progressive knee extension work test. We repeated the
measurements on a separate day to determine day-to-day variability. We hypothesized that
mVO2 would increase proportionally with walking speed and that bodyweight lunging
would require great levels of mVO2 than walking.

2. Materials and Methods

• Participants

Young, healthy adults between 18 and 33 years of age were recruited to participate in
this study. This study was approved by the Institutional Review Board at the University of
Georgia (Athens, GA, USA). All participants provided written informed consent prior to
testing. All testing was conducted in accordance with the Declaration of Helinski (2008).

• Study Design

We used a repeated-measures one group experimental design that consisted of two
testing sessions on non-consecutive days within a period of seven days (Figure 1). Each
testing session consisted of a progressive work knee extension protocol, an increasing
intensity treadmill walking protocol, and bodyweight lunges.
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Figure 1. Experimental timeline. The order of test administration was randomized between subjects
and between testing days.

• Muscle assessments

Skeletal muscle oxygen consumption (mVO2) was assessed using the change in oxy-
genated hemoglobin/myoglobin (O2Hb) signal during brief arterial occlusions [24]. Arte-
rial occlusions were performed using a blood pressure cuff (Hokanson SC12D, Bellevue,
WA, USA) inflated using a rapid inflation system (Hokanson E20 Cuff Inflator, Bellevue,
WA, USA) powered by a 10-gallon commercially available air compressor (California Air
Tools 210DLV, San Diego, CA, USA). Oxygen signals were obtained using a continuous-
wave NIRS device (PortaMon, Artinis Medical Systems, Zetten, The Netherlands) with
3 LED transmitters that each emit two wavelengths (760 nm and 850 nm) of light at three
set distances (30, 35, and 40 mm) from the receiver. All data analyses were performed
at 40 mm separation distances. The depth of penetration of the light was assumed to be
approximately half of the distance between the transmitter and receiver [25]. All NIRS
data were collected at a sampling rate of 10 Hz. NIRS data were scaled (expressed as a
percentage) to the maximal physiological range obtained during the ischemic calibration.
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NIRS signals were corrected for blood volume changes as previously described [24]. mVO2
was calculated as the rate of change in the NIRS oxygenated (O2Hb) signal during arterial
occlusions using a simple linear regression [21].

B-mode ultrasound imaging (LOGIQ e: GE HealthCare, Wauwatosa, WI, USA) was
used to measure the adipose tissue thickness (ATT) under the NIRS probe. ATT thickness
has been shown to influence NIRS signals in previous studies [18,26,27].

Muscle electromyography (EMG) signals were collected using a Biopac Systems
MP100A-CE, with the ECG100C unit). Electrodes were placed across the vastus lateralis
muscle and on a bony landmark. The raw signal was collected at 200 Hz; the magnitude of
the signal (squared and square root) was determined.

• Knee extension exercise protocol

The knee extension protocol consisted of performing single-leg knee extensions in the
self-reported dominant leg at increasing frequencies of contraction. Resistance level was
set at ~30% of the one repetition maximum. A leg extension fitness machine (Magnum
Fitness Systems, Badger Fitness, South Milwaukee, WI, USA) was used to perform knee
extensions (Figure 2A). The blood pressure cuff was placed as high as anatomically possible
on the thigh on the self-reported dominant leg, with the NIRS device secured to the vastus
lateralis muscle of the same leg using Velcro straps. The placement of the NIRS device
was chosen to allow the maximum amount of distance between the device and the blood
pressure cuff to attenuate any motion artifact in the NIRS signal that would be caused
by inflation of the blood pressure cuff. Placement of NIRS device was recorded using
measures relative to boney landmarks of the patella and hip bones to reproduce device
placement as close as possible for the second day of testing. The following contraction
frequencies were used: 5, 6, 7.5, 10, 12, and 15 leg extensions per minute. Single-leg
knee extension exercises at each of the above contraction frequencies were performed
for two minutes to ensure participants reached steady state mVO2. At the end of each
two-minute bout of knee extension exercise, mVO2 was measured as the rate of change
in the NIRS signal during a 10-s arterial occlusion. After the last set of knee extensions,
an ischemic calibration was performed to scale NIRS data to a maximum physiological
range as previously described [21]. Briefly, 5–8 leg extensions were performed immediately
followed by a 5–6 min arterial occlusion and 3–5 min of reactive hyperemia after the release
of the occlusion. All arterial occlusions were performed with the leg in a relaxed, fully
extended position.

• Free-moving exercise protocols

Free-moving exercise protocols consisted of both treadmill walking and bodyweight
lunge exercises. A blood pressure cuff was placed as high as anatomically possible on the
thigh of the self-reported dominant leg and attached to elastic suspenders to ensure the
blood pressure cuff remained in place during the exercises (Figure 2B). The NIRS device
was placed on the vastus lateralis of the same leg, allowing for the maximum amount of
distance between the NIRS device and blood pressure cuff. Bony landmarks were used to
record placement of the device to replicate placement location on the second day of testing.

Treadmill exercise consisted of walking at 3.2, 4.8, and 6.4 km/h for three minutes
each to achieve close to steady level exercise. At the end of each three-minute bout of
walking exercise, the treadmill was stopped to allow the participant to safely step to the
side of the treadmill belt and transfer all body weight into the non-dominant leg. Once the
participant was in a stable position (usually 2–3 s), a 10-s arterial occlusion was performed
to measure mVO2.
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Figure 2. (A) The experimental setup for the progressive exercise test. The NIRS device was placed
on the vastus lateralis using straps. The blood pressure cuff was placed proximally to the NIRS
device. The leg is shown lifting the weight. For NIRS measurements, the leg was placed on top
of the padding in the horizontal position to allow the muscle to relax during the measurements.
(B) Placement of the NIRS device, EMG electrodes, and ischemic cuff for the treadmill walking and
lunging measurements.

Participants performed 15 bodyweight lunge exercises with the self-reported dominant
leg forward to measure the level of oxidative metabolism after a short bout of exercise.
Participants were instructed to perform 15 lunges, defined as a 90-degree bend in both
the forward and behind leg with the back knee touching the floor, at a self-selected pace
(between 0.7 and 0.9 lunges per second). Immediately following the lunges, the participant
was instructed to stand with their body weight supported by their non-dominant leg
and a 10 s arterial occlusion was performed to measure mVO2. After both treadmill
and lunge protocols were completed, an ischemic calibration was performed as previously
described [21]. Briefly, the participant was instructed to perform ~5 lunges and immediately
stand with their body weight supported by the non-dominant leg. A 5–6 min arterial
occlusion was performed followed by 3–5 min of reactive hyperemia after the release of the
occlusion to obtain the ischemic calibration.

• NIRS data analysis

The metabolic rates of the increasing frequencies of leg extensions were plotted,
producing an exponential curve (see Figure 3). The point at which the curve plateaued
and no longer increased represented the mVO2max. Eadie Hoftsee plots were used to
extrapolate mVO2max [28]. The metabolic rates obtained from the whole-body activities
were then characterized as a percentage of mVO2max, with resting metabolism representing
0% and the calculated mVO2max representing 100%.
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ment of the NIRS device, EMG electrodes, and ischemic cuff for the treadmill walking and lunging 
measurements.
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Figure 3. Representative oxygen levels (O2Hb) for one subject during the progressive exercise
test. An ischemic calibration was performed to normalize the oxygen levels to a range of 0–100%.
(A) shows the complete protocol with six different exercise intensities. (B) shows an expanded view
of two mVO2 slope measurements for two exercise intensities. The arrows indicate where the mVO2

measurements were made.

• Statistical analyses

All data are presented as means and standard deviations. Differences between days
were assessed using paired T tests. We assumed the significant differences with p values
less than 0.05. Day-to-day reproducibility was characterized by calculating the coefficient
of variation (CV) and the intraclass correlation coefficient (ICC). The CV was calculated
as the standard deviation of between-day tests divided by the mean of between-day tests,
expressed as a percentage of the mean value. The ICC was calculated using a two-way
mixed model analysis of variance. Pearson correlations were performed when examining
the relationship between two variables. Equivalency plots were made for the mVO2max
measurements [29].

3. Results

Ten young, healthy adults (seven male, three female) were recruited to participate
in this study (22.8 ± 2.4 years of age, BMI of 24.5 ± 2.5). All participants self-reported
to be recreationally active, defined as participating in physical exercise two days or more
per week. Average adipose tissue thicknesses (ATT), measured by ultrasound over the
vastus lateralis muscle was 0.66 mm (range = 0.35 to 0.86 mm). ATT measurements of the
same location were highly correlated for day one and day two (r2 = 0.94). No significant
relationships were seen between ATT and mVO2 measurements (p = 0.88).

A representative example of relative O2Hb levels during the progressive knee exten-
sion test is shown in Figure 3. A representative example of relative O2Hb levels during
the whole-body activities are shown in Figure 4. Relative O2Hb levels for each of the
measurements are shown in Figure 5. Relative O2Hb levels were not significantly different
between day one and day two for any of the measurements (p > 0.05). The time from the
last muscle contraction or step to the start of the NIRS slope measurement ranged from 2.2
to 3 s and was not different between day one and day two (Table 1).

Increasing the contraction frequency during the progressive work test resulted in
increases in mVO2 (Figure 6). The extrapolated mVO2max was 11.3 ± 3.3%/s on day one
and 12.0 ± 2.9%/s on day two (p = 0.07). For each work level, the coefficients of variation
ranged from 5.1 to 10.1% of the mean value, and the ICC values varied from 0.25 to 0.79.
mVO2max had a coefficient of variation of 6.4% and an ICC value of 0.95. The correlation
of day one and day two for mVO2max and the equivalency plot are shown in Figure 7.
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Figure 3. Representative oxygen levels (O2Hb) for one subject during the progressive exercise test. 
An ischemic calibration was performed to normalize the oxygen levels to a range of 0–100%. (A) 
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Figure 4. Representative oxygen levels (O2Hb) for one subject during the walking and lunging exercise.
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Table 1. Times from the last muscle contraction to the start of the slope measurements.

Progressive work test: time from the last knee extension
Exercise Day 1 Day 2

Rate Time SD Mean SD
#/minute seconds seconds seconds seconds

5 2.8 1.2 3.0 0.7
6 2.8 0.9 2.9 0.9

7.5 2.8 0.8 2.9 1.1
10 2.8 0.4 3.2 0.8
12 2.7 0.8 3.2 0.9
15 2.6 0.6 2.9 0.6

Exercise test: time from the last leg movement
Walking Day 1 Day 2

speed Time SD Mean SD
MPH seconds seconds seconds seconds

2 2.6 1.1 2.9 1.3
3 2.2 0.7 2.1 0.8
4 1.9 0.5 2.4 0.9

lunges 2.5 0.7 2.3 0.6

Figure 5. (A) Oxygen levels at the start of the slope measurements for mVO2 during the progressive 
walking test. (B) Oxygen levels at the start of the slope measurements for mVO2 during the walking 
and lunging exercise. Values are means and standard deviations and have been offset on the x axis 
for clarity.

Increasing the contraction frequency during the progressive work test resulted in in-
creases in mVO2 (Figure 6). The extrapolated mVO2max was 11.3 ± 3.3%/s on day one and 
12.0 ± 2.9%/s on day two (p = 0.07). For each work level, the coefficients of variation ranged 
from 5.1 to 10.1% of the mean value, and the ICC values varied from 0.25 to 0.79. mVO2max 
had a coefficient of variation of 6.4% and an ICC value of 0.95. The correlation of day one 
and day two for mVO2max and the equivalency plot are shown in Figure 7.

Figure 5. (A) Oxygen levels at the start of the slope measurements for mVO2 during the progressive
walking test. (B) Oxygen levels at the start of the slope measurements for mVO2 during the walking
and lunging exercise. Values are means and standard deviations and have been offset on the x axis
for clarity.
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Figure 6. mVO2 values for the progressive exercise test. The dotted lines represent the calculated 
mVO2max values for each test day. Values are means and standard deviations.

The average percentage of mVO2max produced by walking at 3.2 km/h, 4.8 km/h, 
and 6.4 km/h, and for lunges is shown in Figure 8A. Average EMG signals are shown in 
Figure 8B. A total of 16.6 ± 0.8 lunges were completed in 23.4 ± 3.1 s on day 1 and 16.3 ± 
1.2 lunges in 21.0 ± 3.1 s on day 2. Lunges showed a high reliability for percentage of 
mVO2max (ICC = 0.81, CV = 10.2%).

Figure 7. (A) Individual mVO2 values for day 1 and day 2. The dotted line is the line of identity for 
reference. (B) Equivalency plot of mVO2max values for the two testing days. Solid circle is the mean 
difference; open circles are the 95% confidence interval. Bold dotted line represents zero difference 
between days. The light dotted lines represent a 10% difference between days.

Figure 6. mVO2 values for the progressive exercise test. The dotted lines represent the calculated
mVO2max values for each test day. Values are means and standard deviations.
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Figure 7. (A) Individual mVO2 values for day 1 and day 2. The dotted line is the line of identity for
reference. (B) Equivalency plot of mVO2max values for the two testing days. Solid circle is the mean
difference; open circles are the 95% confidence interval. Bold dotted line represents zero difference
between days. The light dotted lines represent a 10% difference between days.

The average percentage of mVO2max produced by walking at 3.2 km/h, 4.8 km/h,
and 6.4 km/h, and for lunges is shown in Figure 8A. Average EMG signals are shown
in Figure 8B. A total of 16.6 ± 0.8 lunges were completed in 23.4 ± 3.1 s on day 1 and
16.3 ± 1.2 lunges in 21.0 ± 3.1 s on day 2. Lunges showed a high reliability for percentage
of mVO2max (ICC = 0.81, CV = 10.2%).
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4. Discussion

This study examined the ability of NIRS to reliably measure muscle oxygen con-
sumption in the vastus lateralis muscle during progressive walking and lunging exercises.
Oxygen consumption was measured using the arterial occlusion method [15,30,31]. The
uniqueness of our study was making the measurements during free-moving exercise rather
than with special leg ergometers [17,32–35]. We also normalized our oxygen consumption
measurements to estimated maximal oxygen consumption values. Much like the way
various whole-body exercises can be presented as a percentage of whole-body maximal
oxidative capacity (VO2max), we presented our muscle exercise results (walking and lung-
ing) as a percentage of muscle maximal oxidative capacity (mVO2max). This study found
the vastus lateralis had relatively low mVO2 values with walking (16–26% of mVO2max).
Low mVO2 values during walking were consistent with relatively low EMG levels, indicat-
ing low muscle activation. The low EMG activation agreed with previous studies [36,37].
Lunges resulted in greater muscle activation, which produced higher mVO2 values. Our
value of 57% of maximal metabolic rate during lunging is consistent with surface EMG
data from Kooistra et al., who observed up to 80% muscle activation of the vastus lateralis
during knee extensor exercise [38]. The agreement in relative activation levels between our
mVO2 values, EMG values, and comparisons with the literature suggest the NIRS approach
can successfully measure muscle metabolism during exercise (immediately post exercise).

This study calculated the maximal muscle oxidative metabolism (mVO2max) using
a progress exercise protocol to extrapolate a maximal rate of oxygen consumption. The
mVO2max values calculated in this study were greater than those reported by Erickson
et al. and consistent with testing a younger, more physically active population [32]. This
approach was similar to previous studies which used 31P MRS to measure the ratio of
Pi/PCr or the calculated concentrations of ADP during progressive exercise [39,40]. NIRS
measurements of muscle metabolism have been shown to provide similar metabolic rela-
tionships to 31P-MRS measurements [34,41]. The limitation of the 31P-MRS approach is that
Pi/PCr ratio is influenced by muscle pH, which is known to decrease at higher work levels.
NIRS measurements of muscle metabolism do not appear to have the same sensitivity to
changes in muscle pH [42]. A major limitation of the progressive exercise approach to
determine mVO2max is that it involves extrapolation from the work levels to determine
the maximal values. Estimates of mVO2max using the recovery from exercise approach
use interpolation to determine a constant rate [17,32–35]. In addition, the calculation of
mVO2max from a progressive work test assumes the work measured on the ergometer
is being performed by the muscle being tested. This assumes there were no significant
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changes in the work of synergistic muscles during the progressively increasing exercise
intensities. An advantage of using the progressive work test approach to measure relative
work levels (%mVO2max) is that the mVO2 and mVO2max values are in the same units,
making direct comparisons possible.

This study found that the reproducibility of both the VO2max values and the values
during exercise were excellent. We found the CV for our mVO2 measurements during
exercise to be around ~10%, consistent with the CV reported for exercise using muscle
ergometers [21,43]. Our CV for maximal mVO2 determined from recovery tests was
consistent with these previous studies [21,44].

This is consistent with previous studies of muscle metabolism and of mitochondrial
capacity using NIRS [15,45]. Excellent reproducibility supports the utility of measuring
mVO2 during free-standing exercise. A limitation to the measurements of mVO2 during
lunges was that the duration of the lunging exercise was short (17–28 s). It is possible that
oxidative metabolism was not activated long enough during the lunges to ready steady
levels. Thus, the mVO2 measurements during lunges could be an underestimate of the true
steady-state oxidative demand for this exercise.

A key aspect of measuring muscle metabolism with the ischemic cuff method was the
time between the cessation of exercise and the measurement of mVO2. In this study, the time
delay from last muscle contraction to the metabolic measurement was 2.5–3 s. During this
time delay, muscle metabolism is expected to be ‘recovering’ towards resting metabolism.
Figure 9 shows theoretical curves illustrating this effect for people with higher and lower
values of mVO2max. In both higher and lower examples, there would be a change in the
metabolic values between 2 and 3% per second immediately post-exercise. With the time
delays seen in this study, the actual muscle mVO2 values could be expected to be ~5%
higher than the values that were measured. This study did not find significant differences
in the delay times between testing days, which contributed to the excellent reproducibility
values seen. However, future studies should record the actual time delays and account for
potential differences in time delays when making post-exercise measurements of mVO2.
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initial part of the recovery curve.
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A key aspect of the ischemic slope method of measuring muscle metabolism is the
presence of adequate oxygen in the muscle. Previous studies have shown that muscle
metabolism is impaired when oxygen levels are low [47]. During the progressive exercise
test in this study, oxygen levels did fall towards 50% or lower based on the ischemic
calibration, similar to previous studies [48]. These levels could approach oxygen levels
that were low enough to impair muscle metabolism. In particular, oxygen levels during
the lunging exercise were potentially low enough to impair muscle metabolism. Pilotto
et al. [47] reported that oxygen levels of approximately 30% of the ischemic range reduced
the recovery rate constant to approximately 52% of the value with higher oxygen levels.
Thus, muscle metabolism during lunges, while elevated, may have been limited by oxygen
delivery. It is not clear how this can be corrected or whether changing the way lunges are
performed to increase oxygen levels could increase mVO2 during this type of exercise. Low
oxygen levels have been reported during high intensity exercise using NIRS [47].

Our study provides a relatively inexpensive and translatable way to characterize
individual muscle metabolic responses to free-moving exercise. The results show that
this technique may be suitable for evaluating the effect of varying intensities of exercise
on muscle oxidative function, such as those seen in HIIT exercise. Previous studies have
measured oxygen saturation levels during free-moving exercise, such as speed skating,
walking, and swimming [23,49–51]. Hesford et al. [50] show that muscle oxygen levels
varied between legs consistent with muscle activation. However, they were not able to
present their results relative to maximal muscle activation. The use of an extrapolated
mVO2max could allow for a normalized presentation of muscle oxidative capacity that
allows comparisons across laboratories and study populations.

A limitation of the NIRS device used in this study is that only a small portion of the
muscle of interest can be measured at a time. Thus, when interpreting our results, we
assumed that the mVO2 of the superficial muscle fibers measured by the NIRS device is rep-
resentative of the entire vastus lateralis muscle. Previous studies have reported differences
in muscle activation and muscle metabolism within a muscle during exercise [26,52,53].
Future studies will need to evaluate the impact of small variations in the placement of the
NIRS probe. However, the good reproducibility of the measurements in this study as well
as in other studies [15,45] suggests that small variations in location are a minimal source
of variability.

5. Conclusions

In conclusion, this study measured relative muscle metabolism during whole-body
exercises using the arterial occlusion approach with the NIRS method to measure oxygen
levels. By using a progressive knee extension work test to estimate the mVO2max, muscle
metabolism during whole-body exercise was presented as a percentage of maximal muscle
metabolism. The results agreed with expected muscle activation levels and showed good
reproducibility. Future studies need to account for oxygen levels during the exercises, as
well as the time delay between the end of exercise and the start of the NIRS measurements.
Overall, the results herein support the use of the arterial occlusion NIRS method as a viable
method to measure changes in muscle metabolism during exercise.
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