
Citation: Joni, S.A.; Rahat, R.; Tasnin,

N.; Ghose, P.; Uddin, M.A.; Ayoade, J.

Hybrid-Blockchain-Based Electronic

Voting Machine System Embedded

with Deepface, Sharding, and Post-

Quantum Techniques. Blockchains

2024, 2, 366–423. https://doi.org/

10.3390/blockchains2040017

Academic Editors: Liehuang Zhu

and Keke Gai

Received: 12 July 2024

Revised: 4 September 2024

Accepted: 11 September 2024

Published: 30 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Hybrid-Blockchain-Based Electronic Voting Machine
System Embedded with Deepface, Sharding, and
Post-Quantum Techniques
Sohel Ahmed Joni 1,† , Rabiul Rahat 1,† , Nishat Tasnin 1,† , Partho Ghose 1,*,† , Md. Ashraf Uddin 2,*
and John Ayoade 3

1 Department of Computer Science and Engineering, Bangladesh University of Business and Technology,
Dhaka 1216, Bangladesh; 20215103018@cse.bubt.edu.bd (S.A.J.); 20215103017@cse.bubt.edu.bd (R.R.);
20215103008@cse.bubt.edu.bd (N.T.)

2 School of Information Technology, Deakin University, Melbourne, VIC 3125, Australia
3 School of Information Technology, Crown Institute of Higher Education, North Sydney, NSW 2060, Australia;

john.ayoade@cihe.edu.au
* Correspondence: partho@bubt.edu.bd (P.G.); ashraf.uddin@deakin.edu.au (M.A.U.)
† These authors contributed equally to this work.

Abstract: The integrity of democratic processes relies on secure and reliable election systems, yet
achieving this reliability is challenging. This paper introduces the Post-Quantum Secured Multiparty
Computed Hierarchical Authoritative Consensus Blockchain (PQMPCHAC-Bchain), a novel e-voting
system designed to overcome the limitations of current Biometric Electronic Voting Machine (EVM)
systems, which suffer from trust issues due to closed-source designs, cyber vulnerabilities, and
regulatory concerns. Our primary objective is to develop a robust, scalable, and secure e-voting
framework that enhances transparency and trust in electoral outcomes. Key contributions include
integrating hierarchical authorization and access control with a novel consensus mechanism for
proper electoral governance. We implement blockchain sharding techniques to improve scalability
and propose a multiparty computed token generation system to prevent fraudulent voting and
secure voter privacy. Post-quantum cryptography is incorporated to safeguard against potential
quantum computing threats, future-proofing the system. Additionally, we enhance authentication
through a deep learning-based face verification model for biometric validation. Our performance
analysis indicates that the PQMPCHAC-Bchain e-voting system offers a promising solution for secure
elections. By addressing critical aspects of security, scalability, and trust, our proposed system aims
to advance the field of electronic voting. This research contributes to ongoing efforts to strengthen
the integrity of democratic processes through technological innovation.

Keywords: EVM; sharding; post-quantum attacks; deep learning; security; scalability

1. Introduction

An election system is a crucial part of democracy and a catalyst for the progression of
a country. Conducting a fair and equitable election in a country in which democracy has
not yet been firmly established poses significant challenges, particularly in the absence of a
reliable voting system [1]. The vulnerability of paper-based voting systems to tampering
and fraud by influential groups or individuals poses a significant threat. Newer Electronic
Voting Machines (EVMs) that use biometrics have addressed some of these concerns.
However, they often operate as “black boxes”, meaning that voters cannot accurately verify
their votes. This lack of transparency undermines trust in the voting process. Furthermore,
current EVM voting systems are prone to manipulation by a single authority [1].

In response to this issue, researchers have turned their attention to emerging tech-
nologies, such as blockchain, as a potential way to enhance transparency and security in

Blockchains 2024, 2, 366–423. https://doi.org/10.3390/blockchains2040017 https://www.mdpi.com/journal/blockchains

https://doi.org/10.3390/blockchains2040017
https://doi.org/10.3390/blockchains2040017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com
https://orcid.org/0009-0007-3020-4724
https://orcid.org/0009-0009-1130-1742
https://orcid.org/0009-0002-8951-5301
https://orcid.org/0000-0002-5840-2008
https://orcid.org/0000-0002-4316-4975
https://doi.org/10.3390/blockchains2040017
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com/article/10.3390/blockchains2040017?type=check_update&version=1


Blockchains 2024, 2 367

voting systems. Blockchain [2] is a distributed, immutable, and tamper-resistant public
ledger that offers several important characteristics. Notably, one of its key features is
immutability, which ensures that once data are recorded on the blockchain, they cannot
be altered or deleted. This is achieved by requiring each generated block to include the
digest of the previous block, forming an unbreakable chain that guarantees the integrity
and permanence of the blockchain. Any attempt to tamper with existing blocks disrupts
the integrity of the chain, rendering the blockchain obsolete and unreliable [3].

To operate a blockchain, an authoritative consensus is essential, and it is one of the most
critical features of this technology. In many countries, electoral systems are legally required
to enforce specific regulations to prevent unauthorized activities and misconduct during
elections. But consensus mechanisms that are specially designed to manage cryptocurrency
operation or general-purpose blockchain are just too unsophisticated to handle the complex
permission and access systems required for electoral processes [4].

Therefore, this paper proposes a consensus mechanism that employs a controlled
level of authority, akin to an authorized block, to include or exclude specific entities
based on their authorized permissions within the electoral system. This approach ensures
transparency, ballot integrity, and immutability while maintaining necessary regulation
without granting any entity excessive or unconventional permissions.

Blockchain technology, due to its transparency, is considered a promising tool for
implementing modern and innovative voting processes [5,6]. However, scalability and
performance are significant concerns in existing proposed blockchain-based e-voting sys-
tems. To address this issue, researchers have explored sharding techniques, such as [7,8],
which involve partitioning the blockchain into smaller shards. Nevertheless, most of their
proposed methods uses shuffle sharding that involves selecting shards and nodes ran-
domly, failing to create data-contracted shards and introducing new latency-related issues
discussed in Section 2.3. In our study, we adopt a category-based sharding approach, in
which the blockchain is divided into shards based on the category or type of data stored.

Moreover, preserving the confidentiality of voter privacy while maintaining trans-
parency in a blockchain is crucial. Several studies have employed various encryption
techniques to ensure user privacy. Some proposals involve using a third-party server for
verification, while others suggest storing voter information directly on the blockchain to
validate voter identity. However, using a third-party server does not provide adequate
security and immutability, and storing voter information on the blockchain can potentially
breach voter privacy and anonymity [9–12].

As a solution, we propose a novel multiparty computed [13] token generation system
that enables secure voter verification, checks for fraudulent and double votes, and keeps
voter identities anonymous. For verification, it uses zero-knowledge proofs, where the
system validates against the securely generated token instead of directly validating the
voter. In our work, we adopt post-quantum secured asymmetric cryptography. This
encryption algorithm can provide security from attacks not only by general computers but
also by quantum computers [14].

Furthermore, tackling fraudulent voting is another challenge in electronic voting
systems. As an extra layer of security, we have adopted biometric AI face verification,
also known as DeepFace, which is a deep learning facial recognition system. This method
employs a convolutional neural network architecture to identify faces in digital images
with high accuracy [15,16]. By implementing these features, our proposed system aims to
provide a secure, transparent, and efficient electronic voting process.

The contributions of this study are summarized as follows.

• To address the limitations of existing consensus mechanisms, this research proposes a
novel hybrid consensus model (HAC) that provides the controlled level of permission
and access required for the electoral process.

• The proposed category-based novel sharding mechanism leverages the inherent dis-
crete nature of election data, such as divisions by polling station and election area.



Blockchains 2024, 2 368

This significantly enhances the e-voting system’s scalability and data concentration
compared to existing sharding mechanisms for e-voting.

• We incorporate post-quantum cryptography and perform a comprehensive analysis
of Dilithium 2- and Dilithium 3-based implementations compared to Ed25519-based
blockchains. This analysis aims to determine whether post-quantum asymmetric
cryptography can be a viable alternative to traditional cryptography.

• As an extra layer of security to prevent fraudulent voting, we incorporated DeepFace
to enhance the scalability, security, and performance of the system.

• We propose a novel multiparty computation (MPC) protocol to generate a secure and
verifiable token for each voter. For verification, it uses zero-knowledge proofs, where
the system validates against the securely generated token instead of directly validating
the voter. This solves coerced and double voting while protecting their identity.

• Finally, we conduct a performance analysis using synthetic election data similar
to real-world data, and the results are promising. Our findings demonstrate that
the proposed system can potentially handle large-scale elections without sacrificing
security or performance.

Our research makes several contributions to the domains of e-voting and blockchains.
We propose a novel hybrid consensus model called Hierarchical Authoritative Consensus
(HAC) along with the integration of sharding, post-quantum cryptography, and deep
learning facial recognition models. This study aims to enhance the security, scalability, and
efficiency of e-voting systems based on blockchain technology.

The remainder of this paper is organized as follows. In Section 2, we review past
research on blockchain-based e-voting systems and highlight major deployment challenges.
Section 3 introduces our e-voting system and its objectives. Section 4 details our hybrid
consensus model and its design. Section 5 describes the implementation of the blockchain
system, including the block structure and pseudocode. Section 6 evaluates the system
performance and compares it with other technologies. Section 7 analyzes the system
security and potential vulnerabilities. Finally, Section 8 concludes the paper.

2. Related Work

In this section, we introduce previous work related to this research in the context of
blockchain-based e-voting systems and consider three significant issues associated with
this research: security, consensus and verification, and sharding.

2.1. Previous Work

Many previous studies have attempted to develop protocols for blockchain-based
e-voting systems and create incentive schemes for cryptocurrencies. Our work is motivated
by recent advances [12,17–19].

Kevin et al. [12] discussed blockchain voting, highlighting its elimination of central
authority and enabling of vote verification by anyone. They suggested Hyperledger Fabric
as a viable blockchain solution. Das et al. [17] proposed a blockchain-based voting system
integrated with face recognition. However, their method and others have limitations,
including scalability and extensive computational requirements. Additionally, their use of
an msp system to validate voters undermines privacy, and the Raft consensus mechanism
used by their system is not feasible for electoral system permissions and access. Khoury
et al. [18] proposed a decentralized trustless voting platform using Ethereum and mobile
numbers to register each voter in the system. Hasan et al. [20] also proposed an Ethereum-
based voting system using smart contracts. Neloy et al. [10] suggested an Ethereum
network-based system with user verification via Metamask wallet, face recognition, and
deepface analysis. Singh et al. [21] proposed a system using unique identification like
Aadhar Card numbers or OTPs for authentication and Ethereum blockchain, integrating
with traditional Electronic Voting Machines. Although researchers from [10,17,18,20,21]
proposed Ethereum-blockchain-based e-voting systems aiming for secure voting, perfor-
mance and scalability issues were not adequately addressed. Many of these proposals use



Blockchains 2024, 2 369

OTPs or third-party servers, which do not provide adequate security and immutability.
Additionally, storing voters’ unique identifiers on solidity smart contracts can potentially
breach voter privacy and anonymity. Neloy et al. [10] efficiently utilized solidity smart
contracts to reduce transaction costs, but relying on an Ethereum-based network could
lead to centralization and high gas costs for large-scale elections. Yousif et al. [9] proposed
a hybrid blockchain (PSC-Bchain) combining Proof of Credibility and Proof of Stake to
address energy consumption and scalability issues in blockchain-based e-voting systems.
They employed Ethereum smart contracts and a sharding mechanism to enhance security
and performance. However, this approach introduces additional computational complexity
and increased gas fees. Moreover, their approach does not fully address voter privacy, as
it uses a third-party server called a managed server to store node and voter information.
This poses a severe risk to system integrity and voter privacy, as the data stored on the
managed server are not part of an immutable ledger. Additionally, their proposal does
not adequately address the potential risk of single points of failure that could occur from
this server.

2.2. Consensus and Verification

Li et al. [22] proposed a consensus algorithm, POV, for decentralized arbitration
through voting. POV theoretically achieves transaction finality with one confirmation.
However, the study lacks experimental evaluation, and multilevel access control is unclear.
Wang et al. [19] introduced CW-DPoS, a strategy to improve node activity and fairness in
the DPoS consensus algorithm, resulting in performance enhancements. However, security
risks and real-world election complexities are not addressed. Yuanyuan et al. [23] proposed
DT-DPoS, enhancing the DPoS consensus algorithm’s security and scalability with an Eigen
Trust model and ring signatures against DoS and collusion attacks. A theoretical analysis
supported its effectiveness.

2.3. Sharding

Sharding enhances blockchain scalability by dividing it into smaller, independent
pieces called shards. These shards process transactions simultaneously, enabling parallel
processing and boosting throughput [24]. Tao et al. [25] proposed a new distributed and
dynamic sharding system to significantly increase the throughput of smart-contract-based
blockchain systems while minimizing cross-shard communication. The proposed algo-
rithms were analyzed using a game-theoretic approach. Ren et al. [26] analyzed the high
cost of cross-shard transactions and found that most Bitcoin transactions have simple de-
pendencies and can become single shards with a dependency-aware placement algorithm.

Sharding methods such as those proposed by Tao et al [25] and Ren et al. [26] focus on
minimizing cross-shard communication and managing transaction dependencies, which
are effective for general transactions but fall short in handling the complex permissions and
strict regulatory requirements of e-voting. The lack of data concentration in these methods
can lead to latency issues and inefficiencies in processing election data, which are often
divided by polling station, area, and election category.

Li et al. [27] A sharding-based blockchain breaks shard isolation by managing state
and logic storage and smart contract execution. Nodes share contract logic, while shards
store distinct states. A cross-shard consensus algorithm ensures transaction security and ef-
ficiency. Wang et al. [28] proposed a distributed blockchain storage scheme using sharding
and secret-sharing without a trusted third party. It reduces storage and communication
costs with polynomial commitment and homomorphic properties. Yousif et al. [9] pro-
posed sharding in an e-voting system, demonstrating improvements over non-sharding
techniques. However, their model assigns nodes randomly to shards using a Verifiable Ran-
dom Function (VRF) and Verifiable Delay Function (VDF), failing to leverage the inherent
discrete categorical nature of election data. Such data can be divided by polling station,
area, and election category.



Blockchains 2024, 2 370

2.4. Post-Quantum Cryptography

Li and his companions [29] proposed a new lattice-based signature scheme based on
the Short Integer Solution (SIS) problem. In addition, its efficacy against the Shor and Grover
algorithms was analyzed. Y. Gao et al. [30] proposed a secure cryptocurrency scheme based
on PQB to resist quantum computing attacks. In addition, the improved correctness and
unforgeability of the signature under the lattice SIS assumption were analyzed. Li et al. [31],
as mentioned in this paper, proposed a post-quantum blockchain with a segregation witness,
increasing signature proportions in block size based on SIS hardness. They also studied
post-quantum crypto-systems and their challenges for blockchain and DLT application.
Ref. [32] proposed a layer-two solution for secure blockchain node communication and
introduced post-quantum key transactions. Sun et al. [33] proposed a quantum-blockchain-
based voting protocol using cryptographic primitives and a quantum Byzantine agreement
for consensus.

The existing proposed systems, while advancing post-quantum security, tend to
prioritize cryptographic hardness and resistance to quantum attacks. However, they may
fall short in addressing the unique and critical needs of e-voting systems, such as efficiency,
scalability, data management, voter privacy, and the ability to handle complex, real-time
election data securely and transparently.

2.5. Deepface

Deepface [34] is a deep learning system used for face recognition and authentication.
Blockchain enhances security and tamper-proof nature by storing face images, providing
secure and accessible large-scale face data storage [35]. Deep learning parallelization
enhances face recognition accuracy and efficiency by converting facial features into binary
hash codes for faster recognition [36].

2.6. Problem Formulation

After analyzing the related work on blockchain-based e-voting, consensus, post-
quantum cryptography, and DeepFace in blockchain-based e-voting systems, here are the
formulated problems and challenges we need to address in the proposed system:

1. Many e-voting systems rely on third-party blockchain systems like Bitcoin and
Ethereum. However, the gas fees or transaction costs may become infeasible for
hosting large-scale, nationwide elections.

2. Consensus mechanisms are one of the most critical features of blockchain and decen-
tralized networks. Most existing blockchain EVM systems use consensus mechanisms
designed for managing cryptocurrency operations. These general-purpose blockchains
do not provide the required various levels of access and control for different entities, and
they fail to meet legally required regulations to prevent unauthorized activities.

3. Existing systems rely on third-party wallets and managed servers for voter validation,
potentially compromising system integrity and voter privacy, as data stored on these
servers are not part of an immutable ledger. Moreover, single-entity management
introduces single points of failure. To address these issues, a secure voter validation
system is required, one that references the distributed ledger, protects voter privacy,
and employs a multiparty security model.

4. In the age of quantum computing, traditional asymmetric encryption can be broken
via quantum computers using algorithms like Shor’s and Grover’s. We need our
system to be a deterrent against such attacks.

5. Existing blockchain sharding approaches like VRF and VRD have failed to utilize
the discrete categorical nature of election data and failed to create data-concentrated
shards. E-voting systems require a high level of data concentration and integrity,
which is often not achievable by the random sharding approach.

6. We need a way to prevent identity theft, impersonation, or other fraudulent activities.
Biometric facial recognition adds an extra layer of security by ensuring that the person
casting the vote matches the registered voter’s identity.



Blockchains 2024, 2 371

To address the challenges in election systems, this study proposes a Post-quantum
Secured Multiparty Computed Hierarchical Authoritative Consensus Blockchain (PQMPCHAC-
Bchain) to make a secure, transparent, and scalable e-voting system, eliminating doubts
about election outcomes and ensuring a fair and accurate voting process.

2.7. Comparative Analysis of Existing Methods and Proposed Approach

In this section, we present a comparative analysis with existing e-voting systems to
highlight the novelty and advantages of our proposed approach. This analysis focuses on
key features such as consensus mechanisms, performance, sharding, MPC token generation
systems, post-quantum cryptography, immutable zk-voter verification, block modularity,
access and control, single points of failure, and limitations, as shown in Table 1.

Table 1. Comparative analysis of existing methods and our proposed approach.

Features Previous
Study [10]

Previous
Study [9]

Previous
Study [20]

Previous
Study [37]

Our
Proposed

Consensus
Mechanism PoS PoS & PoC PoS PBFT HAC Hybrid

Consensus
Performance 25 TPS 25 TPS 25 TPS – 181 TPS

Sharding VRD
(Random) No No No

Category-
based
Sharding

Shard Data
Concentra-
tion

Low N/A N/A N/A High

MPC Token
Generation
System

No No No No Yes

Post
Quantum
Cryptogra-
phy

No No No No Dilithium

Immutable
zk-voter
Verification

No No No No Yes

Block
Modularity No No No No Yes

Single Point
of Failure Potentially Potentially Yes Yes No

Access &
Control Hybrid Public Public Public

Hierarchical
Layer-Based
Access &
Control

Limitations Sharding,
Compatibility

VRD
Sharding &
Complexity

Privacy,
Managed
Server

Latency None

The comparison demonstrates how our proposed method addresses the shortcom-
ings of previous studies and offers significant improvements in various aspects. More
comparisons on various requirements can be found in Section 7.3.

3. Hybrid Consensus Model

This paper presents a novel approach to consensus called the Hierarchical Author-
itative Consensus (HAC) model. In this section, we discuss the details of the proposed
hybrid consensus model and provide a clear perspective of its design. The consensus
model integrates a dependable signing mechanism that ensures the authenticity of each
participant involved in voting. This feature is crucial for maintaining the system’s integrity.



Blockchains 2024, 2 372

Furthermore, our hybrid consensus model employs a hierarchical authorization and access-
control system. This innovative approach allows us to capitalize on the beneficial features
of both public and private blockchains while simultaneously mitigating their drawbacks.
This balance contributes significantly to the efficiency and security of the consensus model.

3.1. Structure of the Blockchain Network in the Framework

The current structure of e-voting systems presents numerous challenges related to
credibility and verification, and this study aims to identify and address these by proposing
the PQMPCHAC-Bchain model, designed to be compatible with the existing electoral
system while enhancing its security, transparency, reliability, and integrity.

To achieve this, the architecture of a blockchain network for voting applications
must be defined. In our proposed model, each entity involved in the voting process is
authorized by a higher authority. This hierarchical authorization and predefined access
control ensure that each entity has the necessary permissions to facilitate hybrid consensus
and e-voting functionality. By implementing the PQMPCHAC-Bchain model, we can
address the challenges presented by the existing e-voting system structure and improve
the overall electoral process.

The proposed model in Figure 1 features multilevel access and authorization in its con-
sensus mechanism, with each voting process entity having predefined access and a specific
role within the blockchain. The hybrid blockchain system proposed differs from combining
two separate blockchains, using a single blockchain with hierarchical and separate layers
for permission and access based on the user within the consensus mechanism. This ap-
proach offers the benefits of public and private chains without compromising security. By
maintaining sensitive election authoritative access and control of the public network, the
model ensures secure, fair voting as per law regulations while preserving the transparency
and accountability of a public blockchain by sharing all ledgers publicly. Operating on a
public network also ensures greater immutability.

• Public Layer: Open to everyone, allowing data transfer and value observation. Any-
one can join, read, and monitor transactions, but adding new or appended data
is restricted.

• Private Layer: Accessible only to authorized entities like polling officers, enabling them
to validate new blocks using encryption and access controls.

• Administration Layer: Manages blockchain validators, allowing administrators to as-
sign/remove validators, publish results, and halt elections in emergencies, ensuring
integrity and security.

• Election Management Layer: Oversees the election process, enabling election creation, ad-
ministrator assignment/removal, and emergency actions like halting or reorganizing
elections to safeguard integrity and security.

Figure 1. This diagram visually explains the Hierarchical Authoritative Consensus algorithm, which
combines both public and permitted features of blockchain. It shows the multiple layers of permission
and access for each entity in the network, making HAC a hybrid consensus algorithm.



Blockchains 2024, 2 373

Overall, this approach enhances the security and reliability of e-voting systems by
combining the advantages of public and private blockchains while addressing their re-
spective limitations. By implementing hierarchical and separate layers for permission and
access, we can ensure that sensitive information remains confidential while maintaining
the transparency and accountability of the voting process.

3.2. Comparison with Other Consensus Mechanisms

To better understand the advantages of our proposed HAC model, we compare it with
other popular consensus mechanisms :

• Proof of Work (PoW): Used by Bitcoin, PoW requires miners to solve complex math-
ematical puzzles to validate transactions. While it is secure, it is energy-intensive
and slow.

• Proof of Stake (PoS): Used by Ethereum 2.0, PoS selects validators based on their staked
cryptocurrency. It is more energy-efficient than PoW but can lead to centralization if
large stakeholders control the network.

• Practical Byzantine Fault Tolerance (PBFT): Used by Hyperledger Fabric, PBFT ensures
consensus through a voting process among nodes. It is efficient but can be slow with a
large number of nodes.

• Delegated Proof of Stake (DPoS):Used by EOS, DPoS allows token holders to elect
delegates who validate transactions. It is fast and scalable but can lead to centralization
if a small number of delegates control the network.

Table 2 summarizes the comparison of these consensus mechanisms.

Table 2. Comparison of consensus mechanisms.

Consensus Mechanism Energy Efficiency Scalability Security Decentralization

PoW Low Low High High
PoS High Medium High Medium
PBFT Medium Low High Medium
DPoS High High Medium Low
PQMPCHAC High High High High

The HAC model combines the best features of these consensus mechanisms while
addressing their limitations. It is energy-efficient, scalable, secure, and decentralized,
making it suitable for e-voting systems.

3.3. Real-Life Hybrid Consensus Model

Figure 1 illustrates our multi-layer hybrid consensus mechanism, which utilizes mul-
tiple layers of nodes to ensure fair and accurate voting. Our system features threshold
cryptography and distributed authorization power, mitigating the risks of single-point
failures and enhancing security over the network, thereby improving voters’ trust and
confidence in the election process.

An ideal example of how the HAC mechanism can be utilized in an e-voting scenario
is as follows:

1. Layer 1: Holds significant power, managing election administrators/returning officers
in layer 2, and can suspend, halt, or reorganize elections in emergencies.

2. Layer 2: Multiple returning officers/election administrators assign/remove block
validators in layer 3 and participate in token generation.

3. Layer 3: Multiple polling officer nodes ensure proper voter identification, accurate
vote recording, block generation, validation, and propagation and contribute to token
generation.

4. Layer 4: Public layer with open access for block verification, promoting transparency
and accountability. Public nodes cannot validate blocks but can access all net-
work blocks.



Blockchains 2024, 2 374

In the HAC model, votes are recorded in blocks and authorized by trusted validators
from the third layer, ensuring that only valid votes are counted. To enhance transparency
and accountability, a trusted signing mechanism traces each vote to its validator, allowing
every public node to confirm the authenticity and accuracy of each vote. This ensures a
fair and transparent election process, with the mechanism adaptable to various election
requirements through additional layers and permission/access variations.

3.4. Method for Verifying the Credibility of a Block

Maintaining block credibility is vital in decentralized and secure blockchain networks.
In our proposed HAC mechanism, blocks require multiple authorization levels due to
its layered permission and access structure. All nodes have secret public–private key
sets, while authorized nodes from layers 1, 2, and 3 share their public keys with public
nodes for block verification. Public nodes obtain these keys from trusted sources like the
decentralized KMS server, Election Commission server, or other trusted network nodes.

Before accepting blocks, each node verifies every section, including the corresponding
public key. Malicious nodes attempting to tamper with blockchain data are detected
and isolated, ensuring network integrity and security. The HAC hybrid consensus model
validates each block per layer and ensures public verifiability of each block section, fostering
multiparty confidence and enabling voter verification from the public layer.

4. The Proposed Blockchain-Based E-Voting System

Our proposed voting system is designed to ensure a secure and fair election process. It
encompasses several key features such as decentralization, security, cost-effectiveness, voter
verifiability, auditability, anonymity, fairness, and ease of use. These features guarantee
that all voters have an equal opportunity to cast their ballots, which are then accurately and
securely counted. To verify each voter’s information, we use biometric and facial recog-
nition systems. These systems authenticate user information retrieved from the National
Identification Database (NID) through a secure cryptographic signature mechanism. To
prevent fraud and double voting, we’ve developed a multiparty cryptographically secure
token verification system. This system ensures the protection of the voter’s identity and
privacy while checking whether a valid voter has already cast their vote.

The system architecture (Figure 2) consists of three main layers:

1. Application Layer: Includes components like the EVM unit, Ballot unit, and
Script panel.

2. Network Layer: Consists of elements such as the P2P network, IoT devices, lightweight
devices, and database.

3. Consensus Layer: Incorporates components like the lookup table, shard management
system, blockchain, Script execution, and proof of Hierarchical Access and Control
(HAC) for each block.

The system is designed to accommodate real-world electoral systems, incorporating
roles such as returning officers (election administrators) who oversee polling stations in
specific areas. Polling officers, acting as block validators or miners, are authorized by
returning officers, creating a multi-layer system of permission and access. This structure
ensures the integrity and security of the voting process, establish voter trust and confidence.
The following section discusses various users and their roles in the electronic voting system.



Blockchains 2024, 2 375

Figure 2. Node architecture of the proposed system, featuring three key layers: Application Layer for
user interaction and services, Consensus Layer for maintaining node agreement, and Network Layer
for managing internode communication.

4.1. Roles of Participants

To organize a national-level presidential election, certain rules and regulations must be
enforced. Here is a basic roadmap outlining how various entities can interact, participate,
and fulfill their roles and duties in a blockchain-based e-voting system to ensure compliance
with electoral regulations.

• Election Commission (EC): The EC is a powerful entity that oversees the election process.
They can assign or remove election administrators, suspend or halt elections, and
reorganize elections in the case of emergencies or corruption. The EC can be composed
of multiple entities to reduce the risk of a single point of failure, and we have used
threshold cryptography to provide more robust security over the system.

• Returning Officer (RO): The RO assigns or removes block validators (e.g., polling
officers), participates in token generation, and oversees elections in their authorized
areas, ensuring compliance with rules and regulations.

• Polling Officer (PO): The PO is responsible for accurate voter identification, recording
votes, and maintaining ballot records, effectively making them block validators or
miners in the system.

• Candidate: A candidate is a person seeking election to a position of authority.
• Voter: A voter is a registered individual who can cast a vote for their chosen candidate.

Upon successfully casting their vote, they receive a secret token to verify if their vote
has been accurately stored in the system.

4.2. Entities

In a real-world scenario, an election needs to be supported by multiple external entities
such as the National Identity card system (NID), NID server, blockchain network, scripting
mechanism, key management server, and token verification. Some of these entities are
briefly described below.



Blockchains 2024, 2 376

• NID system: A unique government-issued ID for each voter is essential to perform elec-
tion tasks accurately and prevent fraudulent or double voting. The NID server securely
manages voter information, participates in token generation, and uses cryptographic
signatures to prevent data tampering, ensuring accurate voting.

• Blockchain Scripting: A transparent and efficient scripting mechanism enables pre-
defined operations for authorized personnel, ensuring fair elections and surpassing
smart contracts in speed and security.

• Multiparty Token Generation System: A secure multiparty computation system gen-
erates unique tokens for voters to cast, preventing double voting and protecting
voter identity.

4.3. System Design

To ensure the smooth functioning of the main voting system, a backend server acts
as the primary controller for most functions. Specifically, a local copy of the blockchain or
its shards is stored in a key-value pair database, called LevelDB, on the backend server.
This server, built on Gin, a web framework written in Go, manages the local database,
communicates with the blockchain network, and connects with a decentralized key man-
agement server (KMS). Moreover, the server handles communication with the NID server,
block generation, token generation, and script execution mechanisms. To provide a clearer
understanding of the system, a detailed overview is presented in Figure 3.

Figure 3. This diagram visually illustrates the proposed election process, highlighting interactions
among various participants, system components, and external entities. (a) Participants include
voters, polling officers, and returning officers. (b) System components encompass the server, local
database, scripting system, and peers on the network. (c) External entities involve the decentralized
key management server (KMS), token generation system, and NID server.

4.3.1. Initialization Phase

Before being deployed for an election, our system must undergo several preprocessing
steps. These steps include retrieving various public keys from the KMS server, initiating
a connection between the NID server and relevant nodes, and retrieving the election
configuration, voter list, candidate list, and all required commands with proof. After
retrieving and validating all the required data and scripts, the EVM system executes all
scripts and updates the system accordingly.

4.3.2. Registration Phase

Before being deployed for an election, our system must undergo several preprocessing
steps. These steps include retrieving various public keys from the KMS server, initiating a
connection between the NID server and relevant nodes, and retrieving the election configu-
ration, voter list, candidate list, and all required commands with proof. After retrieving



Blockchains 2024, 2 377

and validating all the required data and scripts, the EVM system executes all scripts and
updates the system accordingly. Users must register with their NID, institutional ID, public
key, and unique Digital ID for the hierarchical-layer-based consensus mechanism. Regis-
tration includes real-time deep learning face recognition and verification for participant
identification in blockchain scripting commands.

1. Returning Officer (RO): An administrator overseeing a specific area and its polling
stations, assigned by the Election Commission (EC). ROs register with credentials and
can access their panels to create and publish commands in the script stack to manage
the election process.

2. Polling Officer (PO): A person appointed by the RO to oversee the voting process at
a polling station. A PO registers with their credentials and can access their panel to
activate the voting machine and ensure a secure and orderly voting process for all
eligible voters.

3. Voter: An individual eligible to vote in an election. Voters register their information,
pictures, and biometrics, which are stored in the NID server. They have a smart NID
card containing their NID number, photos, and biometrics to verify their identity at
the polling station.

DeepFace Algorithm: The face recognition feature is an additional layer of authentication
in the system, and it is used to verify users before they can access their respective systems as
shown in Figure 4 with an algorithm. The system is built using DeepFace, a face recognition
and facial attribute analysis library for Python, OpenCV, and TensorFlow.

Figure 4. The overview of the biometric face verification system. From the figure, we can see how
the system scans the voter’s face in front of the EVM unit. DeepFace, a facial recognition and facial
attribute analysis deep learning model, has been employed to compare the image of the voter with
the database image to ensure voter integrity.

After conducting rigorous tests, we determined the threshold to be approximately
0.10, as it showed optimal performance in face recognition and facial attribute analysis.
Algorithm 1 shows the use of face recognition using the DeepFace package. KnownIMG is
the known image obtained from the system database, and UnknownIMG is the image clicked
through the system. “R” is the details of the face match records between two different
images, and “d” is the distance of difference.

Algorithm 1 Proposed face recognition algorithm using DeepFace package

1: function VERIFYFACE(VoterNid, BiometricData)
2: KnownIMG ← import image from database using VoterNid
3: UnknownIMG ← import recently clicked image from BiometricData
4: R← DeepFace.verify(KnownIMG, UnknownIMG)
5: return R.dist ≤ 0.10
6: end function



Blockchains 2024, 2 378

4.3.3. Blockchain Command (Scripting System)

Smart contracts are self-executing digital agreements that utilize computer codes
to enforce the terms of an agreement without intermediaries. However, smart contracts
face issues such as coding vulnerabilities, complex designs, high power consumption,
high transaction costs, reliance on external data, and excessive user authority. Regulatory
uncertainty and a lack of confidential execution make them incompatible with electoral
rules in many countries [38]. This study proposes a stack-based scripting mechanism that
is compatible with the existing regulatory system, is simpler, and provides users with a
controlled level of access and permission with less computational overhead. As shown in
Figure 5, this scripting command allows the Election Commission and Returning Officer to
have appropriate control over the blockchain and the panel to perform their duties.

Figure 5. The diagram visually explains the proposed scripting mechanism. It shows how a scripting
panel pushes commands in the script stack and publishes them on blockchain networks. Other
nodes retrieve the script from the network to their local machines, verify its authenticity, execute the
command, and update the system accordingly.

4.3.4. Authorization and Verification Process

In order to maintain the security and authenticity of each record in the blockchain,
such as a “polling officer” record, certain fields like name, ID, designation, assigned polling
station, and Digital ID are hashed to create a unique digest of the record. This digest is
then signed by an authorized entity, such as a returning officer, using its private key to
generate a verifiable certificate as proof of authenticity. This digest can also be used by the
returning officer to create a command on the blockchain, authorizing the individual as a
polling officer. Moreover, the record verification process involves the use of an authorized
entity’s public key to decrypt the signature. Successful decryption confirms the authenticity
and integrity of the record, as shown in Figure 6. This verification process is essential for
ensuring transparent verification and preventing fraud in blockchain systems.

Authorization algorithm: In our layer-based hierarchical consensus system, we often
need to obtain authorization from a higher level before authorizing a lower-level entity. To
support this bureaucratic system, we have implemented an authorization algorithm.

A detailed algorithmic representation of the peer-routing algorithm is provided in
Appendix C.4 of Appendix C.



Blockchains 2024, 2 379

Figure 6. This diagram presents a lucid explanation of the authorization process. It shows how every
entity is hashed, signed, and generates a proof of record.

4.3.5. Peer Routing Algorithm

Peer routing is a key process for discovering nodes within a network and building a
decentralized structure. A detailed algorithmic representation of the peer-routing algorithm
shown in Algorithm 2.

Algorithm 2 Peer Routing Algorithm

1: bit← getLatestBlock()
2: c f g← getConfig()
3: host← makeNodeHost(cfg)
4: kademliaDHT ← dht.New(ctx, host)
5: kademliaDHT.Bootstrap(ctx)
6: for peerAddr in c f g.BootstrapPeers do
7: peer ← peerChan()
8: if error in host.Connect(ctx, peer) then
9: print "Connection failed: <error message>"

10: continue
11: end if
12: if host.SendBlockData(bit, peer) is successful then
13: print "Connected to: <peer>"
14: host.Peerstore().AddAddrs(peer.ID, peer.Addrs, peerstore.PermanentAddrTTL)
15: else
16: print "Connection failed"
17: end if
18: end for

4.3.6. Election Process

To ensure the integrity of the election, only authorized individuals such as election
administrators or returning officers can create polls. They use their private keys to sign the
poll data, which is then added to the poll script published on the blockchain network. This
script contains all the necessary information to verify the authenticity of the poll, including
the returning officer’s identity, polling station details, candidate details, and election time.
Any computer in the network can verify the signature and script to ensure that the poll is
valid. Once a poll is created, it can start, and polling officers can begin their work. The poll



Blockchains 2024, 2 380

data are stored on the blockchain in a way that cannot be altered, giving voters confidence
that their votes are being counted correctly and that the election results are accurate.

Voters present their smart NID cards to the polling officer, who scans them and verifies
voter information, shown in Figure 7. Biometric facial recognition further authenticates
voters against the NID database before proceeding with the blockchain-based election.

A unique token is generated for each voter to ensure one-time participation. The
system verifies whether the tokens have been used previously. Otherwise, the ballot is
activated, allowing the voter to vote. After the voter casts a vote, it is encrypted and stored
in a block on the blockchain network. A receipt is provided to the voter. This ensures that
votes are secure and that election results are accurate. As shown in Figure 8, the voting
process is automated and transparent. Voters can verify that their votes have been cast and
counted accurately by checking the blockchain. This process enhances the security and
transparency of the election, thereby increasing public trust in the electoral system.

Figure 7. A visual representation of the EVM system that displays voter information, which includes
names, addresses, and voter ID numbers.

Figure 8. Voters present smart NID cards and undergo biometric facial verification for identification,
as illustrated in Figure 4. A unique token is generated as mentioned in Section 4.6, which prevents
multiple voting. Verified voters cast encrypted votes stored securely on the blockchain, ensuring
integrity. Post-voting verification is also available.



Blockchains 2024, 2 381

Proposed Vote Casting Algorithm: The algorithm for casting votes is illustrated in
Algorithm 3. To cast a vote, a voter is required to provide his or her NID number and
biometric information. Next, this information is sent to the NID server, which can verify
the voter’s identity. If the verification is successful, the server provides the voter with a
unique token that they can use to cast their vote.

Algorithm 3 Proposed Vote Casting Algorithm

1: Declare a block
2: Block← new BlockStruct
3: Get voter information
4: function GETVOTER(VoterNid, BiometricData)
5: VoterStruct← NID, Name, PSCODE, Address, AvatarDigest, Signature
6: return VoterStruct
7: end function
8: CheckVoter
9: function CHECKVOTER(NID, Name, PSCODE, Address, AvatarDigest, Signature)

10: digest← Hash(NID, Name, PSCODE, Address, AvatarDigest)
11: if Check(Signature, publicKey, digest) ̸= true then
12: return Invalid
13: end if
14: if digest /∈ ApprovedVoterList then
15: return Invalid
16: end if
17: token← Hash(Rsig_seed + Psig_seed + EID + VoterStruct.digest + Rnd())
18: if token exists in spendedVoters then
19: return DoubleVote
20: end if
21: return ValidVoter
22: end function
23: Getting Vote from Ballot unit
24: Block.vote← GetVote(seed, keyp, Randp)
25: Sign the block
26: BlockDigest← generateBlockSignature(Block)
27: Block.Signature← generateBlockSignature(BlockDigest, Privatekey)
28: Append Block to The chain
29: Nextblock← . . . ▷ Next block in the chain

Ballot Tallying: After the election, votes are tallied using cryptographic proofs, ensuring
only valid votes are counted. All the pertinent election data, including cryptographic proof,
random functions, and encryption keys, are made public for everyone to check their
results themselves. This open and verifiable process ensures that everyone can trust the
election results. The detailed algorithmic representation of the ballot tallying is available in
Algorithm 4.

4.4. Incorporating Category-Based Sharding in Blockchain Network

As blockchain networks grow, nodes struggle with data transmission, reception, man-
agement, and storage. Sharding addresses these issues by dividing the blockchain into
smaller subnetworks (shards) that handle distinct data subsets. Parallel transaction process-
ing across shards improves scalability and performance. However, sharding can introduce
challenges like increased latency and reduced throughput due to cross-shard communi-
cation. To tackle these challenges, we propose category-based sharding (Figure 9). This
solution groups voting data by election area and polling station, generating shards based on
polling stations and categorizing them by election area shown in Figure 10. A distributed
lookup table efficiently redirects requests to appropriate nodes, minimizing internode
communication and enhancing data accessibility. This improves overall scalability, per-



Blockchains 2024, 2 382

formance, and availability of blockchain networks, overcoming challenges introduced by
traditional sharding techniques.

Algorithm 4 Tallying Votes

1: function TALLYINGVOTES(blockchain, CanidatelistVotes)
2: votes← empty map
3: for each block in blockchain do
4: votes← getVotesFromBlock(block)
5: for each vote in votes do
6: decryptedVote← decrypt(vote, Ballotkey)
7: if decryptedVote is in CanidatelistVotes then
8: votes[decryptedVote]← votes[decryptedVote] + 1
9: end if

10: end for
11: end for
12: return votes
13: end function
14: function GETVOTESFROMBLOCK(block)
15: return block.vote
16: end function

Figure 9. The diagram illustrates category-based sharding, dividing a blockchain into categories with
dedicated shards for data storage. A coordinator manages shards, and a lookup table directs category
queries. Intra-shard and cross-shard communication occurs via a peer-to-peer network.

Figure 10. The diagram illustrates shard assignment for a specific category and node. The shard
reconfigurator and coordinator manage the process, optimizing shard assignments based on network
traffic and copy count.



Blockchains 2024, 2 383

4.5. Incorporating Post-Quantum Asymmetric Encryption in Blockchain

To ensure transparency and secure authorization, our PQMPCHAC-Bchain model uses
public key cryptography, digital certificates, and hash functions for secure authorization and
transparency. However, with the advancement of quantum computing, potential attacks
based on Grover’s and Shor’s algorithms pose a threat to these cryptographic systems. To
address this, we implemented and tested Dilithium, a post-quantum asymmetric encryption
algorithm selected by NIST for standardization, on our blockchain. We tested two versions,
Dilithium2 and Dilithium3, with the latter offering higher security but slower signing speed
and larger keys. Incorporating quantum-resistant cryptography ensures the long-term
security and reliability of our blockchain system.

4.6. Token-Based Voter Verification System

Double voting is a serious issue in voting systems, occurring when someone votes
twice in the same election, either accidentally or intentionally. To ensure a fair election,
it is crucial to prevent double voting. To address this, we introduced a cryptographically
secure unique token generation and verification system to defend against fraud and double-
voting activities.

As shown in Figure 11, the proposed system generates a unique temporary token
for each voter by using MPC. MPC is a cryptographic technique that allows multiple
parties to jointly compute a token over their inputs while protecting the voter’s identity.
This means that no single party can learn anything about other parties’ inputs, even if
they collude. The token can only be generated using the voter’s identity and a secret key
during the election, and cannot be regenerated for the same voter once the election is over.
Because the token is generated using MPC, core encryption is secure even if some parties
are compromised, ensuring that the voter’s privacy remains intact. For a detailed overview
of the time inference logic in multi-party computation, please see Figure A25 in Appendix B.
Our system provides a secure and reliable solution to prevent double voting in elections.

Figure 11. The high-level representation of the structure of token-based verification in the system
shows how voter information is split and computed into a token, which is then used to verify double
voting without revealing the voter’s identity.

Figure 11 illustrates the token verification system. This method has several advantages
over the traditional voting systems. First, MPC is more secure because it is using MPC to
protect voter identities. Second, the process is more transparent. Thus, the uniqueness of
the vote can be verified while protecting the voter information. Third, the token system is
more convenient because voters can cast their votes anywhere.

Instead of directly storing or checking the voter’s identity, we verified the voter’s
identity using a privacy-preserving token. This token is cryptographically linked to the



Blockchains 2024, 2 384

voter’s identity, but cannot be traced back to the voter’s identity. We then checked this
token against a list of spent tokens to ensure that the voter had not already voted. This
ensures that voter’s privacy is preserved. The working procedure of this system can be
found in Appendix C.1 of Appendix C for a detailed overview of the time-inference logic
in multi-arty computation.

Token generation: This system enables multiple parties to collaborate in computing
a function based on a voter’s unique identifier without disclosing the voter’s identity to
any of the parties involved. A detailed algorithmic representation of the token generation
system is available in Algorithm 5.

Algorithm 5 Formula of Token Generation

1: function SLICESECRET(secret, n)
2: parts← empty list
3: partSize← length of secret/n
4: for i← 0 to n do
5: parts[i]← secret[i * partSize : (i + 1) * partSize]
6: end for
7: return parts
8: end function
9: function MULTYPARTYCOMPUTATION(secret, n, seed, validTime)

10: parts← SliceSecret(secret, n)
11: shares← empty list
12: for i← 0 to n do
13: if validTime.contains(Time()) then
14: shares[i]← parts[i]⊕ seed
15: else
16: shares[i]← parts[i]⊕ 0
17: end if
18: shares[i]← Hash(shares[i])
19: shares[i]← Sign(shares[i], parties[i].privatekey)
20: end for
21: return shares
22: end function
23: function MERGESHARES(shares, n, parties)
24: token← empty string
25: for i← 0 to n do
26: if Veri f y(shares[i].signature, parties[i].publickey) is Valid then
27: token← token⊕ shares[i]
28: else
29: return invalid
30: end if
31: end for
32: return token
33: end function
34: function GENERATETOKEN(secret, n, seed, validTime, privatekey, parties)
35: shares← MultyPartyComputation(secret, n, seed, validTime)
36: token← MergeShares(shares, n, parties)
37: token← Hash(token)
38: token← Sign(token, privatekey)
39: return token
40: end function

4.7. Block Structure: A Modular Approach toward Efficiency

In the context of election data, the existing ledger structure and management system
cannot fully reduce redundant data while accommodating the HAC. To address the storage
capacity and layer-based authorization and verification issues in blockchain, we propose



Blockchains 2024, 2 385

a novel modular approach. Block modularity stores data as independently verifiable
modules, links them in the blockchain, stores a copy of these modules in a local database,
and stores their Merkle hash in a block. We store, hash, and sign one or more fields in
each record as separate units, ensuring their modularity and independent verification.
An e-voting platform optimizes this modular approach by processing only the updated
section and referencing previously validated data, thereby minimizing duplicate processing
and reducing unnecessary verification. Figure A25 in Appendix B provides a visual
representation of our block and its units. The proposed modular approach not only
addresses the storage capacity issue but also enhances the layer-based authorization and
verification process in blockchain.

Block Digest Generation: Each field of the block generates a hash code. We combine
these hash codes to produce the digest of the entire block. During the propagation of
the block, each record possesses a verifiable certificate, providing proof of authenticity.
Appendix A Figure A24 provides an additional visual representation.

4.8. Voter Data Generation

To test the scalability of our proposed system, we simulated it with a large number
of voters across various regions. Since our proposed system leverages the discrete nature
of election data and the hierarchical structure of each electoral region, we required a
substantial amount of voter and election data. However, sensitive voter datasets are scarce
and often lack the necessary features we were looking for. Therefore, we had to create our
own dataset targeted at Bangladesh. Using geolocation data, Bengali name datasets, and
the Faker library, we generated 113,500 synthetic voter records through subsampling and
combinatorial approaches. This dataset [39] closely resembles real-world voter data and
includes a digest field for immutability testing and blockchain applications. The voters are
well distributed across the regions, which helps in creating an ideal environment for testing
and simulation, as shown in Figure 12.

Figure 12. Data generation process for voter distribution. The bar graph illustrates the hierarchical
breakdown of voter counts across different administrative divisions: (A) number of voters per
division, (B) number of voters per district, (C) number of voters per union, and (D) number of voters
per upazila.



Blockchains 2024, 2 386

5. Implementation

We built a custom blockchain-based e-voting system from scratch, without relying on
existing libraries or frameworks. This approach allowed us to focus on essential features
and security measures. The system comprises three main components: the Network Stack,
the Execution Stack, and the Consensus Stack.

1. Network Stack: This component is mainly responsible for establishing communication
with various internal and external entities, such as the NID server, KMS server, MPC
network, and handling peer routing for p2p tasks.

2. Execution Stack: The primary role of this stack is to execute various operations, includ-
ing block generation, e-voting operations, shard management, face verification, token
generation, scripting execution, and more.

3. Consensus Stack: This component focuses on various authorization and verification
processes, including but not limited to new block verification, script verification, HAC
tree verification, and malicious node isolation. Only after successful verification can
data be appended to the blockchain, ensuring the integrity and security of the system.

To create a platform-neutral and extensible serialized data structure for blocks, we
used protocol buffers. We also employed cryptographically secure hash functions (SHA256,
Blake2b) and binary encoders (Base58) to generate secure, append-only timestamped
blocks, ensuring the blockchain’s security and immutability. For asymmetric cryptography
and digital signatures, we integrated Cloudflare’s CIRCL library, including algorithms
like Ed25519, Dilithium2, and Dilithium3. This enhances the blockchain’s verifiability
and immutability. We used the Kademlia DHT subsystem within libp2p for peer routing,
ensuring efficient and secure communication between network nodes. To prevent double-
spending, we implemented a secure token-based verification system using Universally
Unique Identifiers (UUIDs) and zero-knowledge proofs, prioritizing transparency, privacy,
and tamper-resistance. For blockchain data storage, we chose LevelDB, a fast key-value
storage solution offering efficient data management. Our secure token generation system
verifies whether voters have already cast ballots without revealing their identities, prevent-
ing double voting. We optimized the search process within spent tokens using a red-black
tree-supported tree-set data structure. For face verification, we employed the Deepface
framework, which compares facial images using Euclidean similarity metrics to determine
if they belong to the same individual. We developed a backend using the GIN web frame-
work, providing a REST API for managing requests and actions and ensuring smooth
communication between system layers. Additionally, we created a user-friendly graphical
user interface (GUI) frontend using Flutter, with seamless communication with the backend
via REST APIs. To enhance the EVM system, we implemented an NID server using GIN
and SQLite 3, providing verifiable and tamper-proof voter data, ensuring voting process
integrity. The NID server demonstrates the system’s practicality and effectiveness in real-
world contexts. It provides the infrastructure for verifying voter identity and maintaining
voting process integrity, offering a secure, transparent, and efficient e-voting solution.

6. Performance Analysis

We conducted blockchain system experiments, focusing on block generation rate,
throughput, and memory usage based on sharding, post-quantum cryptography, and block
modularity. We integrated advanced post-quantum cryptographic algorithms (Dilithium-
2 and Dilithium-3) with general elliptic curve cryptography for robust security. The
experiments explored the benefits and challenges of sharding without block modularity,
sharding with block modularity, and system performance without sharding. We also
investigated the system’s behavior without sharding and block modularity. The aim was to
assess the impact of sharding and block modularity on system performance and efficiency.

6.1. Experimental Setup

To evaluate the performance and effectiveness of our proposed system, we conducted
a series of experiments. The experimental setup included the following components:



Blockchains 2024, 2 387

• Hardware: The experiments were conducted on a Desktop with AMD 5600 g processors,
8 GB of RAM, and 1 TB of SSD storage.

• Software: The backend server was built on Gin, a web framework written in Go. The
blockchain network was implemented using a custom blockchain framework.

• Datasets: We generated synthetic voter data using geolocation data, Bengali name
datasets, and the Faker library. The Bangladesh-Voter-Synthetic-Dataset [39] dataset
included 113,500 synthetic voter records, distributed across various regions.

6.2. Experiment without Sharding and Post-Quantum

The block modularity graph (a) shows that the block modularity approach outper-
forms the non-modular approach in block generation time as the number of voters increases
beyond 1000. This is because block modularity segments system data into smaller cat-
egories, preventing data duplication and enabling faster processing and validation of
new data.

The throughput bar chart (b) illustrates that the block modularity approach surpasses
the non-modular approach in network performance over time as the number of voters
increases. Initially, the non-modular approach showed higher throughput, but the block
modularity approach achieved 2 times of throughput compared to the non-modular ap-
proach’s for 3000 nodes.

The line graph in Figure 13a and bar chart (b) depict the block generation rate and
throughput of a blockchain network with and without block modularity, respectively.
Table A1 in the Appendix D provides detailed experiment data.

Figure 13. Comparison of Block Generation Time (a) and Throughput (b) with and without Block
Modularity. (a) The blue line represents block modularity, while the orange line depicts the scenario
without it. The horizontal axis shows voter count, and the vertical axis displays time in seconds.
Block modularity demonstrates lower block generation times as voter count increases due to efficient
data segmentation. (b) The vertical axis represents voter count, and the horizontal axis denotes time
in seconds. Block modularity (blue line) shows significantly better throughput compared to the
scenario without it (orange line), highlighting enhanced performance.

Block modularity enables each node to process and validate only relevant blocks, while
the non-modular approach duplicates all data, leading to increased memory consumption,
slower block generation, and lower throughput.

Therefore, block modularity significantly improves block generation rate and through-
put as the number of voters increases in a blockchain network.

6.3. Results after Adding Post-Quantum

To provide a comprehensive analysis of post-quantum cryptography, we conducted
experiments on four variants of two post-quantum algorithms. Specifically, we evaluated
Dilithium-2 with block modularity, Dilithium-2 without block modularity, Dilithium-3 with



Blockchains 2024, 2 388

block modularity, and Dilithium-3 without block modularity. Furthermore, we compared
these post-quantum algorithms across various criteria to gain a better understanding of
their performance and effectiveness.

1. First, we compared Dilithium-2 with block modularity to Dilithium-2 without block
modularity. The results are shown in Appendix A.1.

2. Second, we compared Dilithium-3 with block modularity to Dilithium-3 without block
modularity. The results are shown in Appendix A.2.

3. Third, we compared Dilithium-2 with block modularity to block modularity by itself.
We also compared Dilithium-2 without block modularity to block modularity by itself.
These results are shown in Appendix A.3 and Appendix A.4, respectively.

4. Similarly, we compared Dilithium-3 with block modularity to block modularity by
itself. We also compared Dilithium-3 without block modularity to block modularity
by itself. These results are shown in Appendix A.5 and Appendix A.6, respectively.

5. We compared Dilithium-2 vs. Sharding and Dilithium-3 vs Sharding.
The results are shown in Appendix A.7.

In summary, Figures 14 and 15 show that Dilithium-3 with block modularity outper-
formed the other algorithms in terms of block generation time and throughput.

Figure 14. This graph compares Dilithium-2 and Dilithium-3 performances. Here, Figure (a) shows
Dilithium-2 without (sky blue) and with (dark red) block modularity, and Figure (b) represents
Dilithium-3 without (dark red) and with (purple) block modularity. Also, (c,d) compare both with
block modularity—Dilithium-2 (sky blue) and Dilithium-3 (green)—and Dilithium-2 (purple) and
Dilithium-3 (green) without block modularity. The horizontal axis depicts voters, while the vertical
axis shows time. Dilithium-3 with block modularity generates blocks faster, enhancing performance
and security, especially with more voters.



Blockchains 2024, 2 389

Figure 15. This graph compares Dilithium-2 and Dilithium-3 throughput. Here, Figure (a) shows
Dilithium-2 without (orange) and with (dark blue) block modularity, and Figure (b) represents
Dilithium-3 without (orange) and with (dark blue) block modularity. Also, (c,d) compare both with
block modularity— Dilithium-2 (orange) and Dilithium-3 (dark blue)—and Dilithium-2 (orange)
and Dilithium-3 (dark blue) without block modularity. The horizontal axis depicts voters, while
the vertical axis shows time. Dilithium-3 with block modularity generates blocks faster, enhancing
performance and security, especially with more voters.

6.4. Performance after Incorporating Sharding

Sharding is a technique in distributed systems that divides data into smaller parts
for better scalability and performance. The comparison data is shown in Table A6 in the
Appendix D.

Sharding is a technique for dividing data into smaller parts to improve scalability
and performance in distributed systems. The line graph in Figure 16a compares sharding
with two, three, and five shards, showing that sharding with five shards provides the best
performance as the number of voters increases. At its peak, the green line takes only 28 s
to generate 3000 blocks, while the blue and orange lines take 430 and 153 s, respectively.
In terms of throughput, the bar graph in Figure 16b shows that sharding with five shards
(light green line) outperforms sharding with two and three shards as the number of voters
increases, reaching approximately 106 TPS at 3000 voters. Breaking data into more shards
can lead to higher performance and throughput.



Blockchains 2024, 2 390

Figure 16. The graph shows the block generation time (a) and throughput (b) for sharding with two,
three, and five shards. Sharding with five shards provides the best performance, both in terms of block
generation time and throughput. This is because sharding with five shards distributes the workload
more evenly across the shards, resulting in less work for each shard and faster block generation.

6.5. Performance Comparison: Without Sharding vs. with Sharding

In this section, we analyze the performance of our blockchain system with and without
sharding, focusing on block generation time and throughput. The results are presented in
Figure 17A,B respectively.

Figure 17. This figure presents a comparative analysis of block generation time and throughput
for systems with and without sharding. The line graph (A) illustrates the block generation time,
where the blue line represents the system without sharding, and the green line represents the system
with sharding, demonstrating a significant reduction in block generation time when sharding is
implemented. The bar graph (B) shows the throughput, with the dark green bar representing the
system without sharding and the green bar representing the system with sharding. The results indicate
that sharding not only reduces block generation time, but also significantly enhances throughput.

Figure 17A illustrates the block generation time. The blue line represents the system’s
performance without sharding, while the green line demonstrates the impact of imple-
menting sharding. It is evident that the block generation time without sharding (blue line)
is significantly higher than with sharding (green line). This observation underscores the
effectiveness of sharding in reducing block generation time.

Figure 17B presents the throughput performance. The dark green line represents the
throughput without sharding, and the green line represents the throughput with sharding.



Blockchains 2024, 2 391

The bar graph clearly shows that sharding outperforms the system without sharding.
Initially, the throughput with sharding is 181 TPS (Transactions Per Second), whereas
without sharding, it is 62 TPS. In comparison, other blockchains like Ethereum and Bitcoin
have throughput’s of 25 TPS and 7 TPS. Our system achieves a throughput of 181 TPS,
which is higher than both Ethereum and Bitcoin. While there are other blockchains with
much higher transaction rates, these are typically multi-transactional blockchains designed
for monetary purposes. Our system, however, is developed for a voting system, which
does not require multi-transaction capabilities.

In the context of voting, the number of voters is not constant, which can introduce
complexity in multi-transactional blockchains. Our system employs a mono-transactional
blockchain, meaning a block will immediately process a transaction upon generation. This
design choice simplifies the system and aligns well with the requirements of a voting system.

In summary, our system demonstrates superior performance with sharding, achieving
higher throughput and faster block generation times compared to systems without sharding.
Additionally, our throughput outperforms that of Ethereum and Bitcoin, making it well
suited for a voting system.

6.6. Analysis Based on Memory Consumption

The bar graph in Figure 18 shows how block modularity and sharding affect storage
consumption in the blockchain network.

Figure 18. The bar graph shows the storage consumption with and without sharding for different
numbers of blocks. The x-axis represents the number of blocks, and the y-axis represents the total
storage consumption in bytes. Sharding significantly reduces storage consumption in blockchain
networks, especially for large numbers of blocks.

Without sharding, each block requires 26 bytes of storage, and as the number of blocks
increases to 7500, the total storage consumption significantly rises to 371,072 bytes. How-
ever, when sharding is implemented, the storage requirement for each block decreases
to 16 bytes, and the overall storage consumption reduces to 146,082.4 bytes even with
7500 blocks. This approach results in reduced data replication, faster and more efficient
data processing and validation, and decreased computational requirements. These findings
demonstrate the significant storage efficiency achieved through sharding, which has im-
portant implications for scalability and resource management in blockchain systems. The
insights presented in this analysis are important for researchers and practitioners designing
and implementing blockchain architectures. Sharding is a powerful technique that can be
used to improve the efficiency and scalability of blockchain networks.

7. Discussion and Analysis

In this section, we discuss the attack analysis and security analysis.



Blockchains 2024, 2 392

7.1. Attack Analysis

Hybrid blockchains are considered to be more secure than public blockchains, as
they are only validated by their respective layers. However, the block is as accessible and
transparent as a public blockchain. Even though they are not immune to every attack, some
of the most common attack vectors on private blockchains include the following:

• Vote Tampering: One of the most significant concerns in electronic voting systems is
vote tampering, where an attacker modifies the votes to favor a particular candidate.
Our system uses a blockchain-based secure ledger architecture, in which each vote
is stored as a ledger in a block, and once a block is added to the chain, it cannot be
modified. This ensures that the votes are immutable and cannot be tampered with.

• Double Voting: Double voting occurs when a voter casts more than one vote in the
same election. Our system uses a multiparty computed cryptographically secure token
verification system to prevent double voting. Each voter is issued with a unique token
that is used to cast their vote, and the system checks whether the token has already
been used before allowing the vote to be cast.

• Denial of Service (DoS) Attacks: DoS attacks are designed to make the voting system
unavailable to users by overwhelming it with traffic or disrupting its infrastructure.
Our system uses sharding to distribute the load across multiple nodes, thereby making
it more resilient to DoS attacks. In addition, the system uses a proof of Hierarchical
Access and Control (HAC) mechanism, which ensures that only authorized nodes
can add blocks to the chain, preventing attackers from flooding the network with
invalid blocks.

• Sybil Attacks: Sybil attacks involve creating multiple fake identities to gain an unfair
advantage in the voting process. Our system uses biometric and facial recognition
to verify the identity of each voter and employs an HAC authorization tree to create
valid roles and identities. This makes it difficult for attackers to create fake identities
and to ensure the integrity of the voting process.

• Man-in-the-Middle (MitM) Attacks: MitM attacks involve intercepting and modify-
ing communication between two parties. Our system uses secure cryptographic
mechanisms such as end-to-end encrypted communication protocols, public-key cryp-
tography, and digital signatures to ensure that all communication between nodes is
secure and cannot be intercepted or modified by unauthorized parties. This ensures
the confidentiality, integrity, and authenticity of all data transmitted in the system.

• Quantum Computing Attacks: With the advent of quantum computing, there is a risk
that traditional cryptographic mechanisms could be broken, making the voting system
vulnerable to attacks. Our system uses post-quantum-secured cryptographic algo-
rithms that are designed to be resistant to attacks by quantum computers, ensuring
that the system remains secure even in the face of advances in quantum computing.

7.2. Security Analysis

Hybrid blockchains are considered more secure than public blockchains, as only
authorized personnel validate them. They offer accessibility and transparency comparable
to private blockchains, yet are not entirely immune to attacks. The proposed PQMPCHAC-
Bchain model incorporates various security measures to prevent the attacks mentioned in
Section 7.1, including the following:

• Confidentiality: Our system utilizes encrypted, authenticated communication channels
between peers. Each peer is uniquely identified by a Peer ID derived from a private
cryptographic key. Zero-Knowledge Multiparty Computation (zk-MPC) enables
computations on encrypted data without revealing individual inputs, ensuring voter
information remains confidential.

• Integrity: We guarantee vote integrity and authenticity through an Immutable Dis-
tributed Ledger Technology (IDLT) built with post-quantum secure Dilithium-based



Blockchains 2024, 2 393

digital signatures. A multiparty cryptographically secure token verification system
prevents double voting while protecting voter identity and privacy.

• Availability: A category-based sharding mechanism distributes workload across multi-
ple nodes, enhancing scalability and resilience against Denial of Service (DoS) attacks,
thus ensuring high availability and reliability.

• Authentication: Voter identity is authenticated using MPC token generation and au-
thentication mechanisms, along with biometric and facial recognition technologies. A
Hierarchical Access Control (HAC) authorization tree creates valid roles and identities,
mitigating Sybil attack risks.

• Non-repudiation: Append-only digital signatures, MPC tokens, and the HAC autho-
rization tree ensure non-repudiation in the voting process, preventing voters from
denying or disputing their votes.

• Post-Quantum Security: Post-quantum cryptographic algorithms, such as lattice-based
Dilithium, are employed for authentication, MPC operations, and authorization tasks. This
approach ensures robust security even in the face of quantum computing advancements.

• Randomness: Cryptographically secure randomness facilitates the generation of
zero-knowledge proofs during computation and validation phases, ensuring reliable
and verifiable proofs without compromising sensitive information.

• Malicious Node Isolation: The system verifies data sources using the HAC-tree and
isolates nodes that fail to comply with HAC or provide incorrect proofs or data. Node
actions are shared within the network, and data are replicated across the closest peers,
effectively isolating malicious nodes. This approach secures the system against Sybil
and eclipse attacks.

• Threshold Cryptography: To mitigate single points of failure, threshold cryptography
distributes control over certificate authorization, script creation, and other critical
operations among multiple entities.

• Secure Communication Protocol: End-to-end encrypted communication protocols like
TLS 1.3 and Noise protect against eavesdropping and Man-in-the-Middle (MitM)
attacks, ensuring secure data transmission between nodes.

• Secure KMS Server: A decentralized Key Management Server (KMS) provides relevant
public keys and certificates for verifying votes, tokens, and blocks, preventing fraud
and ensuring the authenticity of all transactions in the system.

In summary, our proposed system employs a multi-layered security approach that
includes blockchain-based immutability, unique voter identification, sharding, proof-of-
stake consensus, end-to-end encryption, and post-quantum cryptography to protect against
various potential attacks and ensure the integrity and security of the voting process.

7.3. Requirement Analysis

The proposed blockchain-based e-voting system is designed to provide both accuracy
and security, meeting the following requirements:

• Voter eligibility: Only verified voters are allowed to cast their votes.
• Verifiability: Voters can verify that their votes have been correctly counted and included

in the final tally.
• Robustness: The voting results and associated data are stored on the blockchain, making

it highly resistant to tampering.
• Uniqueness: The voting process is verified twice, once on the blockchain and once on

the server, to ensure that each vote is unique.
• Ballot receipt: Upon submitting their vote, voters receive a block ID as confirmation

that their vote has been successfully recorded on the blockchain.
• Transparency: The blockchain’s transparent nature allows anyone on the network to

view all voting procedures, ensuring that the process is fair and open.
• Trustworthiness: The blockchain’s scripting provides various security features to the

e-voting system, such as security, autonomy, and transparency, making it resistant to
manipulation and errors.



Blockchains 2024, 2 394

• Scalability: The proposed PQMPCHAC-Bchain, combined with sharding, block modu-
larity, and post-quantum technologies, provides high levels of security and throughput,
making the blockchain-based e-voting system scalable.

As we can see in comparison Table 3, our proposed blockchain-based e-voting system
is a secure and scalable solution that can meet the requirements of modern elections.

Table 3. Comparison of the proposed e-voting system based on a blockchain and previous re-
lated work.

Reference

Properties [9] [10] [33] [18] [5] [40] [41] [21] Our Proposed

Security ○ ○ ○ ○ ○ ○ ○ ○ ○

Robustness ○ ○ ○ ○ ○ ○ ○ ○ ○

Consensus PSC POS QBA POS POS POS POS POW HAC

Sharding ○ ○ ○ ○ ○ ○ ○ ○ ○

Eligibility 5 ○ ○ ○ ○ ○ ○ ○ ○ ○

Verifiability ○ ○ ○ ○ ○ ○ ○ ○ ○

Uniqueness ○ ○ ○ ○ ○ ○ ○ ○ ○

Ballot receipt ○ ○ ○ ○ ○ ○ ○ ○ ○

Transparency ○ ○ ○ ○ ○ ○ ○ ○ ○

Embed Trust ○ ○ ○ ○ ○ ○ ○ ○ ○

Scalability ○ ○ ○ ○ ○ ○ ○ ○ ○

Post Quantum ○ ○ ○ ○ ○ ○ ○ ○ ○

Deepface ○ ○ ○ ○ ○ ○ ○ ○ ○

Time-based inference ○ ○ ○ ○ ○ ○ ○ ○ ○

Unlinkability ○ ○ ○ ○ ○ ○ ○ ○ ○

Confidentiality ○ ○ ○ ○ ○ ○ ○ ○ ○

8. Conclusions

E-voting can address the shortcomings of traditional voting systems, but current
solutions, including Biometric EVM, face challenges like reduced voter trust, cyber threats,
and scalability issues. To overcome these, we present PQMPCHAC-Bchain, an e-voting
system that uses the HAC model and combines public and private blockchains for trans-
parency, immutability, and efficiency. The proposed system represents a groundbreaking
hybrid-blockchain-based e-voting solution, prioritizing post-quantum safety and scala-
bility. It offers a robust blockchain programming environment, user-friendly scripting
mechanisms, and adherence to relevant regulatory frameworks. To protect voter identities
while checking for double voting, we propose a multiparty computed token generation and
verification mechanism. Our system employs biometric and facial recognition technologies
for voter authentication and a secure cryptographic signature process for validating voter
information. To evaluate the system’s efficacy, we conducted tests using high-quality,
synthetically generated voter records and election data, demonstrating its scalability, se-
curity, and effectiveness. Our system achieved 181 TPS and is compatible with existing
electoral laws and regulations, allowing seamless integration into the current e-voting
framework. For the test simulation, we set up entities such as the Election Commission,



Blockchains 2024, 2 395

returning officer, and polling officer. However, certain limitations must be addressed in
future research. The system’s reliance on a predetermined independent party for token
computations introduces a potential centralization of power. To counteract this, we intend
to explore decentralized and open MPC participation systems. Additionally, we aim to
incorporate secure post-quantum communication protocols and smart adaptive sharding
technology to enhance the security, scalability, and overall performance of our system.

Author Contributions: Conceptualization, S.A.J., R.R. and P.G.; methodology, S.A.J., R.R., N.T.
and P.G.; software, S.A.J., R.R., N.T. and P.G.; validation, P.G., M.A.U. and J.A.; formal analy-
sis, S.A.J. and M.A.U.; investigation, N.T., P.G. and M.A.U.; resources, S.A.J., R.R., N.T., P.G. and
M.A.U.; writing—original draft preparation, S.A.J., R.R., N.T. and P.G.; writing—review and editing,
P.G., M.A.U. and J.A.; visualization, S.A.J., R.R., N.T. and P.G.; supervision, P.G., M.A.U. and J.A.;
project administration, P.G. and S.A.J. All authors have read and agreed to the published version of
the manuscript.

Funding: his research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used to test performance and scalability has been up-
loaded to the Hugging Face dataset repository under the name “Bangladesh-Voter-Synthetic-Dataset
(Revision 958f5b4)”, available at the following DOI: https://doi.org/10.57967/hf/2932.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1. Dilithium-2

We conducted an analysis to compare the performance of Dilithium-2 in a blockchain
network with and without block modularity, focusing on efficiency and transaction capacity.
We represented the results using a line graph shown in Figure A1 to show the overall time
and a bar graph shown in Figure A2 to represent the throughput. Also, our comparison
data is provided in Table A2.

In the line graph, the horizontal axis represents the number of voters and the vertical
axis represents the time. For throughput, the horizontal axis represents the time and the
vertical axis represents the number of voters.

Figure A1. Performance of Dilithium-2 with block modularity (dark red line) vs. without block
modularity (sky-blue line). The horizontal axis represents the number of voters, and the vertical axis
represents the time. Block modularity improves the performance of Dilithium-2, especially as the
number of voters increases.



Blockchains 2024, 2 396

In Figure A1, the sky-blue line represents Dilithium-2 without block modularity and
the dark red line represents Dilithium-2 with block modularity. In terms of throughput
shown in Figure A2, the green line represents Dilithium-2 without block modularity and
the sky-blue line represents Dilithium-2 with block modularity.

For Dilithium-2 with and without block modularity, the sky-blue line and red line re-
main the same in Figure A1 for generating a single block for a single voter. However, as the
number of voters increases, the time taken to generate blocks also increases. Interestingly,
the red line remains lower than the sky-blue line, which means that Dilithium-2 with block
modularity takes less time to generate blocks than Dilithium-2 without block modularity
when the number of voters increases.

As a result, we can say that Dilithium-2 with block modularity is faster than Dilithium-
2 without block modularity. This is because it can perform computations in parallel, which
reduces the overall time required. It is also more efficient in terms of memory usage, which
further reduces the time required.

Figure A2. Throughput of Dilithium-2 with block modularity vs. without block modularity. The
horizontal axis represents the number of voters, and the vertical axis represents the throughput
in transaction per second (tps). Block modularity improves throughput, especially with the high
number of voters.

In terms of throughput shown in Figure A2, Dilithium-2 with block modularity also
shows overall better performance than Dilithium-2 without block modularity. Although
Dilithium-2 without block modularity performs slightly better before 100 voters, Dilithium-
2 with block modularity performs well at peak, giving approximately the same throughput
of 1 tps.

In conclusion, Dilithium-2 with block modularity overall performs better than Dilithium-
2 without block modularity.

Appendix A.2. Dilithium-3

We also analyzed to compare the performance of Dilithium-3 in a blockchain network
with and without block modularity, focusing on efficiency and transaction capacity. We
represented the results using a line graph shown in Figure A3 to show the overall time and
a bar graph shown in Figure A4 to represent the throughput. Additionally, comparison
data is shown in Table A3.

In the line graph, the horizontal axis represents the number of voters and the vertical
axis represents the time. For throughput, the horizontal axis represents the time and the
vertical axis represents the number of voters.

In Figure A3, the violet line represents Dilithium-3 with block modularity and the
maroon line represents Dilithium-3 without block modularity. In Figure A4, the sky blue
line represents Dilithium-3 with block modularity and the green line represents Dilithium-3
without block modularity.



Blockchains 2024, 2 397

For Dilithium-3 with and without block modularity, the dilithium-3 without block
modularity (violet line) and dilithium-3 with block modularity (chocolate colored line)
remain the same in Figure A3 for generating a single block. However, as the number of
voters increases, the time taken to generate blocks also increases. Interestingly, the maroon
line remains lower than the violet line, which means that Dilithium-3 with block modularity
takes less time to generate blocks than Dilithium-3 without block modularity when the
number of voters increases.

Figure A3. Performance of Dilithium-3 with block modularity (violet line) vs. without block modular-
ity (maroon line). The horizontal axis represents the number of voters, and the vertical axis represents
the time. Block modularity improves performance, especially with the high number of voters, because
it can perform computations in parallel and is more efficient in terms of memory usage.

As a result, we can say that Dilithium-3 with block modularity is faster than Dilithium-
3 without block modularity. This is because it can perform computations in parallel, which
reduces the overall time required. It is also more efficient in terms of memory usage,
which further reduces the time required. As a result, Dilithium-3 with block modularity is
typically much faster and more efficient than Dilithium-3 without block modularity.

Figure A4. The bar graph shows the throughput of Dilithium-3 with and without block modularity
in a blockchain network. The vertical axis represents the number of voters, and the horizontal axis
represents time. The bar graph shows that Dilithium-3 with block modularity (sky-blue line) has
a higher throughput than Dilithium-3 without block modularity (green line), especially when the
number of voters is high. Throughput is measured in blocks per second (bps). This is because block
modularity allows Dilithium-3 to process more transactions per second.

In terms of throughput shown in Figure A4, Dilithium-3 with block modularity also
shows overall better performance than Dilithium-3 without block modularity. Although



Blockchains 2024, 2 398

Dilithium-3 performs slightly better before 200 voters, Dilithium-3 with block modularity
performs better at peak, giving approximately the same throughput of 2 bps.

In conclusion, Dilithium-3 with block modularity overall performs better than Dilithium-
3 without block modularity.

Appendix A.3. Block Modularity vs. Dilithium-2 with Block Modularity

Here, we compare block modularity and Dilithium-2 with block modularity.
The line graph Figure A5 shows the time it takes to generate a block, with the number

of voters on the horizontal axis and the time in seconds on the vertical axis. The blue
line represents block modularity with Dilithium-2, and the green line represents block
modularity alone.

Figure A5. Comparison block generation time of block modularity and Dilithium-2 with block
modularity. The blue line represents block modularity with Dilithium-2, and the green line represents
block modularity alone. The number of voters is on the horizontal axis, and the time in seconds to
generate a block is on the vertical axis. In conclusion, block modularity shows better performance
than Dilithium-2 with block modularity.

Initially, the block generation time is almost the same for both configurations. However,
after 1000 voters, the block generation time for Dilithium-2 with block modularity is slightly
higher than the block generation time for block modularity alone.

This is because Dilithium-2 is a more secure cryptographic algorithm than the general
elliptic curve algorithm. As a result, it takes slightly longer to generate blocks using
Dilithium-2.

Overall, block modularity shows better performance than Dilithium-2 with block
modularity.This is because block modularity systems separate all data by category. When
new data arrives, it does not duplicate the existing data. Instead, it only updates the new
data. This results in slightly faster block generation times and higher throughput.

In addition, block modularity can reduce bandwidth usage by up to 70 percent, storage
usage by up to 60 percent, and data usage by up to 40 percent.

In terms of throughput shown in Figure A6, the green line represents block modu-
larity and the sky-blue line represents Dilithium-2 with block modularity. The bar graph
shows that Dilithium-2 with block modularity initially has better throughput than block
modularity. However, at their peak, they both have the same throughput.

In conclusion, merging Dilithium-2 with block modularity provides extra security at
the cost of slightly slower block generation times and throughput.



Blockchains 2024, 2 399

Figure A6. Block Modularity vs. Dilithium-2 with Block Modularity Throughput. This bar graph
compares the throughput of block modularity and Dilithium-2 with block modularity. The x-axis
shows the number of voters, and the y-axis shows the time. The blue bars represent block modularity
with Dilithium-2, and the green bars represent block modularity alone. Block modularity initially has
better throughput than Dilithium-2 with block modularity. However, at their peak, they both have
the same throughput.

Appendix A.4. Without Block Modularity vs. Dilithium-2 without Block Modularity

We compare Dilithium-2 without block modularity and without block modularity.
The line graph Figure A7 shows the time it takes to generate a block, with the number

of voters on the horizontal axis and the time in seconds on the vertical axis. The green
line represents Dilithium-2 without block modularity, and the blue line represents without
block modularity.

Figure A7. Comparison block generation time of Dilithium-2 without block modularity and without
block modularity. The green line represents Dilithium-2 without block modularity, and the blue line
represents without block modularity. The number of voters is on the horizontal axis, and the time in
seconds to generate a block is on the vertical axis. The block generation time is almost the same for
both configurations.

The line graph shows that the block generation time is almost the same for both
configurations. This is because both configurations do not use block modularity. However,
using Dilithium-2 without block modularity took slightly longer.



Blockchains 2024, 2 400

In terms of throughput shown in Figure A8, the sky-blue line represents Dilithium-2
without block modularity and the green line represents without block modularity. The bar
graph shows that Dilithium-2 without block modularity initially has better throughput than
without block modularity. However, at their peak, they both have the same throughput.

Figure A8. Comparison of the throughput of Dilithium-2 without block modularity and without
block modularity. The sky-blue line represents Dilithium-2 without block modularity, and the green
line represents without block modularity. The number of voters is on the horizontal axis and the
number of blocks generated per second is on the vertical axis. Dilithium-2 without block modularity
initially has better throughput than without block modularity. However, at their peak, they both
have the same throughput.

In conclusion, merging Dilithium-2 without block modularity provides extra security
with almost no impact on block generation and throughput.

Appendix A.5. Block Modularity vs. Dilithium-3 with Block Modularity

Block modularity and Dilithium-3 with block modularity are two blockchain designs
that offer different trade-offs between performance and security.

Block modularity is a blockchain design that separates all data into categories. When
new data arrives, it does not duplicate the existing data. Instead, it only updates the new
data. This results in slightly faster block generation times and higher throughput. In
addition, block modularity can reduce bandwidth usage by up to 70 percent, storage usage
by up to 60 percent, and data usage by up to 40 percent.

Dilithium-3 with block modularity is a blockchain design that uses the Dilithium-
3 cryptographic algorithm to improve the security of block modularity. Dilithium-3 is
considered to be one of the most secure cryptographic algorithms available today. However,
it is also more computationally expensive than other cryptographic algorithms, which can
lead to slower block generation times.

The line graph in Figure A9 shows the time it takes to generate a block, with the
number of voters on the horizontal axis and the time in seconds on the vertical axis. The
blue line represents block modularity with Dilithium-3, and the green line represents block
modularity alone.

Initially, the block generation time is almost the same for both configurations. However,
after a certain number of voters, the block generation time for Dilithium-3 with block
modularity is slightly lower than the block generation time for block modularity alone.

Dilithium-3 with block modularity offers better security than block modularity alone.
This is because Dilithium-3 is a more secure cryptographic algorithm. Dilithium-3 is
considered to be one of the most secure cryptographic algorithms available today and can
protect against quantum computers.

In terms of throughput, the bar graph in Figure A10 compares the throughput of block
modularity and Dilithium-3 with block modularity. The x-axis shows the number of voters,
and the y-axis shows the time. The blue bars represent block modularity with Dilithium-3,
and the green bars represent block modularity alone.



Blockchains 2024, 2 401

Figure A9. Comparison of the block generation time of block modularity and Dilithium-3 with block
modularity. The blue line represents block modularity with Dilithium-3, and the green line represents
block modularity alone. The number of voters is on the horizontal axis, and the time in seconds
to generate a block is on the vertical axis. Dilithium-3 with block modularity offers faster block
generation times than block modularity alone.

Block modularity initially has better throughput than Dilithium-3 with block modular-
ity. However, at their peak, they both have the same throughput.

Figure A10. Comparison of the throughput of block modularity and Dilithium-3 with block modular-
ity. The blue bars represent block modularity with Dilithium-3, and the green bars represent block
modularity alone. The number of voters is on the horizontal axis and time is on the vertical axis.
Block modularity initially has better throughput than Dilithium-3 with block modularity. However,
at their peak, they both have the same throughput.

In conclusion, block modularity and Dilithium-3 with block modularity are
two blockchain designs that offer different trade-offs between performance and security.
Block modularity offers slightly faster block generation times and higher throughput, while
Dilithium-3 with block modularity offers better security. The best choice for a particular
blockchain application will depend on the specific requirements of that application.

Appendix A.6. Without Block Modularity vs. Dilithium-3 without Block Modularity

We compare Dilithium-3 without block modularity and without block modularity.
The line graph in Figure A11 shows the time it takes to generate a block, with the

number of voters on the horizontal axis and the time in seconds on the vertical axis. The



Blockchains 2024, 2 402

green line represents Dilithium-3 without block modularity, and the blue line represents
without block modularity.

Figure A11. Block Generation Time Comparison of Dilithium-3 without Block Modularity and
Without Block Modularity. The green line represents Dilithium-3 without block modularity, and the
blue line represents without block modularity. The number of voters is on the horizontal axis and
the time in seconds is on the vertical axis. Dilithium-3 without block modularity took less time to
generate a block.

The line graph shows that the initial block generation time is almost the same for both
configurations. However, after 1000 voters, Dilithium-3 without block modularity took a lower
time than without block modularity. This is strange because Dilithium-3 is a more computa-
tionally expensive cryptographic algorithm than the one used without block modularity.

In terms of throughput, the bar graph in Figure A12 shows that without block modu-
larity initially has better throughput than Dilithium-3 without block modularity. However,
at their peak, they both have the same throughput.

Figure A12. Throughput Comparison of Dilithium-3 without Block Modularity and Without Block
Modularity. The blue-sky bars represent without block modularity with Dilithium-3, and the green
bars represent without block modularity alone. The number of voters is on the horizontal axis and
the time is on the vertical axis. The bar graph shows that without block modularity initially has better
throughput than Dilithium-3 without block modularity. However, at their peak, they both have the
same throughput.



Blockchains 2024, 2 403

In conclusion, merging Dilithium-3 without block modularity provides extra security
and slightly faster block generation time. However, it also has slightly lower throughput
than without block modularity at lower voter counts.

Appendix A.7. Dilithium-2 vs. Dilithium-3

In comparison to Dilithium-2 without block modularity, Dilithium-3 without block
modularity demonstrates improved performance. The comparison data is shown in
Tables A4 and A5.

The line graph in Figure A13 shows that Dilithium-3 without block modularity (olive
line) achieves faster transaction processing than Dilithium-2 without block modularity
(violet line). The time required to generate 3000 blocks is approximately 1602.457 s in
Dilithium-3, whereas Dilithium-2 takes around 2505.086 s.

Figure A13. Performance Comparison of Dilithium-3 without block modularity and Dilithium-2
without block modularity. The olive-colored line represents Dilithium-3 without block modularity,
and the violet line represents Dilithium-2 without block modularity. The horizontal axis repre-
sents the number of blocks generated, and the vertical axis represents the time in seconds. In
conclusion, Dilithium-3 without block modularity gave better performance than Dilithium-2 without
block modularity.

Regarding throughput, the bar graph Figure A14 shows that Dilithium-3 without
block modularity (sky-blue line) performs slightly better than Dilithium-2 without block
modularity (green line). The throughput for the first voter is the same for both, at 66 bps.
However, Dilithium-3 without block modularity achieves a slightly better throughput after
the 100th voter, peaking at 1.8 bps, while Dilithium-2 without block modularity peaks at
1.19 bps.

In summary, Dilithium-3 without block modularity achieves faster transaction pro-
cessing and higher security compared to Dilithium-2 without block modularity.

These findings emphasize the advantages of Dilithium-3, indicating its superior effi-
ciency and higher security in the blockchain network. It is faster, more efficient, has higher
throughput, and is more secure. It is also future-proofed against quantum computers.

Dilithium-3 with block modularity demonstrates improved performance over Dilithium-
2 with block modularity.

The line graph Figure A15 shows that Dilithium-3 with block modularity (green line)
achieves faster transaction processing than Dilithium-2 with block modularity (sky-blue
line). Dilithium-3 takes approximately 1247 s to generate 3000 blocks, while Dilithium-2
takes around 1486 s.



Blockchains 2024, 2 404

Figure A14. Comparing the performance of Dilithium-3 and Dilithium-2 without block modularity
in terms of throughput. In the bar graph, the horizontal axis represents the time, and the vertical axis
represents the voter. Additionally, the sky-blue line represents Dilithium-3 without block modularity
and the green line represents Dilithium-2 without block modularity. In conclusion, Dilithium-3
without block modularity performs slightly better than Dilithium-2 without block modularity.

Figure A15. Performance comparison of Dilithium-3 with block modularity and Dilithium-2 with
block modularity. The green line represents Dilithium-3 with block modularity, and the sky-blue
line represents Dilithium-2 with block modularity. The horizontal axis represents the number of
blocks generated, and the vertical axis represents the time in seconds. Here, Dilithium-3 with block
modularity is faster than Dilithium-2 with block modularity.

Regarding throughput, the bar graph Figure A16 shows that Dilithium-3 with block
modularity (green line) performs slightly better than Dilithium-2 with block modularity
(sky-blue line). The throughput for the first voter is the same for both, at 66 bits per second
(bps). However, Dilithium-3 with block modularity achieves a slightly better throughput
after the 100th voter, peaking at 2.4 bps, while Dilithium-2 with block modularity peaks at
2 bps.



Blockchains 2024, 2 405

Figure A16. Comparing the throughput of Dilithium-3 with block modularity and Dilithium-2
with block modularity over time. The graph shows the voter on the vertical axis and time on the
horizontal axis. The green line represents Dilithium-3 with block modularity, and the sky-blue line
represents Dilithium-2 with block modularity. Dilithium-3 with block modularity performs better
than Dilithium-2 with block modularity in terms of throughput.

In summary, Dilithium-3 with block modularity is a more secure, efficient, and easier-
to-implement signature scheme than Dilithium-2 with block modularity. It has security
proof against quantum attacks up to NIST security level 5, while Dilithium-2 has security
proof up to NIST security level 3. It is also more efficient in terms of both public key size
and signature size, and it is more resilient to errors. Finally, it is easier to implement than
Dilithium-2.

In short, Dilithium-3 with block modularity is the better choice for applications that
require strong security against quantum attacks.

These findings emphasize the advantages of Dilithium-3, indicating its superior effi-
ciency and higher security in blockchain networks. It is faster, more efficient, has higher
throughput, and is more secure. It is also future-proofed against quantum computers.

Appendix A.8. Sharding vs. Dilithium-2

Dilithium-2 with Block Modularity:

Dilithium-2 with block modularity emphasizes cryptographic security. It is designed
to protect data from attacks and ensure data integrity. The focus is on optimizing the
efficiency of signature generation and verification processes. Its security strength is mea-
sured by its public key length, which offers a level of security up to NIST security level
3. The architecture is simple, making it easier to implement and manage. However, its
scalability may be limited, which can hinder performance in scenarios with rapid growth
and increased workloads.

Sharding with Two Shards:

Sharding with two shards emphasizes performance and scalability. By splitting data
into two shards, it allows for parallel processing and faster data access. The goal is to
improve system performance, especially in scenarios where numerous transactions need to
be processed simultaneously. While sharding with two shards offers performance benefits,
it may require more complex management due to challenges with data distribution and
load balancing. Additionally, the approach does not inherently address cryptographic
security concerns.

The line graph shown in Figure A17 illustrates the time it takes to generate a block for
different numbers of voters. The orange line represents Dilithium-2 with block modularity,
and the sky-blue line represents sharding with two shards. As observed, sharding with
two shards consistently outperforms Dilithium-2 with block modularity, especially for
large numbers of voters. The comparison data is shown in Tables A7 and A8.



Blockchains 2024, 2 406

Figure A17. Time to generate a block for different numbers of voters using Dilithium-2 with block
modularity (orange line) and sharding with two shards (sky-blue line). The horizontal axis represents
the number of voters, and the vertical axis represents the time in milliseconds. Sharding with two
shards consistently outperforms Dilithium-2 with block modularity, especially for large numbers
of voters.

The bar graph shown in Figure A18 compares the throughput of the two approaches
for different numbers of voters. The green line represents sharding, and the sky-blue line
represents Dilithium-2 with block modularity. Again, sharding outperforms Dilithium-2
with block modularity, especially for large numbers of voters.

In conclusion, the graphs (Figure A17) and (Figure A18) show that sharding with
two shards provides better performance than Dilithium-2 with block modularity for both
block generation and throughput. This is because sharding allows for parallel processing
and faster data access. While sharding with two shards may require more complex man-
agement, it is a better choice for blockchain networks that need to scale to large numbers of
users and transactions.

Figure A18. Throughput comparison of sharding with two shards and Dilithium-2 with block
modularity for different numbers of voters. The vertical axis represents the number of voters, and
the horizontal axis represents the time in seconds. Sharding consistently outperforms Dilithium-2
with block modularity, especially for large numbers of voters. This suggests that sharding is a better
choice for blockchain networks that need to scale to large numbers of users and transactions.

Dilithium-2 without Block Modularity:

Dilithium-2 without block modularity is a cryptographic signature scheme that em-
phasizes performance. It is designed to be fast and efficient while still providing a high



Blockchains 2024, 2 407

level of security. Its security level is up to NIST security level 3. The architecture is simple,
making it easier to implement and manage. However, it may not be as secure as other
signature schemes that use block modularity.

Sharding with Two Shards:

Sharding with two shards emphasizes scalability. By splitting data into two shards,
it allows for parallel processing and faster data access. The goal is to improve system
performance, especially in scenarios where many transactions need to be processed simul-
taneously. While sharding with two shards offers performance benefits, it may require
more complex management due to challenges with data distribution and load balancing.

The line graph shown in Figure A19 illustrates the time it takes to generate a block for
different numbers of voters. The red line represents Dilithium-2 without block modularity,
and the green line represents sharding with two shards. Initially, both approaches take
the same amount of time, but after 1000 voters, sharding with two shards consistently
outperforms Dilithium-2 without block modularity, especially for large numbers of voters.
The comparison data is shown in Table A8.

The bar graph shown in Figure A20 illustrates the throughput of the two approaches
for different numbers of voters. The green line represents sharding, and the sky-blue line
represents Dilithium-2 without block modularity. Again, sharding outperforms Dilithium-2
without block modularity, especially for large numbers of voters.

In conclusion, the graphs (Figure A19) and (Figure A20) show that sharding with
two shards provides better performance than Dilithium-2 without block modularity for
both block generation and throughput. This is because sharding allows for parallel pro-
cessing and faster data access. While sharding with two shards may require more complex
management, it is a better choice for blockchain networks that need to scale to large
numbers of users and transactions.

Figure A19. Time to generate a block for different numbers of voters, comparing Dilithium-2 without
block modularity and sharding with two shards. The x-axis represents the number of voters, and the
y-axis represents the time in seconds. The red line represents Dilithium-2 without block modularity,
and the green line represents sharding with two shards. Sharding with two shards consistently
outperforms Dilithium-2 without block modularity.



Blockchains 2024, 2 408

Figure A20. Throughput of Dilithium-2 without block modularity and sharding with two shards.
The bar graph shows the throughput of Dilithium-2 without block modularity and sharding with
two shards. The horizontal axis represents time, and the vertical axis represents time. These results
demonstrate the significant throughput improvements achieved through sharding.

Appendix A.9. Sharding vs. Dilithium-3

Dilithium-3 with Block Modularity:

Dilithium-3 with block modularity is a cryptographic signature scheme that empha-
sizes security. It is designed to protect data from attacks and ensure data integrity. The
focus is on optimizing the efficiency of signature generation and verification processes. Its
security strength is measured by its public key length, which offers a level of security up to
NIST security level 4. The architecture is simple, making it easier to implement and manage.
However, its scalability may be limited, which can hinder performance in scenarios with
rapid growth and increased workloads.

Sharding with Two Shards:

Sharding with two shards emphasizes performance and scalability. By splitting data
into two shards, it allows for parallel processing and faster data access. The goal is to
improve system performance, especially in scenarios where numerous transactions need to
be processed simultaneously. While sharding with two shards offers performance benefits,
it may require more complex management due to challenges with data distribution and
load balancing. Additionally, the approach does not inherently address cryptographic
security concerns.

The line graph shown in Figure A21 illustrates the time it takes to generate a block for
different numbers of voters. The violet line represents Dilithium-3 with block modularity,
and the green line represents sharding with two shards. Initially, both the violet and green
lines stayed almost the same, but when the number of voters increased, the violet line
went higher than the green line. This means the green line (sharding) performed better
than the violet line (Dilithium-3 with block modularity). The comparison data is shown in
Tables A9 and A10.

The bar graph shown in Figure A22 illustrates the throughput of the two approaches
for different numbers of voters. The green line represents sharding, and the sky-blue line
represents Dilithium-3 with block modularity. Again, sharding outperforms Dilithium-3
with block modularity, especially for large numbers of voters.

In conclusion, the graphs (Figure A21) and (Figure A22) show that sharding with
two shards provides better performance than Dilithium-3 with block modularity for both
block generation and throughput. This is because sharding allows for parallel processing
and faster data access. While sharding with two shards may require more complex man-
agement, it is a better choice for blockchain networks that need to scale to large numbers of
users and transactions.



Blockchains 2024, 2 409

Figure A21. Block generation time for Dilithium-3 with block modularity and sharding with two shards.
The horizontal axis represents the number of voters, and the vertical axis represents the time in seconds.
Here, sharding with two shards gave better performance than Dilithium-3 with block modularity.

Figure A22. Throughput of Dilithium-3 with block modularity and sharding with two shards. The
horizontal axis represents the time, the vertical axis represents voters, and the green line represents
sharding, and the sky-blue line represents Dilithium-3 with block modularity. Here, sharding with
two shards gave better performance than Dilithium-3 with block modularity.

Dilithium-3 without Block Modularity:

Dilithium-3 without block modularity is a cryptographic signature scheme that em-
phasizes performance. It is designed to be fast and efficient while still providing a high
level of security. Its security level is up to NIST security level 4. The architecture is simple,
making it easier to implement and manage. However, it may not be as secure as other
signature schemes that use block modularity.

Sharding with Two Shards:

Sharding with two shards emphasizes scalability. By splitting data into two shards,
it allows for parallel processing and faster data access. The goal is to improve system
performance, especially in scenarios where numerous transactions need to be processed
simultaneously. While sharding with two shards offers performance benefits, it may require
more complex management due to challenges with data distribution and load balancing.

The line graph shown in Figure A23 illustrates the time it takes to generate a block for
different numbers of voters. The blue line represents Dilithium-3 without block modularity,
and the green line represents sharding with two shards. The blue line and green line stayed
almost the same, but when the number of voters increased, the blue line (Dilithium-3



Blockchains 2024, 2 410

without block modularity) took more time than the green line (sharding). This makes the
conclusion that sharding performs better than Dilithium-3 without block modularity.

Figure A23. Block generation time for Dilithium-3 without block modularity and sharding. The
horizontal axis represents the time, and the vertical axis represents the number of voters. As the
number of voters increases, sharding with two shards (green line) is able to maintain a consistent block
generation time. In contrast, Dilithium-3 without block modularity (blue line) experiences significant
performance degradation. This comparison highlights the efficiency of sharding in maintaining
consistent performance under increasing voter loads.

The bar graph shown in Figure A24 illustrates the throughput of the two approaches
for different numbers of voters. The green line represents sharding, and the sky-blue line
represents Dilithium-3 without block modularity. Again, sharding outperforms Dilithium-3
without block modularity, especially for large numbers of voters.

Figure A24. Throughput of Dilithium-3 without block modularity and sharding with two shards.
The bar graph shows the throughput of the two approaches for different numbers of voters. The
horizontal axis represents the number of voters, and the vertical axis represents the throughput in
transactions per second. Here, sharding with two shards gave better performance than Dilithium-3
without block modularity.



Blockchains 2024, 2 411

In conclusion, the graphs (Figure A23) and (Figure A24) show that sharding with
two shards provides better performance than Dilithium-3 without block modularity for
both block generation and throughput. This is because sharding allows for parallel pro-
cessing and faster data access. While sharding with two shards may require more complex
management, it is a better choice for blockchain networks that need to scale to large
numbers of users and transactions. The comparison data is shown in Table A10.

Appendix B. Diagram

Appendix B.1. Block Header

Figure A25. This is a visual representation of a block and its units. The block header stores the
metadata of the block, and the block body stores the data of the block. The block is divided into
different units, each of which has a hash. The block hash is made by combining the hashes of all the
units of the block.

Appendix B.2. Merkel Tree

Figure A26. The visual representation of the Merkle tree shows how it is constructed from the bottom
up. The leaves of the tree are hashes of the data blocks, and the non-leaf nodes are hashes of their
child nodes. The root of the tree is called the Merkle root. The block record is made up of the Merkle
root and other metadata, and the Merkle root is stored in the block header.



Blockchains 2024, 2 412

Appendix B.3. Authorization

Figure A27. This diagram presents a lucid explanation of the authorization process. It shows how
every entity is hashed, signed, and generates proof of record.

Appendix B.4. Biometric Verification

Figure A28. The representation of a user capturing an image in front of a system for verification prior
to accessing their respective systems is a common security measure employed to prevent unauthorized



Blockchains 2024, 2 413

access. The user is typically required to maintain a steady pose while the system captures a high-
resolution image. The captured image is then compared to a stored image of the user’s face to validate
their identity.

Appendix B.5. Verification Process

Figure A29. This diagram provides a clear explanation of the verification process. The intended
record is hashed, signed, and generates into a proof. This newly generated proof is then compared to
the existing proof to ensure validity.

Appendix B.6. Time-Based Inference

Figure A30. The MPC token generation process is a secure and efficient way to generate tokens that
can be used to verify that a voter is eligible to vote and to prevent voter fraud. The process works by
taking the voter’s unique identifier as input, splitting it into multiple parts, encrypting each part, and
then having each encrypted part computed by a different party. The computed parts are then merged
to form a token.

Appendix C. Algorithm

Appendix C.1. Token-Based Voter Verification System Working Procedure

We describe the working procedure of the token-based voter verification system below.

• A cryptographically secure string is generated from the voter’s unique identifier.
• The string is then encrypted and hashed into a secret.
• The secret string is split into multiple pieces and sent to different parties for further

computation.
• Each party has its own random function, seed, and encryption key, which are updated

before and after the election.
• After each party receives its piece of the secret string, they compute their part of the

token.



Blockchains 2024, 2 414

• Once all the parts of the token have been computed, they are merged together to form
a single token.

• The token is then checked to see if it has already been spent.
• If the token is not spent, the token is then used to cast a vote.
• The token is then stored as a spent token in the blockchain after the voter casts their vote.

Appendix C.2. Algorithmic Representation of Token Generation

Algorithm A1 Formulae of Token Generation
1: Generate a token
2: secret← Voter’s unique identifier
3: seed← Voter’s seed
4: Slice the secret into n parts
5: function SLICEFUNCTION(secret, n)
6: parts← empty list
7: partSize← length of secret/n
8: for i← 0 to n do
9: parts[i]← secret[i * partSize : (i + 1) * partSize]

10: end for
11: return parts
12: end function
13: Compute the parts of the secret in each party
14: function MULTYPARTYCOMPUTATION(parts, n)
15: parts← SliceFunction(secret, n)
16: shares← empty list
17: for i← 0 to n do
18: if Time() is in the range of ValidElectionTime then
19: shares[i]← shares[i]⊕ seed
20: else
21: shares[i]← shares[i]⊕ 0
22: end if
23: shares[i]← generateRandomNumber()
24: shares[i]← shares[i]⊕ parts[i]
25: shares[i]← Hash(shares[i])
26: shares[i]← Sign(shares[i], partiesprivatekey)
27: end for
28: return shares
29: end function
30: Merge the shares of secret into a token
31: function MERGESHARES(shares, n)
32: shares← MultyPartyComputation(parts, n)
33: token← empty string
34: for i← 0 to n do
35: if Veri f y(shares[i].signature, partiespublicKey) is Valid then
36: token← token⊕ shares[i]
37: else
38: return invalid
39: end if
40: end for
41: return token
42: end function
43: Sign the token
44: function SIGNTOKEN(token, privatekey)
45: token← MergeShares(shares, n)
46: token← Hash(token)
47: token← Sign(token, privatekey)
48: return token
49: end function
50: Return token



Blockchains 2024, 2 415

Appendix C.3. Algorithmic Representation of Tallying Votes

Algorithm A2 Tallying Votes
1: generate a token
2: secret← Voter unique identifier
3: seed← Voter’s seed
4: Slice the secret into n parts
5: function TALLYINGVOTES(blockchain, lengthO f chain, CanidatelistVotes)
6: votes← empty map
7: votes← getVotes
8: for each block in blockchain do
9: votes← getVotes(block)

10: end for
11: for i← 0 to len(votes) do
12: for j← 0 to len(CanidatelistVotes) do
13: if votes[i] is equal to CanidatelistVotes[j] then
14: votes[i]← Canidatelist[j]
15: end if
16: end for
17: end for
18: result← countVotes(votes)
19: return result
20: end function
21: get votes from block
22: function GETVOTES(block)
23: votes← empty list
24: votes← getVotesFromBlock(block)
25: votes[i]← encrypt(votes[i], Ballotkey)
26: L0← Hash(votes[i], seed)
27: votes[i]← encrypt(L0,keyp)
28: L1← Hash(votes[i],Rp)
29: votes[i]← encrypt(L1,keyr)
30: L2← Hash(votes[i],Rr)
31: votes[i]← encrypt(L2,keye)
32: n← Hash(votes[i],Re)
33: votes[i]← encrypt(n,keye)
34: return votes
35: end function
36: get votes from block
37: function GETVOTESFROMBLOCK(block)
38: votes← block.vote
39: return votes
40: end function
41: count votes
42: function COUNTVOTES(votes)
43: result← empty map
44: for i← 0 to len(votes) do
45: result[votes[i]]← result[votes[i]] + 1
46: end for
47: return result
48: end function
49: Return result



Blockchains 2024, 2 416

Appendix C.4. Algorithmic Representation of Authorization Mechanism

Algorithm A3 Proposed Authorization Algorithm

1: function GETAUTHORIZE (userdata, authorizer)
2: if authorizer = ”ElectionCommission” then
3: signature = GetAuthorizeFromEC(userdata)
4: if signature ̸= nil then
5: return signature
6: else
7: return nil
8: end if
9: else if authorizer = ”StateElectionCommission” then

10: signature = GetAuthorizeFromSEC(userdata)
11: if signature ̸= nil then
12: return signature
13: else
14: return nil
15: end if
16: else if authorizer = ”DistrictElectionCommission” then
17: signature = GetAuthorizeFromDEC(userdata)
18: if signature ̸= nil then
19: return signature
20: else
21: return nil
22: end if
23: else if authorizer = ”ReturningO f f icer” then
24: signature = GetAuthorizeFromRO(userdata)
25: if signature ̸= nil then
26: return signature
27: else
28: return nil
29: end if
30: else if authorizer = ”PresidingO f f icer” then
31: signature = GetAuthorizeFromPO(userdata)
32: if signature ̸= nil then
33: return signature
34: else
35: return nil
36: end if
37: else
38: return nil
39: end if
40: return nil
41: end function

Appendix C.5. Algorithmic Representation of Peer Routing

1. Get the latest block using getLatestBlock() function and store it in bit.
2. Get the configuration using getConfig() function and store it in cfg.
3. Create a node host using makeNodeHost(cfg) function and store it in host.
4. Create a new Kademlia DHT using dht.New(ctx, host) function and store it in

kademliaDHT.
5. Bootstrap the Kademlia DHT using kademliaDHT.Bootstrap(ctx).
6. For each peer address in config.BootstrapPeers:

a. Get the peer using peerChan() function and hold until peer is found.



Blockchains 2024, 2 417

b. If there is an error while connecting to the peer using host.Connect(ctx, peer),
print “Connection failed: <error message>” and continue to the next peer ad-
dress.

c. If the block data is successfully sent to the peer using host.SendBlockData(bit,
peer), print “Connected to: <peer>” and add the peer’s addresses to the peer-
store using host.Peerstore().AddAddrs(peer.ID, peer.Addrs, peerstore.
PermanentAddrTTL).

d. If the block data is not successfully sent to the peer, print "Connection failed".

Appendix D. Raw Data

Appendix D.1. Block Modularity vs. without Block Modularity

Table A1. Comparison of with block modularity and without block modularity.

With Block Modularity Without Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.016 62.5 1 0.014 71.42857143

5 0.047 106.3829787 5 0.17 29.41176471

10 0.075 133.3333333 10 0.079 126.5822785

50 0.309 161.8122977 50 0.305 163.9344262

100 0.609 164.2036125 100 0.651 153.609831

500 7.22 69.25207756 500 12.476 40.07694774

1000 56.288 17.76577601 1000 64.455 15.51470018

2000 427.722 4.675934369 2000 573.184 3.489280929

3000 1434.873 2.090777372 3000 2488.459 1.205565372

Appendix D.2. Dilithium-2 with Block Modularity vs. Dilithium-2 without Block Modularity

Table A2. Comparison of Block Generation Time and Throughput without Block Modularity Com-
bined with Dilithium-2 and with Block Modularity Combined with Dilithium-2.

Dilithium-2 without Block Modularity Dilithium-2 with Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.015 66.66666667 1 0.015 66.66666667

5 0.049 102.0408163 5 0.054 92.59259259

10 0.076 131.5789474 10 0.091 109.8901099

50 0.316 158.2278481 50 0.385 129.8701299

100 0.644 155.2795031 100 0.672 148.8095238

500 14.4 34.72222222 500 8.713 57.3855159

1000 54.308 18.41349341 1000 59.61 16.77570877

2000 603.193 3.315688345 2000 517.474 3.864928479

3000 2505.086 1.197563676 3000 1486.277 2.018466275



Blockchains 2024, 2 418

Appendix D.3. Dilithium-3 with Block Modularity vs. Dilithium-3 without Block Modularity

Table A3. Comparison of Block Generation Time and Throughput without Block Modularity Com-
bined with Dilithium-3 and with Block Modularity Combined with Dilithium-3.

Dilithium-3 without Block Modularity Dilithium-3 with Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.015 66.66666667 1 0.016 62.5

5 0.05 100 5 0.048 104.1666667

10 0.08 125 10 0.077 129.8701299

50 0.317 157.7287066 50 0.305 163.9344262

100 0.65 153.8461538 100 0.63 158.7301587

500 7.121 70.21485746 500 6.772 73.83343178

2000 424.67 4.709539172 2000 417.999 4.784700442

3000 1602.457 1.872125118 3000 1247.433 2.404938782

Appendix D.4. Dilithium-2 vs. Dilithium-3 without Block Modularity

Table A4. Comparison of Block Generation Time and Throughput without Block Modularity Com-
bined with Dilithium-2 and Dilithium-3.

Dilithium-2 and without Block Modularity Dilithium-3 and without Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.015 66.66666667 1 0.015 66.66666667

5 0.049 102.0408163 5 0.05 100

10 0.076 131.5789474 10 0.08 125

50 0.316 158.2278481 50 0.317 157.7287066

100 0.644 155.2795031 100 0.65 153.8461538

500 14.4 34.72222222 500 7.121 70.21485746

1000 54.308 18.41349341 1000 55.033 18.17091563

2000 603.193 3.315688345 2000 424.67 4.709539172

3000 2505.086 1.197563676 3000 1602.457 1.872125118

Appendix D.5. Dilithium-2 vs. Dilithium-3 with Block Modularity

Table A5. Comparison of Block Generation Time and Throughput without Block Modularity Com-
bined with Dilithium-2 and with Block Modularity Combined with Dilithium-3.

Dilithium-2 and with Block Modularity Dilithium-3 and with Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.015 66.66666667 1 0.016 62.5

5 0.054 92.59259259 5 0.048 104.1666667

10 0.091 109.8901099 10 0.077 129.8701299

50 0.385 129.8701299 50 0.305 163.9344262

100 0.672 148.8095238 100 0.63 158.7301587

500 8.713 57.3855159 500 6.772 73.83343178



Blockchains 2024, 2 419

Table A5. Cont.

Dilithium-2 and with Block Modularity Dilithium-3 and with Block Modularity
Voter Time (s) Throughput Voter Time (s) Throughput
2000 517.474 3.864928479 2000 417.999 4.784700442
3000 1486.277 2.018466275 3000 1247.433 2.404938782

Appendix D.6. Comparison between Sharding

Table A6. Comparison between two, three, and five shards in sharding.

Sharding with Two Shards Sharding with Three Shards Sharding with Five Shards

Block Time (s) Throughput Block Time (s) Throughput Block Time (s) Throughput

2 0.0185 108.1081081 2 0.011 181.8181818 2 0.015 133.3333333

5 0.347 14.4092219 5 0.0184 271.7391304 5 0.0224 223.2142857

10 0.0695 143.8848921 10 0.0368 271.7391304 10 0.0643 155.5209953

50 0.211 236.9668246 50 0.354 141.2429379 50 0.2166 230.8402585

100 0.474 210.9704641 100 0.522 191.5708812 100 0.3848 259.8752599

400 2.2425 178.3723523 400 1.344 297.6190476 400 1.345 297.3977695

500 3.426 145.9427904 500 2.543 196.6181675 500 1.6264 307.4274471

1000 10.356 96.5623793 1000 7.844 127.4859765 1000 3.437 290.9514111

2000 82.2415 24.31862259 2000 35.897 55.71496225 2000 9.434 211.999152

3000 430.055 6.975851926 3000 152.885 19.62259214 3000 28.323 105.9209829

Appendix D.7. Without Block Modularity Dilithium-2 vs. Sharding

Table A7. Comparison of without block modularity combined with Dilithium-2 and sharding.

Sharding Dilithium-2 and without Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.0185 54.05405405 1 0.015 66.66666667

5 0.0695 71.94244604 5 0.049 102.0408163

10 0.2075 48.19277108 10 0.076 131.5789474

50 0.474 105.4852321 50 0.316 158.2278481

100 0.7305 136.8925394 100 0.644 155.2795031

500 2.2425 222.9654404 500 14.4 34.72222222

1000 10.356 96.5623793 1000 54.308 18.41349341

2000 30.9185 64.68619112 2000 603.193 3.315688345

3000 430.055 6.975851926 3000 2505.086 1.197563676



Blockchains 2024, 2 420

Appendix D.8. With Block Modularity Dilithium-2 vs. Sharding

Table A8. Comparison of with block modularity combined with Dilithium-2 and sharding.

Sharding Dilithium-2 and with Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.0185 54.05405405 1 0.015 66.66666667

5 0.0695 71.94244604 5 0.054 92.59259259

10 0.2075 48.19277108 10 0.091 109.8901099

50 0.474 105.4852321 50 0.385 129.8701299

100 0.7305 136.8925394 100 0.672 148.8095238

500 2.2425 222.9654404 500 8.713 57.3855159

1000 10.356 96.5623793 1000 59.61 16.77570877

2000 30.9185 64.68619112 2000 517.474 3.864928479

3000 430.055 6.975851926 3000 1486.277 2.018466275

Appendix D.9. Without Block Modularity: Dilithium-3 vs. Sharding

Table A9. Comparison of without block modularity combined with Dilithium-3 and sharding.

Sharding Dilithium-3 and without Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.0185 54.05405405 1 0.015 66.66666667

5 0.0695 71.94244604 5 0.05 100

10 0.2075 48.19277108 10 0.08 125

50 0.474 105.4852321 50 0.317 157.7287066

100 0.7305 136.8925394 100 0.65 153.8461538

500 2.2425 222.9654404 500 7.121 70.21485746

2000 30.9185 64.68619112 2000 424.67 4.709539172

3000 430.055 6.975851926 3000 1602.457 1.872125118

Appendix D.10. Without Block Modularity: Dilithium-3 vs. Sharding

Table A10. Comparison of with block modularity combined with Dilithium-3 and sharding.

Sharding Dilithium-3 and with Block Modularity

Voter Time (s) Throughput Voter Time (s) Throughput

1 0.0185 54.05405405 1 0.016 62.5

5 0.0695 71.94244604 5 0.048 104.1666667

10 0.2075 48.19277108 10 0.077 129.8701299

50 0.474 105.4852321 50 0.305 163.9344262

100 0.7305 136.8925394 100 0.63 158.7301587

500 2.2425 222.9654404 500 6.772 73.83343178

2000 30.9185 64.68619112 2000 417.999 4.784700442

3000 430.055 6.975851926 3000 1247.433 2.404938782



Blockchains 2024, 2 421

Appendix D.11. Storage Consumetion

Table A11. Storage consumption of without block modularity with sharding and with block modu-
larity with sharding.

Without Block Modularity and Sharding Block Modularity Sharding

Block Memory (byte) Block Memory (byte)

1 26 1 16

5 52 5 80

25 76 25 97.6

50 96.8 50 100.8

100 181.6 100 134.4

250 533.6 250 248

375 964.8 375 404.8

500 1453.6 500 582.4

625 2190.4 625 775.2

750 3016.8 750 1152.8

1000 6319.2 1000 1816

2500 45,272 2500 15,762.4

3750 113,824.8 3750 30,360

5000 200,077.6 5000 66,399.2

6250 308,527.2 6250 103,209.6

7500 371,072 7500 146,082.4

References
1. USAID. Supporting Free and Fair Elections; United States Agency for International Development (USAID): Washington, DC, USA.

Available online: https://www.usaid.gov/democracy/supporting-free-and-fair-elections (accessed on 13 November 2023).
2. Nasrullah, T.M.; Islam, M.M.; Uddin, M.A.; Khan, M.A.; Layek, M.A.; Stranieri, A.; Huh, E.N. Device Agent Assisted Blockchain

Leveraged Framework for Internet of Things. IEEE Access 2022, 11, 1254–1268. [CrossRef]
3. Sallal, M.; de Fréin, R.; Malik, A. PVPBC: Privacy and Verifiability Preserving E-Voting Based on Permissioned Blockchain. Future

Internet 2023, 15, 121. [CrossRef]
4. Du, Z.; Li, Y.; Fu, Y.; Zheng, X. Blockchain-based access control architecture for multi-domain environments. Pervasive Mob.

Comput. 2024, 98, 101878. [CrossRef]
5. Anitha, V.; Caro, O.J.M.; Sudharsan, R.; Yoganandan, S.; Vimal, M. Transparent voting system using blockchain. Meas. Sens. 2023,

25, 100620. [CrossRef]
6. Bajpai, M.; Haider, A.; Mishra, A.; Perwej, Y.; Rastogi, N. A novel vote counting system based on secure blockchain. Int. J. Sci.

Res. Sci. Eng. Technol 2022, 9, 69–79. [CrossRef]
7. Stančíková, I.; Homoliak, I. SBvote: Scalable Self-Tallying Blockchain-Based Voting. In Proceedings of the 38th ACM/SIGAPP

Symposium on Applied Computing, Tallinn, Estonia, 27–31 March 2023; pp. 203–211.
8. Kohad, H.; Kumar, S.; Ambhaikar, A. Scalability of Blockchain based E-voting system using Multiobjective Genetic Algorithm

with Sharding. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022;
pp. 1–4.

9. Abuidris, Y.; Kumar, R.; Yang, T.; Onginjo, J. Secure large-scale E-voting system based on blockchain contract using a hybrid
consensus model combined with sharding. Etri J. 2021, 43, 357–370. [CrossRef]

10. Neloy, M.N.; Wahab, M.A.; Wasif, S.; All Noman, A.; Rahaman, M.; Pranto, T.H.; Haque, A.B.; Rahman, R.M. A remote and
cost-optimized voting system using blockchain and smart contract. IET Blockchain 2023, 3, 1–17. [CrossRef]

11. Vaidya, C.; Kirnapure, C.; Rithe, J.; Sonkusare, D.; Khade, P.; Kharche, K. An Approach Towards Decentralized E-Voting. In
Proceedings of the IEEE 2023 11th International Conference on Emerging Trends in Engineering & Technology-Signal and
Information Processing (ICETET-SIP), Nagpur, India, 28–29 April 2023; pp. 1–6.

12. Curran, K. E-Voting on the Blockchain. J. Br. Blockchain Assoc. 2018, 1, 1–6. [CrossRef]

https://www.usaid.gov/democracy/supporting-free-and-fair-elections
http://doi.org/10.1109/ACCESS.2022.3231491
http://dx.doi.org/10.3390/fi15040121
http://dx.doi.org/10.1016/j.pmcj.2024.101878
http://dx.doi.org/10.1016/j.measen.2022.100620
http://dx.doi.org/10.32628/IJSRSET22948
http://dx.doi.org/10.4218/etrij.2019-0362
http://dx.doi.org/10.1049/blc2.12021
http://dx.doi.org/10.31585/jbba-1-2-(3)2018


Blockchains 2024, 2 422

13. Peralta, R.; Brandão, L.T.A.N. NIST First Call for Multi-Party Threshold Schemes; National Institute of Standards and Technology,
Gaithersburg, MD, USA, January 2023. [CrossRef]

14. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. Crystals-Dilithium: A Lattice-Based Digital
Signature Scheme; IACR Transactions on Cryptographic Hardware and Embedded Systems; IACR: Bochum, Germany, 2018;
pp. 238–268.

15. Ghose, P.; Sharmin, S.; Gaur, L.; Zhao, Z. Grid-search integrated optimized support vector machine model for breast cancer
detection. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV,
USA, 6–8 December 2022; pp. 2846–2852.

16. Ghose, P.; Uddin, M.A.; Acharjee, U.K.; Sharmin, S. Deep viewing for the identification of COVID-19 infection status from chest
X-Ray image using CNN based architecture. Intell. Syst. Appl. 2022, 16, 200130. [CrossRef]

17. Das, S.K.; Saha, S.; DasGupta, S. Decentralized Voting: A Blockchain-Based Voting System. In Proceedings of the Applications of
Networks, Sensors and Autonomous Systems Analytics: Proceedings of ICANSAA 2020; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 33–45.

18. Khoury, D.; Kfoury, E.F.; Kassem, A.; Harb, H. Decentralized voting platform based on ethereum blockchain. In Proceedings of
the 2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 14–16 November
2018; pp. 1–6.

19. Bing, W.; Hui-ling, L.; Li, P. Optimized DPoS consensus strategy: Credit-weighted comprehensive election. Ain Shams Eng. J.
2023, 14, 101874. [CrossRef]

20. Hassan, H.S.; Hassan, R.; Gbashi, E.K. E-voting System Based on Ethereum Blockchain Technology Using Ganache and Remix
Environments. Eng. Technol. J. 2023, 41, 1–16. [CrossRef]

21. Bhadoria, R.S.; Das, A.P.; Bashar, A.; Zikria, M. Implementing Blockchain-Based Traceable Certificates as Sustainable Technology
in Democratic Elections. Electronics 2022, 11, 3359. [CrossRef]

22. Li, K.; Li, H.; Wang, H.; An, H.; Lu, P.; Yi, P.; Zhu, F. PoV: An efficient voting-based consensus algorithm for consortium
blockchains. Front. Blockchain 2020, 3, 11. [CrossRef]

23. Sun, Y.; Yan, B.; Yao, Y.; Yu, J. DT-DPoS: A delegated proof of stake consensus algorithm with dynamic trust. Procedia Comput. Sci.
2021, 187, 371–376. [CrossRef]

24. Liu, Y.; Liu, J.; Salles, M.A.V.; Zhang, Z.; Li, T.; Hu, B.; Henglein, F.; Lu, R. Building blocks of sharding blockchain systems:
Concepts, approaches, and open problems. Comput. Sci. Rev. 2022, 46, 100513. [CrossRef]

25. Tao, Y.; Li, B.; Jiang, J.; Ng, H.C.; Wang, C.; Li, B. On sharding open blockchains with smart contracts. In Proceedings of the 2020
IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1357–1368.

26. Ren, L.; Ward, P.A. Transaction Placement in Sharded Blockchains. arXiv 2021, arXiv:2109.07670.
27. Li, M.; Lin, Y.; Zhang, J.; Wang, W. Jenga: Orchestrating smart contracts in sharding-based blockchain for efficient processing. In

Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, 10–13
July 2022; pp. 133–143.

28. Wang, J.; Chenchen, H.; Xiaofeng, Y.; Yongjun, R.; Sherratt, S. Distributed secure storage scheme based on sharding blockchain.
Comput. Mater. Contin. 2022, 70, 4485–4502. [CrossRef]

29. Li, C.Y.; Chen, X.B.; Chen, Y.L.; Hou, Y.Y.; Li, J. A new lattice-based signature scheme in post-quantum blockchain network. IEEE
Access 2018, 7, 2026–2033. [CrossRef]

30. Gao, Y.L.; Chen, X.B.; Chen, Y.L.; Sun, Y.; Niu, X.X.; Yang, Y.X. A secure cryptocurrency scheme based on post-quantum blockchain.
IEEE Access 2018, 6, 27205–27213. [CrossRef]

31. Li, B.; Wu, F. Post Quantum Blockchain with Segregation Witness. In Proceedings of the 2021 IEEE 6th International Conference
on Computer and Communication Systems (ICCCS), Chengdu, China, 23–26 April 2021; pp. 522–527.

32. Allende, M.; León, D.L.; Cerón, S.; Pareja, A.; Pacheco, E.; Leal, A.; Da Silva, M.; Pardo, A.; Jones, D.; Worrall, D.J.; et al.
Quantum-resistance in blockchain networks. Sci. Rep. 2023, 13, 5664. [CrossRef]

33. Sun, X.; Wang, Q.; Kulicki, P.; Sopek, M. A simple voting protocol on quantum blockchain. Int. J. Theor. Phys. 2019, 58, 275–281.
[CrossRef]

34. Serengil, S.I.; Ozpinar, A. LightFace: A Hybrid Deep Face Recognition Framework. In Proceedings of the 2020 Innovations in
Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 23–27. [CrossRef]

35. Shankar, S.; Madarkar, J.; Sharma, P. Securing face recognition system using blockchain technology. In Proceedings of the
International Conference on Machine Learning, Image Processing, Network Security and Data Sciences; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 449–460.

36. Pandey, R.; Zhou, Y.; Govindaraju, V. Deep secure encoding: An application to face recognition. arXiv 2015, arXiv:1506.04340.
37. Jayakumari, B.; Sheeba, S.L.; Eapen, M.; Anbarasi, J.; Ravi, V.; Suganya, A.; Jawahar, M. E-voting system using cloud-based

hybrid blockchain technology. J. Saf. Sci. Resil. 2024, 5, 102–109. [CrossRef]
38. Gilcrest, J.; Carvalho, A. Smart contracts: Legal considerations. In Proceedings of the 2018 IEEE International Conference on Big

Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3277–3281.
39. Sohel Ahmed Joni, Bangladesh-Voter-Synthetic-Dataset (Revision 958f5b4), Hugging Face. 2024. Available online:

https://huggingface.co/datasets/jonybepary/Bangladesh-Voter-Synthetic-Dataset (accessed on 3 September 2024),

http://dx.doi.org/10.6028/NIST.IR.8214C.ipd
http://dx.doi.org/10.1016/j.iswa.2022.200130
http://dx.doi.org/10.1016/j.asej.2022.101874
http://dx.doi.org/10.30684/etj.2023.135464.1273
http://dx.doi.org/10.3390/electronics11203359
http://dx.doi.org/10.3389/fbloc.2020.00011
http://dx.doi.org/10.1016/j.procs.2021.04.113
http://dx.doi.org/10.1016/j.cosrev.2022.100513
http://dx.doi.org/10.32604/cmc.2022.020648
http://dx.doi.org/10.1109/ACCESS.2018.2886554
http://dx.doi.org/10.1109/ACCESS.2018.2827203
http://dx.doi.org/10.1038/s41598-023-32701-6
http://dx.doi.org/10.1007/s10773-018-3929-6
http://dx.doi.org/10.1109/ASYU50717.2020.9259802
http://dx.doi.org/10.1016/j.jnlssr.2024.01.002
https://huggingface.co/datasets/jonybepary/Bangladesh-Voter-Synthetic-Dataset


Blockchains 2024, 2 423

40. Singh, J.; Rastogi, U.; Goel, Y.; Gupta, B.; Utkarsh. Blockchain-based decentralized voting system security Perspective: Safe and
secure for digital voting system. arXiv 2023, arXiv:2303.06306.

41. Ch, R.; Kumari D, J.; Gadekallu, T.R.; Iwendi, C. Distributed-ledger-based blockchain technology for reliable electronic voting
system with statistical analysis. Electronics 2022, 11, 3308. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics11203308

	Introduction
	Related Work
	Previous Work 
	Consensus and Verification
	Sharding
	Post-Quantum Cryptography
	Deepface
	Problem Formulation
	Comparative Analysis of Existing Methods and Proposed Approach

	Hybrid Consensus Model
	Structure of the Blockchain Network in the Framework
	Comparison with Other Consensus Mechanisms
	Real-Life Hybrid Consensus Model
	Method for Verifying the Credibility of a Block

	The Proposed Blockchain-Based E-Voting System
	Roles of Participants
	Entities
	System Design
	Initialization Phase
	 Registration Phase
	Blockchain Command (Scripting System)
	Authorization and Verification Process
	Peer Routing Algorithm
	Election Process 

	Incorporating Category-Based Sharding in Blockchain Network
	Incorporating Post-Quantum Asymmetric Encryption in Blockchain
	Token-Based Voter Verification System
	Block Structure: A Modular Approach toward Efficiency
	Voter Data Generation

	Implementation
	Performance Analysis
	Experimental Setup
	Experiment without Sharding and Post-Quantum
	Results after Adding Post-Quantum
	Performance after Incorporating Sharding
	Performance Comparison: Without Sharding vs. with Sharding
	Analysis Based on Memory Consumption

	Discussion and Analysis
	 Attack Analysis
	Security Analysis
	Requirement Analysis

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5
	Appendix A.6
	Appendix A.7
	Appendix A.8
	Appendix A.9

	Appendix B
	Appendix B.1
	Appendix B.2
	Appendix B.3
	Appendix B.4
	Appendix B.5
	Appendix B.6

	Appendix C
	Appendix C.1
	Appendix C.2
	Appendix C.3
	Appendix C.4
	Appendix C.5

	Appendix D
	Appendix D.1
	Appendix D.2
	Appendix D.3
	Appendix D.4
	Appendix D.5
	Appendix D.6
	Appendix D.7
	Appendix D.8
	Appendix D.9
	Appendix D.10
	Appendix D.11

	References

