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Abstract: Over the years, research in the field of cultural heritage preservation and document analysis
has exponentially grown. In this study, we propose an advanced approach for non-destructive estima-
tion of paper fibers using macro images. Expanding on studies that implemented EfficientNet-B0, we
explore the effectiveness of six other deep learning networks, including DenseNet-201, DarkNet-53,
Inception-v3, Xception, Inception-ResNet-v2, and NASNet-Large, in conjunction with enlarged patch
sizes. We experimentally classified three types of paper fibers, namely, kozo, mitsumata, and gampi.
During the experiments, patch sizes of 500, 750, and 1000 pixels were evaluated and their impact
on classification accuracy was analyzed. The experiments demonstrated that Inception-ResNet-v2
with 1000-pixel patches achieved the highest patch classification accuracy of 82.7%, whereas Xception
with 750-pixel patches exhibited the best macro-image-based fiber estimation performance at 84.9%.
Additionally, we assessed the efficacy of the method for images containing text, observing consistent
improvements in the case of larger patch sizes. However, limitations exist in background patch
availability for text-heavy images. This comprehensive evaluation of network architectures and patch
sizes can significantly advance the field of non-destructive paper analysis, offering valuable insights
into future developments in historical document examination and conservation science.

Keywords: paper fiber estimation; non-destructive analysis; patch-based image classification; deep learning

1. Introduction

The analysis of raw materials of paper and the corresponding manufacturing meth-
ods plays a vital role in historical research, cultural heritage preservation, and industrial
quality control [1]. Non-destructive paper analysis has been instrumental in examining
historical documents, authenticating artworks, and evaluating materials without causing
physical harm. For example, techniques like support vector machine (SVM)-based image
classification have been used to analyze paper characteristics such as fiber composition and
production processes, including beating cycles and additives [2]. Fourier image analysis
using digital microscopes has also been applied to reveal fiber orientation in historical
papers [3]. In the broader context of non-destructive testing (NDT), techniques like digital
X-radiography have been used to classify tempering materials in pottery [4] and combined
non-destructive and destructive testing has been employed to assess the structural integrity
of ancient timber beams [5].

While these methods offer valuable insights, particularly for other materials, tra-
ditional paper analysis methods often face challenges, such as subjectivity in sensory
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evaluations [6] and the potential for damage when destructive testing [7,8] is required.
Non-destructive techniques, though promising, sometimes require specialized equipment,
limiting their accessibility. To address these challenges, this study focuses on developing
an objective and accessible non-destructive method specifically tailored for paper fiber
analysis, utilizing macro images and deep learning techniques.

Recent advancements in image processing technology and machine learning tech-
niques have presented new possibilities for non-destructive paper analysis. The application
of deep learning techniques to historical document analysis has significantly expanded
in recent years [9], with diverse applications such as manuscript dating [10] and the deci-
pherment of historical manuscripts [11]. Previously, our research group has contributed to
this field by proposing a method for estimating paper fibers based on patch classification
using macro images captured via consumer digital cameras [12–14]. This approach does
not require specialized imaging equipment and can be applied to a wide range of paper
materials. In our initial research, we achieved a high accuracy of 94.2% for classifying three
types of fibers using the VGG-16 architecture [12]. Subsequent studies have been reported
using EfficientNet-B0, achieving 87.5% accuracy in classifying the origin of kozo paper [13]
and 86.0% accuracy in fiber estimation of macro images containing text [14]. Our previous
works on non-destructive paper fiber estimation using macro images have contributed
to the growing field of historical document analysis by focusing on the analysis of paper
materials rather than textual content. This aligns with the broader trend of applying so-
phisticated machine learning techniques to solve complex problems in cultural heritage
preservation and historical research [15].

The use of patch-based classification is supported by successful applications in other
fields, such as medical imaging [16]. This technique facilitates the detailed analysis of
specific regions within larger images, which is particularly useful for heterogeneous mate-
rials such as paper. Based on these studies, we have previously established a fundamental
procedure for paper fiber estimation using patch classification. However, several chal-
lenges remain in the pursuit of more advanced analyses and applications for diverse
paper materials.

Although our previous study focused on EfficientNet for network architecture eval-
uation, the performance of the latest architectures, such as Inception-ResNet-v2 [17] and
Xception [18], was not sufficiently assessed. Khan et al. [19] conducted a comprehensive
survey of recent convolutional neural network (CNN) architectures and highlighted the
potential benefits of exploring various network designs for specific tasks. Additionally, al-
though previous studies have reported that a 500-pixel square patch size yields the highest
accuracy with respect to patch size optimization [20], the effect of larger patch sizes has not
been verified. Furthermore, improving the applicability of paper materials that contain text
remains challenging. Although previous studies [14] have reported some success, there
exists a need to enhance the robustness of the method for more complex documents and
various typefaces.

In this study, we aim to re-evaluate the effectiveness of widely accepted network
architectures and patch sizes for non-destructive paper fiber estimation. Expanding on our
previous research that implemented EfficientNet-B0, we investigate the performance of
six additional architectures (DenseNet-201, DarkNet-53, Inception-v3, Xception, Inception-
ResNet-v2, NASNet-Large) and examine the impact of larger patch sizes (up to 1000 pixels).
Additionally, we assess the applicability of the method to paper materials containing text,
which remains a significant challenge in the field. By comprehensively evaluating these
architectures and patch sizes, we aim to provide insights that will advance non-destructive
paper analysis methods and contribute to the broader fields of cultural heritage preservation
and historical research.
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2. Materials and Methods

The proposed method for paper fiber estimation comprises four stages: input image
acquisition, patch generation, deep-learning-based classification, and result aggregation.
Figure 1 illustrates the overall process of the proposed approach.
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Figure 1. Overview of the proposed paper fiber estimation method. The process begins with a
macro image (4000 × 3000 pixels) of paper, which is divided into patches of various sizes (500 × 500,
750 × 750, and 1000 × 1000 pixels). These patches are fed into different pretrained deep convolutional
neural networks (DCNNs) for classification. Finally, the results are aggregated to estimate the fiber
type of the entire macro image.

2.1. Dataset
2.1.1. Paper Sample Preparation

In this study, we focused on three types of paper fibers commonly used in traditional
Japanese papermaking: kozo, mitsumata, and gampi. We prepared 1080 macro images,
comprising 360 images for each fiber type. These samples were obtained from our paper
database [21], which contains various traditional Japanese papers. The fiber composition of
these samples was predetermined and verified via optical microscope fiber composition
tests conducted at the Kochi Prefectural Paper Industry Technology Center, following the
JIS P 8120 “Paper, board and pulps—Fiber furnish analysis” standard [7,8].

2.1.2. Macro Image Acquisition

We used the Olympus Tough TG-5 digital camera to capture macro images based
on the method described in our previous study [20]. The camera was set to microscope
mode with autofocus, an aperture value of f/6.3, 4× magnification, and a focal length of
18 mm. An LED light guide (LG-1; Olympus, Tokyo, Japan) was used to ensure uniform
illumination. Images were saved in JPEG format with a resolution of 4000 × 3000 pixels,
covering an area of approximately 4.3 mm × 3.2 mm, with each pixel corresponding
to nearly 1.08 µm. We placed the camera lens directly on the paper sample and even
performed imaging using a thin acrylic plate whenever necessary to maintain a consistent
focal distance.

2.1.3. Patch Image Generation

Each macro image was used to generate patch images of three different sizes: 500 × 500,
750 × 750, and 1000 × 1000 pixels. These sizes were selected based on our previous stud-
ies [14,20], wherein we determined 500 × 500 pixels to be optimal among smaller sizes
with respect to the divisibility of the original 4000 × 3000 pixels macro images. A non-
overlapping sliding window approach was employed to generate 51,840, 21,600, and
12,960 patches for each size, respectively. The use of larger patch sizes enables the capture
of more detailed structural features of the fibers, which could be valuable for future studies
involving more complex or mixed fiber compositions. In this study, the patch sizes were
tested using seven deep learning models: EfficientNet-B0, DenseNet-201, DarkNet-53,
Inception-v3, Xception, Inception-ResNet-v2, and NASNet-Large, to assess their impact on
classification accuracy.
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2.2. Network Architectures

The selection of appropriate network architectures is crucial for historical document
analysis tasks [15]. In this study, we evaluated seven pretrained CNN architectures available
in the MATLAB R2022b deep network designer [22], including the EfficientNet-B0 (base-
line) [23], DenseNet-201 [24], DarkNet-53 [25], Inception-v3 [26], Xception [18], Inception-
ResNet-v2 [17], and NASNet-Large [27]. We selected these networks based on their theoret-
ical performance compared with EfficientNet-B0, our baseline from previous studies [14,20].
The selection was guided by a performance comparison provided by MathWorks [22],
which clearly demonstrated the relationship between EfficientNet-B0 and other networks
in terms of accuracy and computational efficiency.

The baseline model EfficientNet-B0 [23] features a compound scaling method that
uniformly scales the network width, depth, and resolution, offering a balance between
efficiency and performance with an input size of 224 × 224 and a depth of 132 layers. By
contrast, DenseNet-201 [24] introduces a dense connectivity pattern, wherein each layer
is directly connected to every other layer in a feed-forward fashion, promoting feature
reuse and substantially reducing the number of parameters in its 201-layer structure.
Originally designed for YOLOv3, DarkNet-53 [25] employs residual blocks in its 53-layer
architecture with an input size of 256 × 256, optimizing both the accuracy and speed in
object detection tasks.

In the case of larger input sizes, Inception-v3 [26] uses factorized convolutions and
auxiliary classifiers in its 48-layer structure with a 299 × 299 input, aiming to reduce
computational costs while maintaining high accuracy. Xception [18] expands this con-
cept and replaces the Inception modules with depthwise separable convolutions in its
71-layer architecture, offering improved performance with the same number of parameters
as Inception-v3. Inception-ResNet-v2 [17] further develops this concept by combining the
Inception architecture with residual connections in its 164-layer network, thereby accel-
erating the training of very deep convolutional networks. Finally, NASNet-Large [27],
developed using the Neural Architecture Search technique, represents an automatically
optimized network structure with 270 layers and an input size of 331 × 331, designed to
maximize both accuracy and efficiency.

Table 1 summarizes the input size and depth of each network architecture used in
this study.

Table 1. Input size and depth of the evaluated network architectures.

Network Architecture Input Size Depth

EfficientNet-B0 [23] 224 × 224 132
DenseNet-201 [24] 224 × 224 201

DarkNet-53 [25] 256 × 256 53
Inception-v3 [26] 299 × 299 48

Xception [18] 299 × 299 71
Inception-ResNet-v2 [17] 299 × 299 164

NASNet-Large [27] 331 × 331 270

2.3. Experimental Setup
2.3.1. Three-Fold Cross-Validation

We employed three-fold cross-validation for the performance evaluation. The dataset
was divided into three subsets at the macro-image level to ensure that patches from the same
macro image were not split between the training and testing sets. Each subset contained
360 macro images (120 for each fiber type). We used two subsets (720 macro images) for
training and one subset (360 macro images) for testing in each iteration. This process was
repeated three times, with each subset serving as the test set once.
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2.3.2. Hyperparameter Settings

We empirically explored the hyperparameters for each network, starting with the
default settings of MATLAB. The number of epochs was set to 100 for all experiments.
We evaluated batch sizes of 32 and 64 considering two optimization functions, namely
Stochastic Gradient Descent with Momentum (SGDM) and Adam. The learning rates were
set to 0.01 and 0.001 for SGDM and Adam optimizers, respectively. These parameters were
selected based on the best performance achieved in our exploratory experiments.

2.3.3. Hardware and Software Environment

We performed the experiments using a system equipped with dual AMD Rome7742
CPUs and an NVIDIA A100 GPU with 80 GB of memory; Ubuntu 20.04.6 was used as the
operating system. All implementations and training procedures were performed using
MATLAB R2022b.

2.4. Evaluation Method

The performance of the networks was assessed using the classification accuracy ob-
tained from the three-fold cross-validation. Two primary metrics were calculated for each
combination of patch size and network architecture. The first metric was the patch clas-
sification accuracy of the image, which represented the percentage of correctly classified
individual patch images. The second metric was the macro image fiber estimation accuracy,
which was determined by applying a majority voting scheme to the classification results of
patch images derived from each macro image. In the cases where the majority vote resulted
in a tie, we considered the macro image unclassifiable and deemed it a misclassification.
This dual evaluation approach enabled the assessment of both the fine-grained performance
at the patch level and the holistic accuracy in determining the fiber composition of complete
paper samples.

3. Results

We evaluated seven distinct network architectures across three patch sizes for paper
fiber classification and estimation. The findings were classified into two categories: patch
classification accuracy and macro image fiber estimation accuracy.

3.1. Patch Classification Accuracy

Table 2 summarizes the patch classification accuracy for each network architecture
across three patch sizes (500 × 500, 750 × 750, and 1000 × 1000 pixels).

Table 2. Patch classification accuracy (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 78.5 79.6 77.9
DenseNet-201 76.1 77.5 76.9

DarkNet-53 74.1 72.7 72.0
Inception-v3 77.6 80.1 81.5

Xception 77.3 80.3 82.2
Inception-ResNet-v2 75.7 80.8 82.7

NASNet-Large 74.0 76.1 78.7

Average 76.2 78.2 78.8

Our analysis revealed significant variations in performance across different network
architectures and patch sizes. Inception-ResNet-v2 achieved the highest classification
accuracy of 82.7% with 1000 × 1000 pixel patches, representing a 7% improvement over
its performance with 500 × 500 pixel patches. This substantial improvement highlighted
the potential benefits of using larger patch sizes in some network architectures. Con-
versely, EfficientNet-B0 demonstrated the highest accuracy (78.5%) for the smallest patch
size (500 × 500 pixels); however, its performance deteriorated slightly for larger patches.
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This contrasting behavior underscores the varying impacts of patch size across different
network architectures and emphasizes the need for a careful selection of patch size for
optimal performance.

The effect of increasing the patch size varied significantly among networks, revealing
diverse responses to changes in the input dimensions. While Inception-ResNet-v2, Xception,
and Inception-v3 exhibited substantial improvements with larger patches, DarkNet-53
exhibited a decline in performance as the patch size increased. This diversity in the
responses indicates that the effectiveness of larger patches significantly relies on the specific
network architecture employed, implying that the optimal patch size should be determined
based on each architecture.

In general, we observed a trend of improved accuracy with increased patch size,
validated by the mean accuracies of 76.2%, 78.2%, and 78.8% for the 500 × 500, 750 × 750,
and 1000 × 1000 pixel patches, respectively. However, this trend was inconsistent across
networks, with some networks exhibiting peak performances at different patch sizes. This
variability further emphasizes the complex relationship between the network architecture
and patch size in the context of paper fiber classification.

To provide a concrete example of the impact of patch size on the classification per-
formance, Figure 2 illustrates the results of Inception-ResNet-v2 on a single macro image
of the mitsumata fiber. This visual representation clearly demonstrates an improvement
in classification accuracy and consistency as the patch size increases, offering insights
into the potential benefits of larger patch sizes in capturing more comprehensive features
for classification.
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Figure 2. Macro image fiber estimation results based on patch classification using Inception-ResNet-
v2 across three patch sizes (500 × 500, 750 × 750, and 1000 × 1000 pixels) for a macro image of
mitsumata fiber. The colored areas represent the classification results, with green, blue, and red
corresponding to kozo, mitsumata, and gampi, respectively. The gray areas in the 750 × 750 patch size
image indicate regions at the edges of the original macro image where patches could not be extracted
completely, and thus, no classification was performed. This visualization demonstrates the impact of
increasing patch size on classification accuracy and consistency. As the patch size increases from left
to right, a clear improvement is observed in the correct classification of mitsumata fibers (blue areas).
The larger patch sizes (750 × 750 and 1000 × 1000) exhibit significantly fewer misclassifications,
particularly reducing the instances of kozo (green) misclassification. This improvement suggests that
larger patches capture more comprehensive fiber structures and patterns, resulting in more accurate
and stable classifications. The progression also highlights the trade-off between classification detail
and the number of available patches for voting in macro image estimation.

The performance variations observed across the various network architectures and
patch sizes underscore the complex interplay between these factors in paper fiber clas-
sification. Networks with larger input sizes, such as Inception-ResNet-v2 and Xception
(both with 299 × 299 inputs), generally demonstrate better performance with larger patch
sizes. This indicates that these architectures may be better equipped to process and learn
from the additional contextual information provided by larger patches. By contrast, net-
works with smaller input sizes, such as EfficientNet-B0 and DenseNet-201 (both with
224 × 224 inputs), exhibit less consistent improvements or even slight declines with in-
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creasing patch sizes. This implies that the relationship between a native input size of the
network and its ability to effectively utilize larger patches is not straightforward and may
rely on other architectural features.

These findings highlight that careful consideration of both network architecture and
patch size is critical when designing a paper fiber classification system. Although larger
patch sizes generally lead to improved classification accuracy, the optimal patch size may
vary depending on the selected network architecture. Furthermore, trade-offs between
computational complexity and accuracy improvements must be considered because larger
patch sizes inevitably increase the processing requirements. This complex relationship
between network architecture, patch size, and classification performance underscores the
need for a nuanced approach to developing effective paper fiber classification systems.

3.2. Macro Image Fiber Estimation Accuracy

Table 3 presents the fiber estimation accuracy of macro images across various network
architectures and patch sizes. This macro-level estimation was determined by applying a
majority voting scheme to the classification results of the patch images derived from each
macro image.

Table 3. Macro image fiber estimation accuracy (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 84.8 84.2 80.6
DenseNet-201 83.1 81.2 80.1

DarkNet-53 82.9 78.7 74.6
Inception-v3 83.1 83.4 83.1

Xception 83.8 84.9 83.1
Inception-ResNet-v2 80.2 84.3 84.6

NASNet-Large 79.8 80.1 82.6

Average 82.5 82.4 81.2

Our analysis of the macro image fiber estimation accuracy revealed interesting trends
that differed from those observed in the patch-level classification. Xception achieved the
highest estimation accuracy of 84.9% using 750 × 750 pixel patches, slightly surpassing the
performance of EfficientNet-B0 (84.8%) with 500 × 500 pixel patches. Contrary to the patch
classification results, the macro image estimation accuracy did not consistently improve
with larger patch sizes across all networks. This discrepancy highlights the complex
relationship between patch-level classifications and macro-level estimations in the context
of paper fiber analysis.

The impact of patch size on the estimation accuracy varied significantly among the
networks, revealing diverse patterns of performance. For most networks, the peak per-
formance was observed with either 500 × 500 or 750 × 750 pixel patches, with a general
decline in accuracy for 1000 × 1000 pixel patches. This trend was reflected in the average
accuracy, which exhibited a slight decline from 82.5% for the 500 × 500 patches to 81.2%
for the 1000 × 1000 patches. This suggests that an optimal patch size range may exist for
macro image estimation, which balances the trade-off between feature richness and the
number of patches available for majority voting.

Individual network performance provides further insights into the interplay between
architecture and patch size. EfficientNet-B0 exhibited the best performance with the small-
est patch size (500 × 500), achieving 84.8% accuracy; however, its performance deteriorated
significantly with larger patches. This indicates that the architecture of EfficientNet-B0
might be well suited for extracting relevant features from smaller patches in the context
of macro image estimation. By contrast, Inception-ResNet-v2, which performed best in
patch classification for larger patch sizes, exhibited an interesting trend in macro image
estimation. Its performance improved significantly from 80.2% with 500 × 500 patches
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to 84.6% with 1000 × 1000 patches, demonstrating the best performance among all the
networks for the largest patch size.

The performance of DarkNet-53 consistently deteriorated with the increase in patch
size, with the accuracy decreasing from 82.9% for 500 × 500 patches to 74.6% for
1000 × 1000 patches. This consistent decline suggests that the architecture of DarkNet-
53 may not be optimal for processing larger patches in this specific task. Conversely,
Xception and Inception-v3 maintained relatively stable performances across different patch
sizes, with Xception achieving the highest overall accuracy of 84.9% with 750 × 750 patches.
This stability across patch sizes indicates that these architectures may be more robust to
changes in input dimensions for macro-level estimation tasks.

The aforementioned results collectively highlight the complex relationship between
the network architecture, patch size, and estimation accuracy in the context of macro
image fiber estimation. Additionally, the findings emphasize the importance of carefully
selecting both the network architecture and patch size for optimal performance as the best
combination may vary depending on the specific characteristics of the task and network
architecture. These findings underscore the need for a nuanced approach that considers the
interplay between patch size and network architecture when designing and implementing
deep learning models for paper fiber estimation to achieve the highest accuracy in both
patch-level classification and macro-level estimation tasks.

Furthermore, the discrepancy between the patch-level classification and macro-level
estimation accuracies for some networks suggests that the process of aggregating patch-
level results to perform macro-level predictions is not straightforward. This observation
opens avenues for future research into more sophisticated aggregation methods that could
potentially improve the overall system performance.

4. Discussion
4.1. Impact of Network Architecture and Patch Size on Classification Performance

Our comprehensive investigation of the impact of various network architectures and
patch sizes on paper fiber classification performance yielded several significant insights,
demonstrating the complex interplay between these factors and classification accuracy.
Both Inception-ResNet-v2 and Xception exhibited superior performances, particularly for
larger patch sizes. Inception-ResNet-v2 achieved a remarkable classification accuracy of
82.7% with 1000 × 1000 pixel patches, representing a substantial improvement of 7% over
its performance with 500 × 500 pixel patches. This enhancement can be attributed to the
larger patch size, which enables the capture of more extensive structural features such
as fiber orientation and distribution patterns. Conversely, EfficientNet-B0 demonstrated
high performance (78.5%) with smaller patch sizes (500 × 500 pixels), suggesting that its
architecture is well suited to smaller input sizes. However, EfficientNet-B0 showed limited
improvement with the increase in patch size, even exhibiting a slight decrease to 77.9% at
1000 × 1000 pixels.

The varying responses of different networks to the increase in patch size provide
valuable insights into the relationship between architecture and input dimensions. Al-
though Inception-v3, Xception, and Inception-ResNet-v2 exhibited significant performance
improvements with larger patch sizes, the improvements were limited in the case of
EfficientNet-B0 and DenseNet-201. This variability indicates that the optimal patch size
significantly relies on network architecture. Furthermore, networks with larger native input
sizes (299 × 299) demonstrate excellent performance with larger patch sizes, suggesting
that they are inherently more suitable for processing larger fields of view. Conversely,
DarkNet-53 consistently exhibited the lowest performance across all patch sizes, with
the performance declining as the patch size increased, indicating its unsuitability for this
particular task.

These findings collectively demonstrate that the selection of the network architecture
and optimization of the patch size are key determinants of performance improvement in
paper fiber classification tasks. Networks that can effectively use larger patch sizes, such
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as Inception-ResNet-v2 and Xception, enable more detailed and accurate fiber classifica-
tion. However, this must be balanced with the computational requirements and specific
constraints of the application environment.

4.2. Comparison of Patch Classification and Macro Image Estimation

Our analysis of patch-level classification and macro-image-level fiber estimation accu-
racies revealed trends that underscored the complex relationship between these two scales
of analysis in paper fiber characterization. Notably, the macro image estimation accuracy
tended to be higher than the patch classification accuracy. For instance, the patch classifica-
tion accuracy was 80.3% when using Xception with 750 × 750 pixel patches, whereas the
corresponding macro image estimation accuracy was 84.9%. This indicates that the majority
voting integration process employed in the macro-level estimation partially mitigates the
misclassification of individual patches, improving the overall accuracy.

However, the relationship between patch size and estimation accuracy was nonlinear
and varied significantly among the networks. Although increasing the patch size from
500 × 500 pixels to 750 × 750 pixels generally improved the macro image estimation
accuracy for most networks, a further increase to 1000 × 1000 pixels often reduced the
accuracy. This trend was exemplified by EfficientNet-B0, where the macro image estimation
accuracies for patch sizes of 500 × 500, 750 × 750, and 1000 × 1000 pixels were 84.8%,
84.2%, and 80.6%, respectively. This implies that although larger patches can capture more
comprehensive fiber structure information, they simultaneously reduce the number of
patches available for majority voting, thereby destabilizing the estimation process at the
macro-image level.

The performance patterns of individual networks provide further insights into the
interplay between architecture and patch size in macro-level estimations. The peak perfor-
mance of EfficientNet-B0 with the smallest patch size (500 × 500) suggests that its archi-
tecture is particularly adept at extracting relevant features from smaller patches for macro
image estimation. By contrast, Inception-ResNet-v2 demonstrates a significant performance
improvement from 80.2% with 500 × 500 patches to 84.6% with 1000 × 1000 patches, vali-
dating the effective utilization of larger input sizes. The consistent performance decline
observed in DarkNet-53 with the increase in patch size (from 82.9% at 500 × 500 pixels to
74.6% at 1000 × 1000 pixels) indicates that its architecture may be suboptimal for processing
larger patches in this specific task. Xception and Inception-v3 maintain relatively stable
performances across different patch sizes, with Xception achieving the highest overall
accuracy of 84.9% with 750 × 750 patches. This implies that these architectures are more
robust to input size variations in macro-level estimation tasks.

The aforementioned findings emphasize that the optimal combination of the network
architecture and patch size varies depending on the specific characteristics of the task
and the architecture itself, necessitating a nuanced approach for the development and
implementation of deep learning models for paper fiber estimation. Furthermore, the
discrepancies between patch-level classification and macro-level estimation accuracies
for some networks highlight the non-trivial nature of aggregating patch-level results for
macro-level predictions. In the future, more sophisticated aggregation methods must be
developed to enhance the overall system performance.

4.3. Performance of Text-Containing Images

We evaluated the effectiveness of the proposed method on macro images containing
text to address the practical challenges of analyzing actual documents and books. Our
dataset comprised 237 text-containing macro images, including 129 kozo, 72 mitsumata,
and 36 gampi samples. We applied the seven network architectures and three patch sizes
to these images to assess both patch classification and macro image estimation accuracies.

Tables 4 and 5 summarize the overall patch classification and macro image estimation
accuracies of text-containing images, respectively.
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Table 4. Patch classification accuracy of text-containing images (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 56.7 64.2 68.0
DenseNet-201 58.8 61.0 62.9

DarkNet-53 60.9 62.0 57.8
Inception-v3 58.7 64.8 60.2

Xception 59.5 66.0 67.3
Inception-ResNet-v2 62.5 66.2 69.1

NASNet-Large 56.9 59.5 64.3

Average 59.1 63.4 64.2

Table 5. Macro image fiber estimation accuracy of text-containing images (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 84.8 84.2 80.6
DenseNet-201 83.1 81.2 80.1

DarkNet-53 82.9 78.7 74.6
Inception-v3 83.1 83.4 83.1

Xception 83.8 84.9 83.1
Inception-ResNet-v2 80.2 84.3 84.6

NASNet-Large 79.8 80.1 82.6

Average 82.5 82.4 81.2

The results indicated a general decrease in patch classification accuracy for text-containing
images in comparison with text-free images. For instance, the accuracy reached 69.1% for
text-containing images when Inception-ResNet-v2 was used with 1000 × 1000 pixel patches,
which was lower than the accuracy of 82.7% achieved for text-free images. However, the
macro image estimation accuracy remained relatively high, with Xception achieving an
accuracy of 84.9% for 750 × 750 pixel patches; this was comparable to its performance
on text-free images. The disparity between patch-level and macro-level performances
indicates that the majority voting process used in macro image estimation can partially
compensate for the challenges posed by the presence of text in individual patches.

We conducted a more granular analysis by distinguishing between patches containing
text and those without text to gain further insights. Tables 6 and 7 present the patch
classification and fiber estimation accuracies of patches containing text, respectively.

Table 6. Patch classification accuracy for text-containing patches (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 44.8 55.1 65.3
DenseNet-201 45.5 50.3 53.1

DarkNet-53 49.8 51.9 49.6
Inception-v3 45.9 55.9 53.7

Xception 47.4 61.8 62.5
Inception-ResNet-v2 52.3 59.2 64.9

NASNet-Large 48.0 51.4 58.8

Average 47.7 55.1 58.3

Table 7. Fiber estimation accuracy using text-containing patches (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 46.6 57.0 66.1
DenseNet-201 53.9 54.1 53.2

DarkNet-53 56.7 53.2 47.1
Inception-v3 51.1 63.6 50.0

Xception 56.7 61.9 66.1
Inception-ResNet-v2 60.4 62.0 70.7

NASNet-Large 52.3 59.4 63.5

Average 54.0 58.7 59.5

The classification accuracy of text-containing patches (Table 6) was generally low,
averaging 47.7% and 58.3% for the 500 × 500 and 1000 × 1000 pixel patches, respectively.
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This reduction in accuracy was attributed to text-obscuring fiber features. Interestingly,
the fiber estimation accuracy of text-containing patches (Table 7) was slightly higher than
the patch classification accuracy, with Inception-ResNet-v2 achieving 70.7% accuracy for
1000 × 1000 pixel patches. This indicates that useful fiber information can be extracted
even in the presence of text, particularly when using larger patch sizes.

Tables 8 and 9 summarize the patch classification and fiber estimation accuracies for
text-free patches within text-containing macro images, respectively.

Table 8. Patch classification accuracy of text-free patches within text-containing images (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 62.3 72.7 72.9
DenseNet-201 66.3 69.2 75.1

DarkNet-53 68.0 70.5 68.2
Inception-v3 66.0 72.3 69.5

Xception 67.7 69.5 75.0
Inception-ResNet-v2 68.6 73.9 75.0

NASNet-Large 62.0 67.3 70.4

Average 65.8 70.8 72.3

Table 9. Fiber estimation accuracy of text-free patches within text-containing images (%).

Network 500 × 500 750 × 750 1000 × 1000

EfficientNet-B0 62.1 72.5 72.0
DenseNet-201 63.0 70.5 75.1

DarkNet-53 74.7 72.0 66.5
Inception-v3 63.8 72.1 66.9

Xception 69.5 69.0 72.3
Inception-ResNet-v2 67.1 70.0 74.5

NASNet-Large 62.0 67.8 70.7

Average 66.0 70.6 71.1

As expected, the classification accuracy for text-free patches within text-containing
images (Table 8) was higher, reaching an average of 72.3% for 1000 × 1000 pixel patches; this
was closer to the results obtained from entirely text-free images. Similarly, the fiber estima-
tion accuracy of text-free patches (Table 9) was high, exceeding 70% for both the 750 × 750
and 1000 × 1000 pixel patch sizes. These results highlight the importance of identifying
and leveraging text-free regions within documents for an accurate fiber estimation.

The following conclusions can be drawn from the aforementioned findings. First, the
use of larger patch sizes (750 × 750 and 1000 × 1000 pixels) is particularly effective for text-
containing patches. This is because larger patches are likely to include both text and non-text
regions, thereby capturing more fiber features. Second, Inception-ResNet-v2 and Xception
consistently demonstrate high performance regardless of the presence of text, indicating
that these architectures are particularly well suited for this task. Third, fiber estimation at
the macro-image level maintains a higher accuracy than patch-level classification, indicating
that the majority voting integration process can partially compensate for misclassifications
in individual patches.

However, increasing the patch size exhibits some limitations, particularly for images
with high text density. In the case of 1000 × 1000 pixel patches, the number of background
regions (text-free patches) decrease significantly, rendering fiber estimation impossible for
some images. This observation underscores the need for a balanced approach to patch-size
selection, particularly when handling text-heavy documents.

Our findings confirm that careful selection of patch size and network architecture
are both crucial in the fiber analysis of text-containing paper documents. In the future,
the introduction of a text detection and removal preprocessing stage, the development
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of a multitask learning approach that distinguishes between text and non-text regions,
and the adoption of multiscale analysis methods that combine results from different patch
sizes should be explored. The implementation of these enhancements can improve the
accuracy and robustness of fiber estimation for text-containing paper documents, thereby
enabling efficient non-destructive analysis of actual historical documents and books and
contributing to the fields of cultural heritage research and conservation science.

Figure 3 illustrates the performance of the proposed approach on text-containing
images using Inception-ResNet-v2. The figure depicts the results for a kozo fiber sample
with text across different patch sizes. We observed changes in the patch-level classifications
as the patch size increased from 500 × 500 pixels to 1000 × 1000 pixels. Although the
500 × 500 pixel patches resulted in an incorrect macro-level estimation (gampi), the larger
patch sizes correctly identified the fiber as kozo. This suggests that larger patches may
capture more comprehensive fiber characteristics, thereby enabling a more accurate macro-
level estimation despite the presence of text.
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estimated fiber type for the entire macro image is specified below each patch-based result.

4.4. Implications for Paper Fiber Analysis

The developed novel approach addresses several key challenges in the field of non-
destructive paper fiber analysis. As the proposed method enables the analysis of a wide
range of paper materials using macro images captured by consumer-grade digital cam-
eras without requiring expensive specialized equipment, it is particularly valuable for
historical documents and artworks where destructive analysis is not permissible. Fur-
thermore, the proposed approach aligns with the growing trend in conservation science
towards non-invasive techniques and presents new possibilities for fiber analysis of actual
documents and books. The ability to analyze text-containing images complements other
non-destructive techniques and facilitates the efficient analysis of large quantities of paper
materials, thereby contributing to document authentication and conservation science.

The proposed method offers new perspectives to historical and archaeological research
by enabling the statistical analysis of paper characteristics across different eras and regions.
This can enhance our understanding of the evolution of papermaking techniques. Moreover,
our analysis expands the work on the historical development of papers and contributes to
studies on the history of technology and cultural exchange. The accurate understanding
of paper fiber composition using the proposed method has important implications for
the selection of appropriate conservation and restoration techniques, which is a crucial
aspect in the field of cultural heritage preservation. Another potential application of the
method is to the quality control processes in the paper industry, particularly for evaluating
high-quality handmade paper.
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The interdisciplinary nature of this study spans computer vision, machine learn-
ing, materials science, history, and conservation science, highlighting the importance of
cross-disciplinary approaches in advancing cultural heritage studies. The combination of
conventional knowledge on paper characteristics with advanced computational methods
presents new avenues for understanding and preserving documentary heritage. However,
despite the significant progress in analyzing text-containing documents, further improve-
ment is necessary for the handling of densely written texts and complex layouts. Future
research should focus on refining the proposed technique to address these challenges by
incorporating more advanced text detection and segmentation methods.

In summary, our study represents a significant step forward in non-destructive paper
analysis, with wide-ranging implications for cultural heritage studies, conservation science,
and the paper industry. With further refinement and expansion of the proposed technique,
we anticipate greater contributions to the understanding and preservation of paper-based
cultural heritage. The practical applications of this research extend beyond academic
circles, offering valuable tools for conservation, authentication, and quality control in
paper production, thereby bridging the gap between theoretical research and practical
implementation in the field of paper fiber analysis.

4.5. Comparison with Previous Studies

In this study, we extend the previous analyses on EfficientNet-B0 [14] by investigating
the impact of a wider range of network architectures and patch sizes. The performed
comparative analysis yields several significant insights, particularly regarding the influence
of network architecture on performance. We demonstrated that more complex architectures,
such as Inception-ResNet-v2 [17] and Xception [18], exhibit superior performance with
larger patch sizes. This revealed the critical importance of network selection in paper fiber
classification tasks. Additionally, our research advances the optimization of patch sizes.
Although a previous study [20] has suggested that 500 × 500 pixel patches are optimal,
we verified the performance improvements with larger patch sizes of 750 × 750 and
1000 × 1000 pixels, enabling the capture of more extensive fiber structures and contributing
to improved classification accuracy.

A significant advancement in this study is the improved capability to analyze text-
containing images, an aspect that has not been sufficiently addressed in previous stud-
ies [14]. This progress has substantially enhanced the potential of applying the proposed
method to actual document analysis, presenting new possibilities for studying historical
documents and manuscripts. Our multi-network comparison evaluated seven different
network architectures under identical conditions, thereby providing valuable insights into
the characteristics and strengths of each network and offering guidance for the selection
of the most appropriate network for specific tasks. Furthermore, we achieved notable
improvements in classification accuracies, increasing the patch classification accuracy from
78.5% in previous studies [14] to 82.7% and slightly improving the macro-image-estimation
accuracy from 84.8% to 84.9%.

These advancements demonstrate the applicability of the proposed method to actual
documents containing text, which can lead to technological innovations in cultural heritage
protection and historical research. The implications of the study findings extend beyond the
immediate field of paper analysis, contributing to the broader domain of cultural heritage
studies and offering new tools and methodologies for the non-destructive examination of
historical artifacts.

Finally, our findings on the impact of network architecture and patch size align with
observations from other historical document analysis tasks. For instance, Hamid et al. [10]
demonstrated the effectiveness of CNNs for manuscript dating, whereas Yin et al. [11]
applied deep learning techniques to decipher historical manuscripts. In addition to these
studies, our study contributes to the growing body of evidence supporting the efficacy of
deep learning in historical document analysis [9,10]. The variability in performance across
different architectures and patch sizes highlights the importance of careful parameter selec-
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tion and experimentation in developing effective solutions for specific tasks in historical
document analysis.

4.6. Limitations and Future Work

Although our research on non-destructive paper fiber analysis demonstrated signif-
icant advancements, several limitations exist that warrant consideration. Primarily, we
focused on three specific fiber types, including kozo, mitsumata, and gampi, which repre-
sent only a fraction of the diverse range of paper types used throughout history and across
different regions. This limitation of the dataset scope restricts the broad applicability of the
proposed method. Additionally, the analysis of text-containing images presents ongoing
challenges, particularly for documents with high text density and complex layouts, where
the accuracy and robustness of the developed method can be further improved.

A significant limitation of our approach is apparent when handling text-heavy images,
particularly when larger patches are used. Figure 4 demonstrates this issue using a gampi
fiber sample containing text.
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Figure 4. Macro image fiber estimation results based on patch classification using Inception-ResNet-
v2 across three patch sizes (500 × 500, 750 × 750, and 1000 × 1000 pixels) for a gampi fiber sample
containing text. The colored areas represent patch-level classification results, with green, blue, and
red corresponding to kozo, mitsumata, and gampi, respectively. The gray areas in the 750 × 750 patch
size image indicate regions at the edges of the original macro image where patches could not be
fully extracted, and thus, no classification was performed. Additionally, in all patch sizes, gray areas
represent regions where patches contained text, and these were excluded from classification. The
estimated fiber type for the entire macro image is mentioned below each patch-based result, with “No
majority” indicating the case where the majority voting method could not determine the predominant
fiber type because of the equal distribution of classifications.

As indicated in Figure 4, while the 500 × 500 and 750 × 750 pixel patches result in
accurate macro-level estimation, the 1000 × 1000 pixel patches lead to a “No majority”
state. This occurs when the majority voting process cannot determine the predominant
fiber type because of the equal distribution of different patch-level classifications. This
limitation highlights a key trade-off in the proposed approach: although larger patch sizes
can potentially capture more comprehensive fiber structures, they may reduce the number
of patches available for majority voting. In text-heavy documents, this reduction may
result in the failure of definitive macro-level classification owing to insufficient or equally
distributed voting patches. Furthermore, the computational costs associated with large
patch sizes and complex network architectures pose potential barriers to their practical
implementation, particularly in resource-constrained environments. A comprehensive
comparison of the developed method with other non-destructive analysis techniques, such
as spectroscopic methods, should be performed to better understand its relative strengths
and weaknesses.

The transition from laboratory results to real-world applications in historical docu-
ments and artworks presents its own set of challenges, such as variations in document
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conditions, environmental factors, and the practicalities of on-site analysis. These fac-
tors can potentially affect the performance and reliability of the proposed method in
real-world scenarios.

These limitations should be addressed in future works to advance the field of non-
destructive paper analysis. For instance, the dataset should be expanded to encompass
a wider variety of paper types, geographical origins, and historical periods to broaden
the applicability of the method. Additionally, as demonstrated in our previous study [14],
our two-stage network approach successfully achieved over 99% accuracy in recognizing
and extracting text-free patches, enabling selective analysis of background patches in text-
heavy images. However, more sophisticated text detection and separation algorithms
that can potentially incorporate advanced natural language processing techniques must
be developed to further enhance the analysis of text-containing images. Moreover, the
development of multimodal analysis techniques that combine image analysis with other
non-destructive methods, such as spectroscopy, could provide a more comprehensive
understanding of paper characteristics.

Other potential avenues for future research include the application of transfer learning
and domain adaptation techniques, which could improve learning efficiency with limited
datasets and enhance the method’s applicability to a wider range of paper types. Addition-
ally, exploring time-series analysis to evaluate paper aging and preservation states may
offer valuable insights into degradation processes and conservation strategies.

5. Conclusions

In this study, we comprehensively evaluated the impact of multiple deep learning net-
work architectures and patch sizes on the non-destructive estimation of paper fibers using
macro images. We explored six deep learning networks, including DenseNet-201, DarkNet-
53, Inception-v3, Xception, Inception-ResNet-v2, and NASNet-Large, in conjunction with
enlarged patch sizes of 500, 750, and 1000 pixels. Our experiments demonstrated that
Inception-ResNet-v2 with 1000-pixel patches achieved the highest patch classification accu-
racy of 82.7%, while Xception with 750-pixel patches yielded the best macro-image-based
fiber estimation performance at 84.9%. These findings highlight the importance of network
architecture selection and patch size optimization for improving classification performance.
Additionally, we demonstrated the method’s capability to handle text-containing images
through selective analysis of background patches. While the proposed method has proven
effective in laboratory settings, future implementations of this research could benefit from
leveraging edge computing technologies, as discussed in Ashino (2024) [28], enabling more
scalable and accessible applications beyond laboratory environments. Open dissemination
of these research findings will also be critical for the advancement of non-destructive paper
analysis. Future research should focus on expanding the dataset to cover more diverse
paper types and periods, improving text detection algorithms, and integrating multimodal
techniques such as spectroscopy for a more comprehensive analysis. This work signifi-
cantly contributes to the advancement of non-destructive paper analysis, with promising
implications for cultural heritage preservation and historical document examination.
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