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Abstract: Non-destructive testing (NDT) systems are essential tools and are widely used for assessing
the condition and structural integrity of pavement structures without causing any damage. They
are cost-effective, provide comprehensive data, and are time efficient. The bearing capacity and
structural condition of a flexible pavement depends on several interrelated factors, with asphalt
layers stiffness being dominant. Since asphalt mix is a viscoelastic material, its performance can be
fully captured by the dynamic modulus master curve. However, in terms of evaluating an in-service
pavement, although a dynamic load is applied and the time history of deflections is recorded during
testing of FWD, only the peak deflection is considered in the analysis. Therefore, the modulus of
stiffness estimated by backcalculation is the modulus of elasticity. While several methods have
been introduced for the determination of the field dynamic modulus master curve, the MEPDG
approach provides significant advantages in terms of transparency and robustness. This study focuses
on evaluating the methodology’s accuracy through an experimental study. The data analysis and
validation process showed that routine measurements with the FWD and GPR, within the framework
of a pavement monitoring system, can provide valuable input parameters for the evaluation of
in-service pavements.
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1. Introduction

In order to preserve pavements, road authorities are now concentrating on maintaining
or extending the pavements’ original intended lifespan through various maintenance or
rehabilitation measures, thus maximising the economic efficiency of their investments. The
timing of when these actions are taken is important, as factors such as pavement condition
and maintenance costs must be considered. Delayed action will result in reduced pavement
bearing capacity, leading to extensive intervention and higher costs.

Preventive maintenance slows pavement deterioration and delays the need for pave-
ment rehabilitation by several years. The delay in the need for rehabilitation, combined
with the relatively low cost of preventive maintenance, can result in dramatic cost savings
in pavement preservation. As such, pavement treatments should be directed early in the
deterioration process and restricted to the asphalt layers. This strategy will consistently
extend the pavement’s lifespan, achieving the goal of virtually perpetual functionality
(long-life pavements) within the transportation network. Therefore, assessing the pave-
ment’s structural condition is crucial to allow road authorities and highway agencies to
plan and implement proactive policies.

The structural condition of a flexible pavement depends on several interrelated factors.
These factors cooperatively influence the pavement’s ability to bear loads, resist distress,
and maintain its functional and structural integrity over time. They can be summarised,
amongst others, as follows: pavement materials; layer thickness, construction quality; and
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environmental factors. Asphalt layers are the dominant element in terms of pavement
bearing capacity. The asphalt base layer is responsible for transferring the stresses induced
by traffic, significantly reducing and distributing them in a larger area to the lower layers,
especially the subgrade [1]. Therefore, mechanical properties, namely asphalt mix stiffness,
is an important factor in determining to a significant extent the performance of both asphalt
layers and pavements [2].

Asphalt mix experiences a viscoelastic behaviour due the presence of asphalt and
the aggregates. This behaviour can be fully described through the fundamental property
of dynamic modulus (E*) and its master curve [3]. To construct the dynamic modulus
master curve, the principle of time–temperature superposition is utilised, so that data at
various testing conditions (temperature and frequencies) are shifted to model a smooth
and continuous curve at reduced frequencies [2,4].

The master curve of E* can be determined based on data obtained by laboratory
tests with special equipment or by prediction algorithms. For in-service pavements, non-
destructive testing (NDT) methods are becoming increasingly popular for the efficient
evaluation and estimation of mechanical properties, such as stiffness. FWD (falling weight
deflectometer) and GPR (ground penetrating radar) data are used as inputs for estimating
asphalt layers (as well as unbound layers) through a backcalculation process [5]. Although
a dynamic load is applied and the time history of deflections is recorded during FWD
testing, only the peak deflection is considered in the analysis. Therefore, the modulus of
stiffness estimated by backcalculation is the modulus of elasticity.

Researchers have recognised this drawback as well as the importance of the main E*
curve in the evaluation of pavements. Therefore, they have focused their research on further
using the deflection data time history from FWD measurements and recording to obtain the
E* mater curve of asphalt pavements. In this direction, Kutay et al. [6] established a process
to obtain the E* mater curve by backcalculation based on the time deflections. The process
uses a stratified viscoelastic forward algorithm in an iterative backcalculation procedure for
estimating the linear viscoelastic properties of flexible pavements. Using the deflection time
histories from a single FWD measurement, the backcalculation of the relaxation modulus
curve and the complex modulus curve was made possible. Varma et al. [7] developed
a viscoelastic backcalculation algorithm to estimate the time–temperature displacement
factor of asphalt mixes based on a genetic optimisation method and a stratified viscoelastic
forward solution. A series of FWD measurements at various temperatures are required,
and the time history of deformation is used for the backcalculation process. Zaabar et al. [8]
used the DYNABACK-VE program to backcalculate pavement mechanical properties based
on field obtained data. A viscoelastic dynamic solution in the time domain was used as the
forward routine and a genetic algorithm was used for the backcalculation analysis.

The progress of this research resulted in the development of an algorithm that uses
the FWD time histories of deflection at more than one temperature to backcalculate the
dynamic modulus master curve [9]. ANNs (artificial neural networks) are a promising tool
for estimating the E* master curve of in-service pavements, but further efforts are needed to
address issues related to prediction accuracy [10–12]. Lee et al. [13] managed to construct
an E* master curve using FWD deflection- time history data. ViscoWave was employed for
forward analysis, while Microsoft Excel Solver was utilised for backward analysis. Hamin
et al. [14] proposed a method by incorporating the finite element method and two types of
ANN, with promising results as to the capability of producing accurate results.

Du Tertre et al. [15] proposed an alternative to evaluate the elastic properties of asphalt
by ultrasonic-based testing. Their primary objective was to investigate two NDT methods:
ultrasonic surface wave (USW) testing; and lightweight deflection (LWD testing). The aim
was to achieve a satisfactory estimate of the E* over a range of frequencies, eliminating
the need for laboratory testing, which is a destructive method for in-service pavements.
Based on the comparison of the elastic moduli of laboratory prepared samples (control
samples) and in-service pavements, they concluded that testing from USW is a convenient
and reliable method for the assessment of in-service flexible pavements.
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The above methods are promising but time-consuming. Therefore, their applicability
is not practical. The MEPDG (Mechanistic-Empirical Pavement Design Guide) represents
a significant milestone in the field of pavement engineering [16]. It is a rigorous, multi-
parametric method and presents various aspects such as material characterisation, new
pavement design, rehabilitation design, and characterisation of existing pavement layers
characteristics. For the latter, the MEPDG introduces a method that involves creating a
damaged E* master curve tailored to field conditions, utilising in situ NDT data from the
FWD, along with an algorithm to estimate E* (Figure 1). Unlike the traditional modulus
master curve, which assumes a pristine, undamaged state, the damaged modulus curve
accounts for the degradation of the material over time due to repeated traffic loads and
environmental stresses. Step 3 can be realised either through extensive laboratory testing
on field cores (Level 1) or through limited laboratory testing and/or historical data (Levels
2 and 3). However, research on the applicability and accuracy of the proposed damaged E*
master curve method is limited. Loulizi et al. [17] concluded that the proposed methodol-
ogy can provide accurate results, but also pointed out some drawbacks. Solatifar et al. [18]
made some adjustments to the method to accurately estimate the E* master curve.
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In contrast with the approaches described previously, the proposed damaged E* master
curve method provides a mechanistic method for the determination of the damaged E*
master curve that can be implemented as part of a routine pavement monitoring system
procedures. It requires a single measurement with the FWD and the backcalculation
procedure can be completed with traditional back analysis tools. This results in reduced
time for both gathering the input data and analysing them, thus reducing the related cost.
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To this end, this study focuses on exploring the implementation of this methodology,
and thus the capability of using NDT systems, to determine the E* field master curve. The
objectives are to assess each step of the process, identify potential weaknesses, suggest
improvements, and evaluate the methodology’s accuracy in predicting performance char-
acteristics such as percent of fatigue cracking (FC) and rut depth (RD) in the asphalt layer.
The experimental study was conducted in order to: (1) collect FWD and GPR data and
perform coring; and (2) conduct laboratory tests on the extracted cores. The validation was
achieved through the fatigue cracking (FC) and rutting performance (RD) indices.

2. Materials and Methods
2.1. Field and Laboratory Testing

A highway in-service pavement section was selected for the conduction of in situ
testing. The pavement cross-section consists of the subgrade, the base/subbase layer of
unbound material, and the asphalt layers. The asphalt layers consist of the asphalt base
layer (dense grades asphalt mix) and the antiskid asphalt layer (open graded asphalt mix).
The binder of the asphalt base is classified based on the penetration index to 50/70 PEN,
while for the antiskid wearing course a modified 50/70 PEN binder with 4% SBS was used.

Non-destructive testing was performed along the pavement section with FWD (Figure 2)
and GPR (Figure 3) systems. The FWD load was 50 kN applied on 300 mm diameter
loading plate; thus, the produced stress was 700 kPa [18]. Holes drilled in the pavement
enabled the recording of temperature at the mid-depth of the asphalt layers. Figure 4
illustrates the distance of the geophones from the centre of the loading plate. Data recorded
from air-coupled GPR system with an antenna operating at 1000 MHz were utilised for
the estimation of the layers thicknesses, in order to be used as input parameters, along
with the deflections, for the backcalculation procedure. The backcalculation procedure
was performed based on genetic algorithms (GAs) [19–26]. The methodology does not
provide any guidance on how to treat multilayered asphalt layers. In this study, for the
backcalculation procedure, the pavement was modelled through a cross-section consisting
of a single asphalt layer, a base/subbase layer, and the subgrade. Asphalt layers were not
considered as separate layers and therefore, the backcalculated modulus corresponds to the
composite modulus of the asphalt layers, which is a function of each asphalt layer modulus
and its thickness.
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Figure 4. FWD deflection sensors set up.

Upon completion of the NDT measurements, five cores were extracted at selected
locations where the FWD measurements were taken. Core extraction served several pur-
poses. First, to determine the volumetric characteristics of the cores that will serve as input
parameters for the algorithm estimation of E*. Second, for the calibration of the asphalt
layer thickness estimated through GPR data analysis. Last, for determining the E* in the
lab according to AASHTO T 342-11. The determination of the E* on the cores was enabled
due to the fact that the asphalt layers’ total thickness was equal to or greater than 15 cm,
which is the required specimen height for conducting the E* laboratory test. Moreover,
there were no signs of deterioration (cracking). The E* determined refers to the composite
modulus, in the sense that specimens consisted of two asphalt mixes: the asphalt base; and
the antiskid layer.

2.2. Materials

Figure 5 presents the aggregate gradation of the asphalt layers. Figure 6 shows the
volumetric composition of mixes, namely air voids content (Va), asphalt content (Vb), and
effective asphalt content (Vbeff).



NDT 2024, 2 479NDT 2024, 2, FOR PEER REVIEW 6 
 

 

 
Figure 5. Aggregate gradation of the asphalt layers. 

 
Figure 6. Volumetric composition of mixes. 

Laboratory testing showed that the cores’ characteristics were similar, which was ex-
pected since the pavement cross-section was uniform. Specifically, the air voids content of 
the five specimens was 4.21, 4.05, 4.46, 4.2, and 4.1% with an average value of 4.2%. The 
coefficient of variation (CV), calculated as the ratio of the standard deviation to the aver-
age value, is 3.7%, indicating that the asphalt mix of the cores is uniform regarding the air 
voids content. Therefore, the core specimen with air voids content of 4.2% was considered 

Figure 5. Aggregate gradation of the asphalt layers.

NDT 2024, 2, FOR PEER REVIEW 6 
 

 

 
Figure 5. Aggregate gradation of the asphalt layers. 

 
Figure 6. Volumetric composition of mixes. 

Laboratory testing showed that the cores’ characteristics were similar, which was ex-
pected since the pavement cross-section was uniform. Specifically, the air voids content of 
the five specimens was 4.21, 4.05, 4.46, 4.2, and 4.1% with an average value of 4.2%. The 
coefficient of variation (CV), calculated as the ratio of the standard deviation to the aver-
age value, is 3.7%, indicating that the asphalt mix of the cores is uniform regarding the air 
voids content. Therefore, the core specimen with air voids content of 4.2% was considered 

Figure 6. Volumetric composition of mixes.



NDT 2024, 2 480

Laboratory testing showed that the cores’ characteristics were similar, which was
expected since the pavement cross-section was uniform. Specifically, the air voids content
of the five specimens was 4.21, 4.05, 4.46, 4.2, and 4.1% with an average value of 4.2%. The
coefficient of variation (CV), calculated as the ratio of the standard deviation to the average
value, is 3.7%, indicating that the asphalt mix of the cores is uniform regarding the air voids
content. Therefore, the core specimen with air voids content of 4.2% was considered as
representative of the asphalt mix. As such, further analysis and results presented below
correspond to a single core.

3. Results
3.1. Development of the Undamaged E* Master Curve

According to the proposed methodology, the Witczak prediction equation [27] is used
for the development of the undamaged E* master curve. However, Georgouli et al. [4] have
proved that the Witczak equation seems not to produce accurate results for this type of
asphalt base course mixes, although it is suitable for the prediction of the antiskid surface
course mixes E*. Therefore, for the asphalt base mixes, the prediction algorithm developed
by Georgouli et al. [4] was used (Equation (1)), while for the antiskid surface course mixes,
the Witczak equation [27] was used.

logE∗

= 3.9 + 0.37437p200 − 0.0298(p200)
2 − 0.01221p4 − 0.08686Va

−0.94215
( Vbe f f

Vbe f f +Va

)
+ 3.04483−0.01124p4+0.00242p38+0.00025(p38)

2+0.00111p34
1+exp(−1.07682−0.47006log f−0.62593logη)

(1)

where p200 is the percentage passing 0.075 mm sieve, p4, p34, p38 is the cumulative per-
centage retained on a 4.75 mm, 19 mm, and 9.5 mm sieve, respectively, η is the viscosity of
binder (106 poise), and f is the loading frequency (Hz).

Since the asphalt layers consist of two different asphalt mixes, upon the estimation of
the E* values for each mix, the E* values were combined with the thickness of each asphalt
layer (Equation (2)) so that the ‘composite’ dynamic modulus of the total asphalt layers
could be determined [28].

E∗
comp =

(
∑

((
hi/hcomp

)
× Ei

(1/3)
))3

(2)

where E*comp is the E* of the total asphalt layers, hi is the thickness of the i layer, hcomp is
the total thickness of the asphalt layers, Ei is the E* of the i layer and i = 1 to n, where n is
the number of individual asphalt layers. The total thickness of the HMA layers is 154 mm,
consisting of 126 mm asphalt base and 28 mm antiskid surface course.

These E* values were used for the development of the undamaged E* master curve at
the selected reference temperature of 20 ◦C presented in Figure 7.

The sigmoidal function describing the undamaged HMA E* master curve is provided
in Equation (3).

logE∗ = 0.521715 +
2.823081

1 + exp(−1.595648 − 0.473622log f r)
(3)
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3.2. Development of the Field E* Master Curve
3.2.1. Damage Estimation

For the estimation of damage dj, the estimated undamaged HMA E* needs to be
defined at the field temperature at a frequency corresponding to the load pulse of the FWD.
The FWD frequency was determined through the time history (Figure 8).
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Since the load pulse is imperfect sinusoidal, the approach described in [29] is applied.
Equations (4)–(7) were used for the determination of the FWD frequency (fFWD).

tb1 =
2td1
π

(4)

tb2 = td2 (5)

tb = tb1 + tb2 (6)

fFWD =
1

2πtb
(7)

where tb1 and tb2 are the individual load durations (ms) defined graphically from duration
times td1 and td2 (as noted on Figure 8), tb is the total loading time (ms), and fFWD is the
loading frequency (Hz). It is noted that in Equation (6) tb is expressed in s.

The concluded FWD frequency (fFWD) was 16.3 Hz. This is in accordance with interna-
tional experience [29,30]. The estimated undamaged E* at the field temperature of 9.5 ◦C
and loading frequency of 16.3 Hz is equal to 11,039 MPa. The estimated damage dj is equal
to 0.036.

It should be noted that initially an effort was made to incorporate the Witczak equation
in the analysis for the estimation of the E* of the asphalt base layer mix as well. However,
by doing so, the construction of the field master curve was not feasible, since the estimated
damage appeared to have negative value. This was due to the fact that the estimated
undamaged E* at the field conditions was smaller than the backcalculated modulus of the
HMA layers. Therefore, no further analysis could be performed.

3.2.2. Determination of the Field E* Master Curve

According to step 6 of Figure 1, α′ is found equal to 2.72087 considering that α is equal
to 2.823081 as shown in Equation (3). Then, the field HMA master curve was determined
by replacing parameter α with α′ in step 6 of Figure 1. In Figure 9, both E*undamaged and
E*field master curves are presented.
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Damage and consequent deterioration of the HMA layers condition are rather small
due to the fact that the operation time of the investigated pavement is three years, and no
distresses were observed on the pavement surface.

3.3. Validation Process

Further analysis was performed in order to investigate whether the methodology
followed can produce accurate results as far as the E*field master curve is concerned. Given
that cores taken were in good condition with no distresses observed and the thickness of
the asphalt layers was 15 cm, they were tested in the lab and the dynamic modulus was
determined for various loading conditions, as described earlier. These values represent the
actual field E* as determined in the lab (E*core). Therefore, the E*field master curve, which
was determined with the process being investigated, is compared to the E*core. Figure 10
shows the E*undamaged and the E*field master curves in comparison with the one which
was developed using the E*core measurements in the lab (E*core). The E*core master curve
is described mathematically by Equation (8).

logE∗ = 0.521715 +
2.742355

1 + exp(−1.595648 − 0.473622log f r)
(8)
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The values of the two master curves representing the in situ conditions, E*field and
E*core, do not seem to differ significantly. t-test statistical analysis showed that their
difference can be considered equal to 200 MPa for a 95% confidence interval, since the p
value is greater than 0.005. That means that the field E* is underestimated by a weighted
value of 200 MPa following the proposed methodology.
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The evaluation process is further assessed through performance indexes of FC and
RD, following basic model principles [15]. Simulations with the 3D-Move analysis program
were performed for a vehicle moving at 60 km/h [31–33]. Table 1 presents the FC (%)
and RD (mm) index values at the end of the analysis period, with the assumption that
no maintenance activities will take place and considering both E*field and E*core master
curve values.

Table 1. Fatigue cracking and rutting.

Index E*field E*core

FC (%) 7.09 7.2
RD (mm) 12.01 11.92

Differences in both estimated fatigue cracking and HMA rutting are not significant,
which means that the proposed methodology for the development of the E* field mas-
ter curve can provide accurate results in terms of HMA layers condition assessment
and evaluation.

4. Conclusions

The main findings of the present investigation are the following:

• For the development of the E* field master curve, a reliable and accurate E* prediction
algorithm should be used to estimate the undamaged E* master curve. If this is not
the case, it may lead to erroneous results or even make further analysis impossible, as
in this study. Therefore, the need for local calibration of the E* prediction equation
is emphasised.

• The method is also applicable for cases in which the asphalt layers consist of different
asphalt mixes (asphalt base layer and wearing course). For the backcalculation, the
modelling of the asphalt layers as a single layer is recommended. In this case, the
backcalculated modulus corresponds to a composite damaged modulus. For the
estimation of the undamaged modulus, more than one algorithm may be activated
suitable for the different asphalt mixes. Then, the composite undamaged modulus can
be calculated as a function of the modulus and the thickness of each asphalt layer.

• As for the evaluation of the proposed methodology in terms of its accuracy in devel-
oping the E*field master curve, the comparative analysis with the E* master curve
obtained in the laboratory by testing cores has shown that the methodology is robust
and can yield accurate results for the E*field.

• This is also confirmed by the analysis results of the estimated stresses with respect
to the FC and RD prediction models incorporated in the present concept approach.
Considering the E*field and E*core master curve values as input for the stress esti-
mation, the differences in both estimated fatigue cracking and HMA rutting were
not significant.

• The existing asphalt layers E* master curve can be obtained through a single FWD
testing and traditional back analysis methods, which is in favour of the efficiency of the
proposed approach. Integration of NDT data can provide valuable input parameters
for the evaluation of in-service pavements.

• While other methods offer powerful tools for pattern recognition and predictive
modelling, the investigated procedure’s E*damaged modulus master curve provides
significant advantages in terms of integration with traditional practices and robustness.

• The damaged modulus master curve directly integrates with performance prediction
models, ensuring that predictions of distress, such as fatigue cracking and rutting, are
directly linked to the pavement’s mechanical properties.
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• It seems that the investigation provides a clear and transparent methodology for
developing the damaged modulus master curve, making it easier for engineers to
understand the underlying processes and assumptions. This transparency is critical
for validating and refining pavement designs.

The results are promising and apply to a certain pavement cross-section and materials.
Further research could involve the consideration of various pavement structures and
asphalt mix materials. Further investigation into the load frequency of the FWD measuring
equipment may also prove beneficial.
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