)] at

Article

Novel Statistical Analysis Schemes for Frequency-Modulated
Thermal Wave Imaging for Inspection of Ship Hull Materials

Ishant Singh 1, Vanita Arora 2, Prabhu Babu 3 and Ravibabu Mulaveesala 1-*

check for
updates

Citation: Singh, I.; Arora, V,; Babu, P,;
Mulaveesala, R. Novel Statistical
Analysis Schemes for
Frequency-Modulated Thermal Wave
Imaging for Inspection of Ship Hull
Materials. NDT 2024, 2, 445-455.
https:/ /doi.org/10.3390/ndt2040027

Academic Editor: Fabio Tosti

Received: 24 July 2024
Revised: 2 October 2024
Accepted: 11 October 2024
Published: 15 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

InfraRed Imaging Laboratory (IRIL), Centre for Sensors, Instrumentation and Cyber Physical System

Engineering (SeNSE), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

2 InfraRed Vision & Automation Pvt. Ltd., Sun City, Rupnagar 140001, India

3 Centre for Applied Research in Electronics (CARE), Indian Institute of Technology Delhi, Hauz Khas,
New Delhi 110016, India

*  Correspondence: mulaveesala@sense.iitd.ac.in

Abstract: In the field of thermal non-destructive testing and evaluation (TNDT&E), active thermogra-
phy gained popularity due to its fast wide-area monitoring and remote inspection capability to assess
materials without compromising their future usability. Among the various active thermographic
methods, pulse compression-favorable frequency-modulated thermal wave imaging stands out for
its enhanced detectability and depth resolution. In this study, an experimental investigation has been
carried out on a hardened steel sample used in the ship building industry with a flat-bottom-hole-
simulated defect using the frequency-modulated thermal wave imaging (FMTWI) technique. The
defect detection capabilities of FMTWI have been investigated from various statistical post-processing
approaches and compared by taking the signal-to-noise ratio (SNR) as a figure of merit. Among
various adopted statistical post-processing techniques, pulse compression has been carried out using
different methods, namely the offset removal with polynomial curve fitting and principal component
analysis (PCA), which is an unsupervised learning approach for data reduction and offset removal
with median centering for data standardization. The performance of these techniques was assessed
through experimental investigations on hardened steel specimens used in ship building to provide
valuable insights into their effectiveness in defect detection capabilities.

Keywords: non-destructive testing and evaluation; frequency-modulated thermal wave imaging;
principal component analysis; pulse compression; principal component thermography

1. Introduction

Non-destructive testing and evaluation (NDT&E) approaches, especially thermal
non-destructive testing, are becoming increasingly common for detecting the presence
of underlying faults in a material being inspected without affecting its output or func-
tionality [1]. Three widely used active NDT&E procedures in the industry are pulse
thermography (PT), lock-in thermography (LT), and pulse phase thermography (PPT) [2,3].
In PT, the surface of the test material becomes heated from a short pulse of high peak power.
Data are acquired while the sample cools down and are later analyzed. But the method
is not as efficient because of uneven surface heating due to changes in emissivity [4]. So,
to address this limitation, LT was developed. LT solves this issue by using a periodic
sinusoidal thermal wave with lower peak power for a longer duration [5]. This method
is less likely to be affected by temperature noise because phase images are used instead
of magnitude images during analysis [6]. The primary drawback with this technique is
that it needs to be performed multiple times at different frequencies for respective depths,
which makes testing time-consuming. To tackle the issue of surface temperature variation
and long experimentation times, PPT was introduced; it combines the best parts of both PT
and LT into a single method [7]. Using just pulse stimulation makes it better for finding
deeper flaws and eliminates the effects of surface temperature variation as the data are
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analyzed in phase analyses, but the issue of a high peak power requirement still prevails.
To overcome the limitations of conventional techniques, new advanced thermographic
excitation techniques were introduced. These recent advances in TNDT&E methods in-
clude pulse compression favorable excitation techniques to overcome the limitations of
traditional techniques [8]. These techniques have become popular because they offer high
sensitivity and precision for finding defects and detecting them at different depths below
the surface. Frequency-modulated thermal wave imaging (FMTWI) methods are used in
this study. This technique uses a linearly modulated band of frequencies that gives better
contrast and depth resolution based on the specimen’s thermal diffusivity and size [9].
So, this eliminates the requirement for high peak power or a long testing time. This lets
us cover different depths in a single run of the experiment. Previous studies on steel
materials primarily focused on conventional techniques such as LT and PPT [10,11], with
some testing conducted on mild steel samples using frequency-modulated thermography,
which improved the SNR and presented better depth penetration. In contrast, this work
explores subsurface defects in hardened steel samples used in ship building applications
using FMTWI.

The data captured with an infrared camera are stored in the form of a 3D matrix which
consists of a thermographic sequence. The data are then enhanced with different post-
processing techniques, i.e., pulse compression, which is a signal processing technique that
concentrates most of the signal power in the central lobe, thus improving range resolution
and the signal-to-noise ratio [12] and PCA (with different standardization approaches),
which is a multivariate data processing technique that reduces the dimensions of large data
to the principal components that retain most variance [13]. This work has compared the
mentioned statistical post-processing approaches on data acquired with FMTWI on their
capability of effectively preserving defect shape and contrast and the SNR as figure of merit
on a hardened steel specimen with a flat bottom hole.

2. Theory

A linear frequency-modulated thermal wave with a frequency range of 0.01 Hz to

0.1 Hz is applied to the material for 100 s during FMTWTI excitation, which provides

improved depth resolution [14]. Thus, a heatwave is generated with help of halogen lamps

in the experimentation following FMTWI excitation, which is captured with an infrared

camera. The applied heatwave penetrates the test material, leading to a temperature change

on the surface. Underlying defects cause a temperature gradient because of variations

in emissivity, which the one-dimensional Fourier’s diffusion equation may theoretically
explain [15].

9*T(x,t)  19T(x,t) .
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Thermal diffusivity is represented by «. To find the surface temperature for the

following boundary condition in a slab of thickness L, Equation (1) is solved in the Laplace

domain as follows:

T(X,S) _ Q(S) [efax +ea(x72L) _ E )

where o = /2.

Consequently, this can be inferred from the foregoing equations that the frequency at
any given time determines the depth resolution over time. Consequently, depth resolution
with time-varying instantaneous frequency is provided by time-varying chirp waves [16].

Several post-processing techniques are used to precisely identify underlying defects in
a hardened steel material that has been exposed to external excitation, which results in heat
distribution over its surface. These methods seek to decrease data dimensionality, increase

sensitivity, and improve flaw detectability.
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Pulse compression: With this method, the thermographic data that are recorded during
active heating and subsequently offset are removed using first-order polynomial curve
fitting on the FMTWI data [17]. Further pulse-compressed thermal images are reconstructed.
The approach of pulse compression involves calculating the cross-correlation (CC) between
the offset-removed signal at the defect-free sound region and the signal of each pixel [18-20].

CC(1) =P(t) @ R(t+1) 3)
+oo
cc(x) :/700 P(#) * Rt + 7)dt @)

Here, P(t) is the offset-removed signal at various locations in the test sample and R(¢) is
the reference signal. The cross-correlation of two signals is represented in Equations (3) and (4),
where t and 7 stand for time and time delay, respectively [21]. The main advantage of pulse
compression is that it concentrates all the energy into a shorter amount of time, which
improves the signal-to-noise ratio (SNR) and depth resolution [22].

Principal component thermography: An advanced data processing method called prin-
cipal component thermography (PCT) is applied in thermographic inspection to improve
the identification of material defects [23]. By using principal component analysis (PCA)
on thermographic data, this technique enhances thermal gradients and anomalies that can
point to the presence of defects [24]. PCA is a type of multivariate data analysis that is used
for a more efficient processing of higher dimensional data. Principal components (PCs),
which are uncorrelated vectors arranged in decreasing variance order, are the result of this
transformation of the data [25], which are then projected onto the standardized data and
reconstructed using the selected number of PCs; typically, the first few PCs contain the ma-
jority of variance and allow for a relatively loss-free reconstruction of the data [26]. In this
work, the approach used is median centering, as a novel approach for data standardization,
and it was compared with conventional mean-centered results.

The obtained experimental thermographic data are a three-dimensional matrix with a
size of M x N X T, where T is the number of experimental frames and M x N is the spatial
resolution of the data taken with an infrared camera. First, data are converted from a 3D
matrix to a 2D matrix, i.e., W of dimension P x T, where P is the product of M and N, to
use PCA for data reduction. As a result, each row in matrix W represents a capture frame’s
features and elements.

Wstd =W-— Wmediun/mean (5)

The standardized matrix in Equation (5), denoted as Wy, is obtained by subtracting
Wiedian /mean from the W matrix. PCA is applied using eigenvalue decomposition (EVD)
on the covariance matrix Wy [27].

T
_ std (6)
In Equation (6), W,y is covariance matrix of Wg;,.
Weoo = VSV )

In Equation (7), S is a singular matrix with all the eigenvalues arranged in descending
order and V is an orthogonal matrix [28]. The coefficients of principle components (PCs)
are stored in matrix V in descending order of variance. The standardized data are then
multiplied by the coefficient matrix of the PC vector after selecting P number of PCs.

Ve = Vnx1 (8)
Wye = Weg x Vp )
Wieconstructed = Wpc * Vg (10)
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From Equations (8) and (9), Vp is the Pth PC vector of V matrix and W), is the
Pth principal component constructed by projecting Vp onto the standardized data [29].
Reconstructing the data of the subsequent PCs is performed by multiplying the transpose
of Vp to the calculated principal component, i.e., Wy,constructed, @ shown in Equation (10).
Furthermore, the data are converted back to a 3D matrix.

The post-processing approach utilized is illustrated in Figure 1.
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Figure 1. Flow diagram for cross-correlation-based pulse compression with mean removal and PCA.

3. Experimentation and Test Sample

The sample used in the experimentation was hardened steel used in ship building
with a 6 mm thickness and a cross-section of 75 mm X 75 mm, consisting of 1 flat bottom
hole of a radius of 28 mm at a depth of 2 mm, as shown in Figure 2. Figure 3 shows the
experimental setup used for acquiring the data; two halogen lamps were used to excite
the data, which deliver a power of 1 kW each, and the sample was kept at a distance of
1 m from the lamps for uniform illumination. The intensity of the lamp was controlled
by a source control unit with intensity varying by following the FMTWI modality with
frequency varying from 0.01 Hz to 0.1 Hz for 100 s [30]. The source control unit and
interfacing along with analysis software is developed by the InfraRed Vision & Automation
Pvt. Ltd., Rupnagar, Punjab, India whereas the infrared camera (FLIR-A655sc with a
spatial resolution of 640 x 480, a spectral sensitivity of 7 pm to 14 um, a frame rate up to
50 fps, a standard temperature range of —40 °C to 650 °C, and a temperature sensitivity
of 30 mK) is procured from Sweden. Which was used to record temporal temperature
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distribution over the sample at a frame rate of 25 frames per second (fps) during the active

frequency-modulated thermal excitation.

6 mMm
)

75 mm
|
28 mm

L'.l
4 mm

Figure 2. Schematic for hardened steel sample with flat bottom hole at center.

Figure 3. Illustration of the experimental setup used for FMTWI.

4. Results and Discussion
For the quantitative analysis and comparison of different post-processing techniques,

the SNR at the defect location is calculated as figure of merit. The following approach is
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suitable for this work because different post-processing schemes are compared. The SNR is
calculated as [31]
MHdef — Hn

SNR(dB) = 20 * logy, Caef — O
e

(11)

In Equation (11) above, 4. and 0y, s are the mean and standard deviation of the pixel
region at the defect location, y;, and 0;, are the mean and standard deviation at a healthy or
non-defective region.

The next processing step performed is pulse compression on the thermographic data.
Figure 4 shows the thermal profile and the offset-removed thermal profile along the frames
for a defective and healthy region, and respective best correlation images obtained along
the correlation profile are shown in Figure 4.
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Figure 4. Illustrated (a) raw temporal response and (b) offset-removed profile for FMTWI from
0.01 Hz to 0.1 Hz.

Here, in Figure 5, it is visible that pulse compression has an excellent contrast for
the specimen used in this experiment. Further on in this work, pulse compression is
implemented with PCA and compared to the results with polynomial curve fitting.
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Figure 5. Reconstructed pulse-compressed (a) spatial thermal distribution and (b) correlation coeffi-
cients of offset-removed temporal response for healthy and defective location.

Further on in the work, principal component thermography (PCT) with median
centering for standardization is conducted. PCT decomposed data into different principal
components (PCs) in order of decreasing variance. Thus, mean centering and median
centering are compared for standardization. The thermographic data were standardized
using two different methods, namely the mean removal and median removal. The data
were then reconstructed using the first three principal components (PC1, PC2, and PC3).

As Figures 6-8 show, the thermal profile in PC1 exhibited the most variance and closely
resembled the original thermal profile for both standardization methods. This indicates that
most of the relevant thermal information is captured in PC1. PC2, for both mean-removed
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and median-removed data, showed similar characteristics to an offset-removed profile.
PC2 also provided the best contrast, making it useful for highlighting variations that are
not as prominent in PC1.
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Figure 6. Reconstructed (a,b) spatial thermal distribution and (c,d) temporal response obtained from
PC1 for mean and median centering, respectively.
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Figure 7. Reconstructed (a,b) spatial thermal distribution and (c,d) temporal response obtained from
PC2 for mean and median centering, respectively.
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Figure 8. Reconstructed (a,b) spatial thermal distribution and (c,d) temporal response obtained from
PC3 for mean and median centering, respectively.

The thermal profiles in PC3 began to lose their shape and the signal quality diminished.
This suggests that PC3 captures less relevant information and introduces noise into the
thermal profile, especially in the median-removed profile. When comparing the contrast,
PC2 provided the best contrast, effectively highlighting features in the hardened steel
sample. In contrast, PC3 failed to provide any meaningful contrast, indicating that it does
not contribute significantly to the detection of thermal anomalies.

The resolution in PC1 and PC2 was sufficient to capture major defects, but PC3’s loss
of detail in temporal resolution indicates a drop in accuracy. Thus, the pulse compression
of PC2 enhanced resolution and accuracy. So, a further comparison of pulse compression
of mean- and median-centered data for PC2 is shown in Figure 9.
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Figure 9. Cross-correlation profile for (a) mean-centered and (b) median-centered PC2 thermal profile.

Figure 9 shows correlation for PC2 on both mean-centered and median-centered data
and on this sample, it can be observed that median centering provides a better peak-
to-side lobe ratio, which means a better suppression of noise in the compressed pulse.
However, when comparing enhanced contrast, both techniques have similar performance
(Figure 10). From Figures 5b and 9, PCT provides a better peak-to-side ratio than pulse
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compression with polynomial curve fitting. Comparing contrasts, the polynomial curve fit
has the highest contrast but PCT captures the thermal gradient over the material surface
more efficiently.

(b)

Figure 10. Illustrated reconstructed spatial thermal distribution obtained by pulse compression of

(a) mean-centered and (b) median-centered PC2 signal.

Furthermore, for comparing all the techniques, results have been evaluated taking the
SNR as figure of merit, as in Equation (11); thus, results show that pulse compression (CC)
has the highest SNR, followed by PC2 with pulse compression, then PC2 and PC1 for both
mean and median centering, both having a similar contrast and SNR for both mean and
median centering.

Thus, different methods are compared, as shown in Table 1. It was observed that PCA
as preprocessing reduces the data effectively, i.e., it makes data processing much more
efficient among all the techniques with a high signal-to-noise ratio.

Table 1. SNR values for various post-processing techniques.

Post-Processing Technique SNR in dB
CcC 34.304
PC1 MEAN 26.512
PC1 MEDIAN 26.512
PC2 MEAN 27.724
PC2 MEDIAN 27.724
PC2 MEAN CC 33.676
PC2 MEDIAN CC 33.676

5. Conclusions

This paper examines the effectiveness of various statistical post-processing techniques
for detecting defects in hardened steel used in ship building using frequency-modulated
thermal wave imaging. Experimental findings indicate that for contrast evaluation, pulse
compression with polynomial curve fitting as preprocessing outperforms other methods.
Additionally, PCA with either mean or median centering shows a similar performance on
hardened steel specimens. The advantage of PCA lies in its superior performance in data
dimensionality reduction, as shown in Figures 5b and 9. While pulse compression yields
the highest SNR, integrating PCA as a preprocessing step for pulse compression, though
slightly reducing the SNR compared to the conventional pulse compression technique,
significantly speeds up processing due to the substantial reduction in data dimensions, as
illustrated in Figures 4b and 7b,d. Pulse compression with PCA achieves better contrast
and detectability than conventional PCA. Furthermore, in terms of the signal-to-noise ratio
(SNR), pulse compression achieves the highest SNR, followed by pulse compression with
PCA giving similar results for both mean- and median-centered data, followed by PC2
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and PCI1 for both mean and median centering. PC3 results fail to detect the defect and the
signal starts to lose information, thus discarding it for further comparison.
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