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Abstract: Federated learning (FL) has emerged as an efficient machine learning (ML)
method with crucial privacy protection features. It is adapted for training models in In-
ternet of Things (IoT)-related domains, including smart healthcare systems (SHSs), where
the introduction of IoT devices and technologies can arise various security and privacy
concerns. However, as FL cannot solely address all privacy challenges, privacy-enhancing
technologies (PETs) and blockchain are often integrated to enhance privacy protection in FL
frameworks within SHSs. The critical questions remain regarding how these technologies
are integrated with FL and how they contribute to enhancing privacy protection in SHSs.
This survey addresses these questions by investigating the recent advancements on the
combination of FL with PETs and blockchain for privacy protection in smart healthcare.
First, this survey emphasizes the critical integration of PETs into the FL context. Second, to
address the challenge of integrating blockchain into FL, it examines three main technical di-
mensions such as blockchain-enabled model storage, blockchain-enabled aggregation, and
blockchain-enabled gradient upload within FL frameworks. This survey further explores
how these technologies collectively ensure the integrity and confidentiality of healthcare
data, highlighting their significance in building a trustworthy SHS that safeguards sensitive
patient information.

Keywords: federated learning; privacy protection; blockchain; privacy enhancing technologies;
smart healthcare

1. Introduction
In the digital era, the adoption of IoT technologies has catalyzed a transformative shift

in various sectors, most notably in healthcare. The burgeoning network of interconnected
devices, collectively known as the Internet of Medical Things (IoMT), has fundamentally
enhanced the capabilities of smart healthcare systems (SHSs) by enabling sophisticated data
analytics and real-time patient monitoring [1–3]. With an estimated 30 billion IoT devices
projected by 2030 [4,5], the healthcare sector is on the brink of a data revolution, poised
to significantly improve medical diagnostics and patient care through Artificial Intelligence
(AI) and machine learning (ML) [6].

However, the exponential growth of data within SHSs introduces complex privacy
and security challenges [7]. The highly sensitive nature of personal health information
requires robust mechanisms to protect data against unauthorized access and breaches, in
accordance with strict regulations like the General Data Protection Regulation (GDPR) [8] and
the Health Insurance Portability and Accountability Act (HIPAA) [9]. In response, FL [10] has
emerged as an innovative solution that enables decentralized model training on diverse

Blockchains 2025, 3, 1 https://doi.org/10.3390/blockchains3010001

https://doi.org/10.3390/blockchains3010001
https://doi.org/10.3390/blockchains3010001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com
https://orcid.org/0009-0008-8598-7495
https://orcid.org/0000-0001-6784-0221
https://doi.org/10.3390/blockchains3010001
https://www.mdpi.com/article/10.3390/blockchains3010001?type=check_update&version=1


Blockchains 2025, 3, 1 2 of 38

devices without the need to share their sensitive raw data. Although it inherently embraces
privacy by design, solely relying on its basic privacy features proves insufficient to ensure
comprehensive privacy in smart healthcare [11]. According to [12,13], FL is vulnerable
to attacks such as membership inference [14,15], model reconstruction [8,16], and model
inversion [8,17], which can lead to significant privacy risks. In addition, the introduction of
FL into SHSs also raises some privacy concerns [18]. To enhance its privacy-preserving ca-
pabilities, the augmentation of FL with advanced technologies like Differential Privacy (DP),
Homomorphic Encryption (HE), and Secure Multi-Party Computation (SMPC) upon the concept
of Privacy-Preserving Federated Learning (PPFL) is actively explored [19]. PPFL has thus
evolved into a compelling paradigm for enhancing both privacy and security in SHSs [7,20].
Moreover, blockchain [21–23] with its features seems to be another serious option for en-
hancing both privacy and security in an FL context. In fact, incorporating blockchain into
FL enhances privacy and trust throughout the process, especially in sensitive operations
involving health data [24]. Blockchain technology augments FL by providing an immutable,
transparent ledger for gradients upload, aggregation processes, and model storage, thus
enhancing trust and privacy assurance throughout the FL lifecycle.

Although the potential advantages of integrating FL with PETs and blockchain for
privacy protection in SHSs are considerable, significant challenges remain. On one hand, the
challenge lies in the diversity of privacy threats in SHSs and the rapidly increasing number
of new threats. For instance, the adoption of FL-enabled SHS introduces numerous privacy
threats arising from both technical vulnerabilities and malicious users. On the other hand,
the challenge aligns with the technical intricacies associated with seamlessly integrating
these technologies into SHSs for privacy protection. Actually, it is crucial to investigate the
best possible combination between these technologies to mitigate the effects of threats on
user privacy by considering factors such as compatibility, efficiency, and communication
overhead. Therefore, it is important to explore how PETs and blockchain mechanisms can
empower FL for privacy protection, particularly in the burgeoning landscape of smart
healthcare. In this regard, addressing these challenges requires not only technological
innovation but also a reevaluation of regulatory frameworks to facilitate the effective
adoption of these advanced solutions [25].

Motivated by the promising features and recent developments of FL, researchers have
conducted many studies to survey the potential of integrating PETs and blockchain to
enhance privacy protection in FL-based systems including FL-based smart healthcare. For
example, the work in [26] reviewed the applications of FL in healthcare, highlighting its
effectiveness across several domains such as mammogram analysis, COVID-19 classifi-
cation, and wearable health monitoring. However, it does not explore the potential of
the integration of PETs and blockchain with FL to enhance its privacy capacity in SHSs.
Similarly, the works in [27,28] have explored the potential of combining FL with PETs for
privacy enhancement, but the study does not explore the application in SHSs. In addition,
ref. [29] comprehensively surveyed the application of FL in SHSs, highlighting its ability to
enhance privacy in remote health monitoring, medical imaging, COVID-19 detection and
electronic health records. However, it lacks emphasizing the potential of integrating FL
with PETs and blockchain, which could significantly enhance data privacy and security in
SHSs. In the work by [12], a systematic review of privacy-preserving methods that integrate
blockchain and FL in telemedicine is provided, highlighting their potential to enhance
data security and trustworthiness in remote healthcare systems. However, the study does
not adequately explore the implications of combining PETs with these frameworks, which
could further strengthen privacy measures and address existing vulnerabilities in SHSs.
The summary of the comparison with other surveys is given in Table 1.
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Table 1. Existing surveys and our contributions.

Ref. FL-SHSs PETs-FL BC-FL PETs and BC-FL in SHSs Contributions

Briggs et al. [27] ✗ ✓ ✗ ✗
A review of PPFL in IoT
environments, emphasizing
methods for enhancing privacy.

Moon et al. [26] ✓ ✓ ✗ ✗

A comprehensive review of FL
applications in healthcare,
highlighting its role in
privacy-preserving medical imaging
and wearable healthcare systems.

Yin et al. [28] ✗ ✓ ✓ ✗

A comprehensive survey on PPFL,
proposing a novel
5W-scenario-based taxonomy to
systematically analyze privacy
risks.

Nguyen et al. [29] ✗ ✓ ✗ ✗
A survey of PPFL emphasizing
compliance with GDPR
requirements.

Hiwale et al. [12] ✓ ✓ ✓ ✗
A review of PP methods integrating
blockchain and FL, analyzing their
applications in telemedicine.

Our survey ✓ ✓ ✓ ✓

A comprehensive survey on PETs
and blockchain-based methods in
SHSs, emphasizing blockchain–FL
and PETs’ ability to protect privacy
in SHSs, especially for health data
management, remote health
monitoring, medical imaging, and
health finance management.

Notations: FL-SHSs: FL-enabled SHSs; PETs-FL: PETs-enabled FL; BC-FL: blockchain-enabled FL; GDPR: General
Data Protection Regulation.

Given the aforementioned limitations of existing surveys and the fast-ever devel-
opment of FL, we find it necessary to conduct a comprehensive survey that reviews the
most recent findings, identifies the gap, and suggests the future research directions related
to PPFL in SHSs. Therefore, this survey uniquely examines the technical integration of
PETs and blockchain in FL frameworks, providing a comprehensive analysis of how these
technologies can collectively enhance privacy and security in SHSs. We first review the
privacy concerns in SHSs and find out a classification of privacy threats. Then, we conduct
an extensive review of PPFL and its integration in SHSs. We finally examine the potential
of the integration of blockchain and PETs with FL to enhance privacy in SHSs. We focus on
some specific applications of smart healthcare such as health data management, remote
health management, medical imaging, and health finance management.

Through a systematic exploration of current studies and emerging technologies, this
work aims to spur further research into robust, efficient, and scalable privacy-preserving
frameworks, contributing to the evolution of smart healthcare into a domain where cutting-
edge technology and stringent privacy protection coexist harmoniously.

This survey is built based on two main dimensions as shown in Figure 1: the augmen-
tation of FL with PETs for enhancing privacy protection, and its integration with blockchain
to further secure and decentralize healthcare data processes.
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Figure 1. Survey map.

This work’s contributions are fourfold:

• We investigate the main privacy threats currently in SHSs, elaborate on the main
FL-based privacy mechanisms in SHSs, and propose a taxonomy of FL-based privacy
mechanisms developed in recent studies.

• This survey meticulously explores the intersection of FL with DP, HE, and SMPC
within SHSs. It outlines key contributions and performs a comparative analysis that
focuses on privacy, scalability, computational efficiency, and the pros and cons of each
technology, aiming to build robust and reliable SHSs.

• The survey analyzes the cutting-edge developments in integrating blockchain technol-
ogy with PPFL within SHSs. We use three key technical dimensions: model storage,
gradient upload, and aggregation, to succinctly summarize contemporary advance-
ments and organize the discussion. In addition, we compare recent significant studies
on the integration of blockchain technology in PPFL, evaluating each based on its
respective advantages and limitations.

• Finally, we identify current deficiencies of PPFL and propose potential avenues for
future research.

To ensure a comprehensive understanding of the intersection between FL, PETs, and
blockchain in SHS, our survey is based on the literature published between 2018 and 2024.
We consulted databases such as ACM Digital Library, IEEE Xplore, Scopus, and PubMed
using keywords related to our core topics. Studies were included based on criteria such as
relevance to the SHSs context, focus on privacy and security aspects, and use of FL, PETs, or
blockchain. Data extraction focused on methods used, findings related to the effectiveness
of technology implementations, and identified challenges. This approach allowed us to
analyze trends and gaps in the current research landscape systematically. Table 2 presents
the key acronyms used in this survey.

The organization of the remainder of this survey follows a logical structure starting
with a discussion on privacy challenges in SHS in Section 2, followed by an overview
of FL and its integration into SHS in Section 3. We then examine the major privacy-
enhancing technologies integrated with FL aimed at increasing privacy preservation in
smart healthcare in Section 4. Additionally, a study of existing works concerning the
integration of blockchain in PPFL based on three technical dimensions is provided in
Section 5. Discussions and future work are given in Section 6, and we conclude this survey
in Section 7.
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Table 2. List of key acronyms.

Acronyms Definitions

FL Federated Learning.

SHS Smart Healthcare System.

PPFL Privacy-Preserving FL.

PETs Privacy-Enhancing Techniques.

DLT Distributed Ledger Technology.

DP Differential Privacy.

HE Homomorphic Encryption.

BC Blockchain.

SMPC Secure Multiparty Computation.

2. Privacy Concerns in Smart Healthcare
In this section, we review the key concepts of privacy and address the privacy threats

in SHSs. We start by clearly defining the concept of privacy and classifying privacy in SHSs.
We then discuss the privacy threats in SHSs and provide a relevant classification.

Modern technologies have profoundly transformed healthcare systems, enhancing
their efficiency, improving patient care, and also accelerating research in medical fields. In
fact, wearable technology, electronic health records (EHRs) [3], and IoT devices are among the
technologies upon which smart healthcare is built. These technologies generate a plethora
of data that can be used for personalized treatment recommendations, illness diagnosis,
remote health monitoring, enhancing elderly care, and predictive analytics [30,31]. These
innovations, underpinned by IoT sensor technology [21,32], play a pivotal role in enabling
smart hospital services and remote health monitoring, fundamentally redefining healthcare
delivery [33–35].

Such advancements predicate the smart healthcare model, which is predicated on a
patient-centric, interconnected ecosystem bolstered by AI and IoT for optimized health
management and decision-making [36–38]. This system establishes a cohesive network
for the secure transmission of health data, enhancing the integration of various healthcare
platforms and community resources [39,40]. With the integration of AI and IoT in SHSs,
vast amounts of data are produced, analyzed, stored, and shared [41]. In this process, it is
essential to protect users’ privacy.

Privacy, a multifaceted concept, has undergone nuanced definitions over time, reflect-
ing the dynamic interplay between societal evolution and technological advancement. One
of the earliest definitions, originating from a seminal law review, characterizes privacy as
the fundamental right to “be let alone” [42]. This foundational definition has been echoed
and elaborated upon in various domains, notably within the Information and Technology
(IT) sector. Here, privacy is construed as the capacity to protect sensitive information
from unauthorized access and use [43]. The National Institute of Standards and Technology
(NIST) further refines this conception, defining privacy as the assurance of protecting
the confidentiality of, and controlling access to, information pertaining to individuals or
organizations [44].

Moreover, privacy is increasingly perceived as the prerogative of individuals to man-
age the dissemination of their personal data [45,46]. A recent study by Singh et al. [47]
straightforwardly posits privacy as the fundamental mechanism for safeguarding sensitive
information. Within the AI and FL field, ref. [48] elucidates privacy as the structured
preservation of individualized data entities. Across these varied conceptualizations, a
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common thread emerges: privacy assumes paramount importance within the Information
and Communication Technology (ICT) landscape, necessitating specialized attention.

Notably, emerging technologies including blockchain and AI are leveraged for protect-
ing privacy, employing diverse techniques to enhance the efficacy of safeguarding sensitive
information. These advancements underscore the ongoing efforts to fortify privacy frame-
works amidst the evolving technological landscape.

2.1. Types of Privacy

In [49], Ding et al. proposed five types of privacy in SHSs, including identity, location,
query, owner, and footprint privacy. Zhu et al. [21] also described five main types of
privacy associated with IoT systems, including identity, location, trajectory, query, and
report privacy. In the above works, location, query, and identity privacy are commonly
discussed by researchers. Moreover, Chen et al. [50] classified privacy in three main
categories, namely identity-based privacy, data-based privacy, as well as location privacy.
While identity privacy refers to protecting personal identifiers, location privacy consists of
protecting the user’s location data such as geographic position and its parameters [21] from
disclosure. As well, data privacy entails the protection of the user’s personal data. Most
recently, Wang et al. [51] proposed two main types of privacy in SHSs, identity privacy and
data privacy. Data privacy consists of a user or patient’s physiological information, and
identity privacy involves information about the identification of the participating clients.
In the present study, we explore two distinct categories of privacy as shown in Figure 2,
namely identity privacy and data privacy.

Figure 2. Types of privacy in SHSs.

Identity privacy refers to safeguarding the identifying information of users, encompass-
ing data elements facilitating the unequivocal identification of an entity, including but not
limited to name, date of birth, address, biometric details, photographic representations,
among others. To mitigate identity privacy apprehensions within smart healthcare envi-
ronments, Ali et al. [18] advocated for the adoption of anonymization techniques on users’
personal identifiable information (PII). Furthermore, they proposed three distinct strategies
aimed at strengthening user access to the system, encompassing login-based authentication,
pseudonym use, and anonymity protocols, respectively. Still in addressing identity privacy
concerns, the adoption of pseudonyms is commonly advocated by [21,49,50].

In contrast, data privacy refers to the protection of physiological data and other person-
alized information, such as medical records, clinical notes, diagnostic data, locational data,
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professional particulars, and financial details. Various strategies, prominently including
data encryption, have been deployed to uphold data privacy standards [50]. Moreover,
safeguarding data privacy assumes paramount significance within the healthcare sector,
particularly in the context of FL and AI applications [52]. As underscored by the liter-
ature [52], the imperative of data privacy in healthcare is multifaceted, encompassing
considerations of patient trust and confidence, ethical obligations, regulatory compliance
imperatives, and the deterrence of illicit data access.

2.2. Privacy Threats in Smart Healthcare

Privacy emerges as a paramount concern within SHSs owing to the exceedingly
sensitive nature of the data they manage. While certain privacy concerns are shared
with those encountered in IoT systems, others are specifically tailored to the domain of
smart healthcare. Over the past decade, numerous scholars have extensively examined
the literature concerning privacy preservation within SHSs, yielding diverse insights.
Notably, Stojkov et al. [53] proposed a taxonomy that delineates privacy concerns within
the healthcare domain, structured around the tripartite architecture of IoT. As a result
of their investigation, a compendium of these concerns has been cataloged, as shown in
Table 3.

Table 3. Privacy concerns in IoMT architecture.

IoT Layers Privacy Concerns

Perception layer Collection of more data than required without user consent, data
and device tampering.

Network layer Disclosure of device or user’s identity or location, data tampering.

Application layer Disclosure of user’s personal information, user’s movement
analysis, behavioral analysis, lack of digital forgetting.

Ranjith et al. [54] carried out a comprehensive examination of the privacy challenges
inherent in SHSs, elucidating a spectrum of security and privacy obstacles. These include
RFID security vulnerabilities, Distributed Denial of Service (DDoS) attacks, man-in-the-
middle attacks, intra-device authentication complexities, and secure communication proto-
cols and key management methodologies. Additionally, Ali et al. [18] have delineated a
series of potential privacy concerns and challenges specific to SHSs leveraging the IoMT.
Principally, these concerns revolve around the integrity of the end user identities and
their associated information. Notably, instances of data leakage may manifest during
communication exchanges between healthcare practitioners and IoMT devices, or between
healthcare providers and patients’ personal devices. Prominent among the identified
threats are eavesdropping attacks, falsified data dissemination to healthcare providers, and
data flow analysis vulnerabilities [18].

The integration of advanced technologies and connectivity to improve medical services
in SHSs also raises significant privacy concerns due to the sensitivity of the health-related
data they handle. In this survey, as shown in Figure 3, we provide a classification of privacy
threats in SHSs grouped in five key types including data breaches and unauthorized access,
insider threats and social engineering, technical vulnerabilities, users privacy concerns,
and regulatory compliance and data misuse.
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Figure 3. Classification of privacy threats in SHS.

Data breaches and unauthorized access: In an SHSs context, it refers to incidents where
sensitive medical information is exposed or accessed by unauthorized individuals. The
consequences of such threats are severe, as they compromise patient privacy, may lead
to identity theft, financial fraud, violations of patient confidentiality, and can erode trust
in healthcare providers. These incidents can occur in various ways including hacking,
phishing, exploiting software vulnerabilities, cyberattacks, and insider threats [55]. These
privacy threats can result in the exposure of patient identities, medical records, and other
confidential data to malicious actors through various medical devices such as invasive,
non-invasive, and active therapeutic devices as well as sensors (physiological, biological,
and environmental) [56]. Despite sophisticated security measures, the prevalence of data
breaches in healthcare facilities highlights the ongoing challenges in safeguarding sensitive
information. To mitigate this type of privacy threat, it is critical to implement strong access
controls, use encryption for data at rest and in transit, and perform frequent security audits.

Insider threats and social engineering: Insider threats [57] in healthcare refer to risks
posed by individuals within a healthcare organization, such as employees, who have
authorized access to the SHS and data. An insider can be former and current employees,
business partners, or consultants [58]. These insiders may intentionally or unintentionally
compromise security by accessing patient records without permission or engaging in
data breaches. According to [57], several human factors such as awareness, selfishness,
devotion, access, leadership, and caring are associated with insider threats. On the other
hand, social engineering threats [59] involve manipulative operations employed by cyber
criminals to trick users into revealing important personal information like passwords
and other sensitive data. This can be performed through methods like phishing emails,
where attackers impersonate trustworthy sources to trick victims into clicking malicious
links or downloading harmful files. Both insider threats and social engineering attacks
are significant cybersecurity concerns in the healthcare sector, requiring robust security
measures and employee awareness. Implementing strict access controls and monitoring,
conducting background checks, and training employees to recognize and resist social
engineering tactics are crucial.

Technical vulnerabilities: SHSs involve the use of various devices and software in pro-
viding healthcare services [56]. Technical vulnerability threats are vulnerabilities within
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the software, hardware, or network components of SHSs that can be utilized to gain unau-
thorized access or disrupt healthcare services [60]. These vulnerabilities may arise from
unpatched software, outdated systems, or inadequately configured networks [57]. These
can lead to data corruption, system downtime, or unauthorized data access, impacting
patient care and data integrity. To mitigate these types of threats, robust system architecture,
regular updates and patches, and comprehensive vulnerability assessments are essential.

Users privacy threats: It concerns threats related to data practices transparency and the
autonomy of users over their data. Concerns often arise about how data are collected, used,
shared, and stored within SHSs. Inadequate management of these concerns may result in a
distrust of patients regarding healthcare providers, reluctance to share data, and potential
non-compliance with privacy regulations. Implementing clear privacy policies, ensuring
informed consent, and providing patients with easy access to their data and control over
their use are crucial steps.

Regulatory compliance and data misuse: Adherence to the regulatory and legal frame-
works is important to protect privacy in SHSs. Non-compliance and misuse of data for
purposes other than those consented to by the patient fall under this category. Regulatory
violations may result in legal penalties, loss of licenses, and damage to an organization’s
reputation. Data misuse can also infringe patient rights and trust. Healthcare providers
must ensure that all SHS activities comply with applicable laws like HIPAA in the US,
GDPR in Europe, and other local data protection regulations [8,9]. Regular compliance
audits and ethical reviews of data usage practices are also recommended.

3. Federated Learning in Smart Healthcare Systems
This section presents the role of FL in SHSs starting with its foundational concepts of

FL, followed by the integration of FL into SHSs and concluding with examining strategies
to implement PPFL in SHSs to enhance privacy protection.

3.1. Background

The emergence of centralized-based ML models has heightened apprehensions regard-
ing data privacy [48]. Centralizing data collection for training ML models poses a potential
risk of exposing sensitive user information. FL was introduced as a new decentralized ML
approach with promising features to mitigate privacy issues in traditional centralized ML
models. Although some related work had previously been conducted, the FL approach
was initially introduced by McMahan et al. in 2016 [10]. In their study, they explored a
learning technique wherein users could collectively derive benefits from shared models
trained on data, without necessitating a centralized data storage system. Following the
work of [10], several studies have emerged, leading to the adoption of various definitions
and concepts related to FL.

For instance, FL is defined as a form of a distributed ML approach where multiple
participants can jointly train a model under the supervision of a cloud server while ensuring
that their raw data are kept locally [61–63]. One important characteristic of FL is enabling
the training process to occur on each participant’s device, or partially at the server, as in split
FL [64]. As a result, only the model parameters are transmitted to the central server to obtain
the global model [10,65]. Consequently, both the server and the other participating devices
are unable to directly access a particular client’s raw data. This is presented as the main
advantage of the FL methods. Hence, FL is called “a privacy-by-design approach” [48].

Originally proposed to address privacy concerns [61], FL also has the potential to
reduce communication overhead and distribute computational tasks from the central server
to clients. In previous works, the FL principle has been tackled in different ways. Qin
et al. [61] defined a four-step FL basic principle that includes local update, weights upload,
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global aggregation, and weights feedback. However, their proposition does not include
one of the important steps, that is, the initialization. Mammen et al. [66] also proposed
a four-step-based FL process with client selection and parameter broadcasting instead of
weights upload and weights feedback. In addition, Kairouz et al. [62] proposed a typical FL
training in five steps including client selection, model broadcast, clients’ local computation,
aggregation, and model update. However, in this typical training process presented, the
weights upload is not outlined as a step but is very important in the process. To provide
a comprehensive description of the whole FL process in this work, we consider the FL
process in five steps including initialization and client selection, model broadcast, local
training, gradients upload, and aggregation. Aside from the initialization step, which
is performed once, the above-mentioned steps are executed repeatedly for a predefined
number of global communications or when the model converges to an optimal point.

3.2. Federated Learning Integration into Smart Healthcare Systems

Alongside the significant benefits brought by the integration of IoT into healthcare
systems, several challenges and concerns have emerged [67], including privacy and security
concerns [68]. For instance, the proliferation and widespread adoption of IoMT devices,
coupled with the inherent vulnerabilities that expose healthcare systems to privacy leakage,
cyber attacks, and threats [47]. In addition, the need to access substantial quantities of
sensitive patient data raises critical issues regarding the protection of the privacy [3,67].
Furthermore, data currently play a significant and pivotal role in SHSs, particularly grow-
ing prominence of big data and AI. The use of cutting-edge technologies, including IoT
sensors, wearable devices, and EHRs, generates a huge volume of data that enables the un-
derstanding of individual health profiles and facilitates personalized care. Data, especially
big data, play a crucial role in enabling personalized and efficient care, enhancing patient
outcomes, and reducing medical expenses [38].

In response to the challenges highlighted above, FL seems to be a suitable approach. FL,
a decentralized ML technique, facilitates collaborative ML model training over distributed
healthcare facilities while ensuring the privacy of individual patient data [6,10]. Figure 4
illustrates the integration of FL in SHSs where FL nodes can represent various healthcare
structures such as a smart hospital, smart mobile healthcare device, smart pharmacy,
smart laboratory, etc. By allowing data to remain localized and eliminating the need for
centralized data training, FL offers an efficient means of mitigating privacy risks inherent
in conventional data-sharing approaches.

Figure 4. FL-enabled smart healthcare system (SHS).
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3.3. Privacy-Preserving Federated Learning

Typically, in ML, privacy concerns can be grouped into two kinds, namely direct
privacy breaches and indirect privacy disclosure [69]. Direct privacy breaches result from
massive data collection and illegal use without owner’s permission, while inadequate
model generalization capacity leads to indirect privacy disclosure. Indirect privacy disclo-
sure seems to be the main objective of ML privacy protection [69].

According to [8,10,63], privacy is the key feature of FL. Indeed, in the FL environment,
clients usually communicate with the central server utilizing model parameters instead
of raw data. This approach naturally ensures privacy by minimizing the transmission of
sensitive information while still enabling collaborative model training [48,61].

However, it is crucial to recognize that FL provides only an incomplete resolution
for protecting the privacy of AI and ML models [13,48], especially in SHSs. Although FL
proved a great potential for enhancing privacy in SHSs, new privacy concerns targeting FL
systems have emerged [51,70]. To overcome privacy concerns in the context of FL, PPFL has
been introduced as a smart combination of FL and privacy preservation techniques [28]. It
is designed to provide numerous significant enhancements aimed at boosting privacy and
security in the design and implementation of FL systems. Its main challenge lies in striking
a balance between preserving data privacy and maintaining data utility when integrating
privacy preservation techniques in the FL context. Liu et al. [71] have used techniques
such as Trusted Execution Environment (TEE) and anti-Generative Adversarial Network (GAN).
While proposing the FL approach, ref. [10] also envisaged the possibility of combining
it with SMPC and DP to mitigate privacy leakage. According to Jagar et al. [48], the key
privacy technologies used in FL are HE, SMPC, DP, secure aggregation, and blockchain
integration. Recent works [8,72] as well as [28,65,66] focused on PETs like HE, SMPC, and
DP as the main and most explored techniques for enhancing privacy in FL.

In Figure 5, we propose a taxonomy of FL-based privacy mechanisms used in SHSs.
The proposed taxonomy classifies FL-based privacy-preserving mechanisms in SHSs into
three main groups, namely privacy-enhancing techniques, Distributed Ledger Technology
(DLT), and hybrid techniques. Although PETs encompass several techniques such as
cryptographic techniques, perturbation techniques, and anonymization techniques, for
this study, we focus on DP, HE, and SMPC that are the key PETs integrated in privacy-
preserving mechanisms within SHSs. We outline blockchain as the key DLT technique
for enhancing privacy within the FL context, leveraging its inherent features [12] such as
decentralized control, immutable records, and cryptographic security [73] to significantly
strengthen privacy protection by preventing unauthorized data tampering and access. We
describe each technique supported by some of its recent applications as follows.

3.3.1. Privacy-Enhancing Techniques

In this sub section, we describe the key categories of PETs that are cryptographic
techniques, anonymization techniques, and perturbation techniques.

Cryptographic techniques: They are based on cryptography, that is, the study and ap-
plication of techniques for safe communication [74]. Through encryption and decryption
operations based on mathematical algorithms and computational techniques, cryptogra-
phy serves as a cornerstone in safeguarding sensitive data and communication channels
within various domains, including information technology, cybersecurity, and telecommu-
nications. In the recent scientific literature, cryptographic techniques such as HE [75–77],
SMPC [78,79], and secret sharing [80–82] mechanisms have emerged as promising solutions
for strengthening privacy protection within FL frameworks.

Perturbation techniques: The fundamental concept behind these approaches is to in-
troduce random noise to the initial dataset. This process enables statistical calculations
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performed on the noisy data to remain indiscernible from those derived from the orig-
inal dataset. The perturbation techniques used mainly in the FL context are DP-based
techniques [83,84], such as global DP and local DP [85], etc.

Anonymization techniques: They are mechanisms applied to protect the privacy of users
in a dataset by removing personally identifiable information (PII) [46]. The objective of these
techniques is to make it impossible or extremely difficult to re-identify specific individuals
within the data. For instance, Choudhury et al. [86] proposed an anonymization-based
approach using the K-anonymity [87] technique to effectively enhance privacy preservation
within the FL context while improving data utility.

3.3.2. DLT Techniques

The main DLT broadly adopted in the FL context for privacy preservation is blockchain
technology. Leveraging its distinctive features, blockchain [21,23,88] holds the potential to
empower FL frameworks, thereby enhancing privacy protection. Numerous blockchain-
based approaches have been proposed in the scientific literature. These approaches, as
elucidated in works by [23,89] as well as [70,90], represent concerted efforts to improve the
privacy-preserving frameworks inherent in FL paradigms. In simple FL-based systems,
privacy is protected by allowing local model training without sharing clients’ data. In
fact, blockchain encompasses technologies such as encryption and smart contracts that
are utilized to enhance privacy protection in FL-based SHSs [91]. In blockchain-enabled
FL frameworks, data are kept private by each client node and their privacy is ensured
by the tamper-proof nature of blockchain. Furthermore, blockchain enhances privacy in
FL-based frameworks by decentralizing trust and eliminating single points of failure. It
ensures tamper-proof recording of model updates, enforces, and provides auditability to
detect malicious behavior. Although blockchain is inherently a security-by-design tech-
nology, integration with FL can leverage its prominent features to provide strong security
and somewhat contribute to enhancing privacy in FL-based frameworks. For example,
Kasyap et al. [92] proposed a framework in which blockchain channels isolate sensitive
data into secure groups, reducing exposure risks during training. Rahman et al. [93] intro-
duced a framework with provenance tracking that leverages blockchain to track the origin,
integrity, and updates of training data and models. This ensures that all data and updates
are verified and traceable, preventing malicious data manipulation or leakage, thereby
ensuring the integrity of data and updates while enforcing privacy through encryption.
In addition, refs. [92,93] perform decentralized gradient aggregation where blockchain
replaces the centralized aggregator with a decentralized gradient mining system. Each
federated node performs local training, and encrypted gradient updates are aggregated
using blockchain consensus mechanisms, ensuring privacy. Moreover, the scheme in [94]
employs the auditability and incentives mechanism, which ensures that each update is
recorded immutably on the blockchain, enabling participants to verify the integrity and
provenance of the data used in model training. This ensures that malicious participants
cannot introduce poisoned updates or tamper with the global model. Overall, it is worth
noticed that, even though blockchain is not inherently a privacy technology, it has the
potential to provide trustworthiness within FL systems, thereby indirectly enhancing pri-
vacy protection. To further enhance privacy in FL-based systems, it is essential to combine
blockchain with PETs under the hybrid label.

3.3.3. Hybrid Techniques

Utilizing hybrid techniques in FL involves integrating two or more distinct technolo-
gies to mitigate privacy risks effectively. Each technique is carefully integrated, taking into
account its unique features, benefits, and limitations, thereby enabling the global frame-
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work to offer an efficient approach for privacy preservation. Numerous hybrid approaches
have been advanced to protect privacy in SHSs within the FL framework, as evidenced by
studies such as those by [24,95,96] for FL-based blockchain and DP, ref. [76] for FL-based
HE and SS, ref. [97] for FL-based blockchain and SMPC, ref. [98] for FL-based blockchain,
DP, and HE, and refs. [76,99] for FL-based HE and DP.

4. Federated Learning Meets Privacy-Enhancing Technologies
In this section, we explore privacy-enhancing technologies (PETs) that enhance FL for

privacy protection. The discussed combinations include Differential Privacy-enabled FL,
Secure Multi-Party Computation-enabled FL, and Homomorphic Encryption-enabled FL.
Each subsection elaborates on the mechanisms, applications, and limitations of these PETs,
with a focus on their relevance to smart healthcare data protection. We conclude with a
comparison between the above PETs.

4.1. Differential Privacy-Enabled Federated Learning

DP [100] is a technique that consists of adding noise to data to mask individual
contributions. It aims to ensure robust assurances about the privacy of individuals whose
data serve for analysis or computation [101]. Specifically, given two adjacent datasets D1

and D2 which differ solely at one data point, applying the DP technique to perturb the
original values can render the outputs of these datasets indistinguishable. Formally, DP
can be defined as follows.

Definition 1 (ϵ-Differential Privacy [100]). A randomized mechanism M satisfies ϵ-Differential
Privacy (ϵ-DP) if, for any pair of neighboring datasets D1 and D2, and for any possible output
S ∈ Range(M),

Pr[M(D1) ∈ S] ≤ eϵ × Pr[M(D2) ∈ S] (1)

where the parameter ϵ denotes the privacy budget, a mathematical concept that quantifies the
maximum possible privacy loss. DP can be classified into two main types, including Global
Differential Privacy (GDP) and Local Differential Privacy (LDP) [28]. While GDP focuses on
adding noise centrally before sharing data, LDP perturbs data locally, allowing each client to protect
their information independently. The problem of privacy preservation using DP in the FL context
has been a focus of several research works. Abadi et al. [102] proposed a way of combining DP with
deep learning to preserve privacy with some important results in terms of accuracy and privacy.
Afterwards, various approaches tightly linked to the FL context have been proposed. In Table 4,
we compare DP-based PPFL methods based on key metrics such as privacy level, key technologies,
datasets, accuracy, and limitations.

Zheng et al. [83] proposed an approach to enhance privacy in the FL context that con-
sists of injecting local DP noise into the model updates prior to transmission. Furthermore,
they indicated that LDP primarily gains advantages from an extensive user community and
requires fewer CPU/battery resources on portable devices while ensuring a robust level of
privacy protection [83]. They obtained valuable insights from the proposed solution but
suggested further and in-depth studies and experimentation to enhance the accuracy of
the scheme. Li et al. [84] proposed ADDETECTOR, a privacy-preserving smart healthcare
scheme designed for the early detection of Alzheimer’s disease (AD) in an easy-to-use and
cost-effective manner. The system addresses the challenges in remote AD detection and
proposes a solution that utilizes IoT appliances and security protocols to ensure privacy. By
employing FL and DP mechanisms, ADDETECTOR achieves high accuracy and low time
overhead in AD detection trials, demonstrating its effectiveness and efficiency. However,
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the ability of the proposed approach to overcome potential security threats and privacy
breaches in real-world scenarios remains a critical challenge.

Table 4. DP-based PPFL approaches.

Schemes Privacy Level Key Technologies Datasets Accuracy (%) Limitations

Zheng et al. [83] High FL, LDP NYC Taxi, BR20009,
Adult10 90

Client population
dependency, privacy

loss concerns

Yang et al. [103] High FL, DP, HFL, DNN MNIST 78–98

Complexity of
managing personalized
privacy levels for each

client, accuracy and
privacy trade-off

Li et al. [104] High FL, SDG, PDP, FedSGD MNIST and CIFAR-10 Not specified Up to client to choose
their privacy level

Weng et al. [101] High FL, LDP, CDP, GM, MA,
SG, MGD MNIST LDP 97 LCDP 94.2

High communication
overhead, system

complexity

Khanna et al. [105] High FL, FL, DP, TP iDASH 2020 97.5

Challenge of setting
privacy budgets in

differential privacy and
the need for

knowledgeable users to
prevent potential
privacy leakages

Maria et al. [106] High FFNN, ReLU, SGD,
FedAvg, FL, DP MNIST 92.5

Challenge of balancing
accuracy and privacy,

complexity of
parameter tuning

in differential
privacy methods

Notations: FFNN: feed-forward neural network; TP: tensor flow–privacy; ReLU: rectified linear unit; PDP:
personalized differential privacy; GM: Gaussian mechanism; MA: moment accountant; MGD: momentum
gradient descent; SG: sparse gradient.

Yang et al. [103] proposed another approach, named PLU-FedOA, that optimizes FL
with personalized local DP in mixed privacy preservation situations. Their algorithm
consists of two components: PLU, that helps clients to transmit local updates under DP of
individually chosen privacy degree, and FedOA, that allows the server to aggregate local
parameters with optimized weight in combined privacy-preserving scenarios. Compared
with other existing FL solutions like FedAvg, GDP-FL, and LDP-FL, PLU-FedOA has shown
superior performance in a mixed privacy-preserving setting [103]. Although this solution
is promising, its potential efficiency on various datasets and real-world applications still
needs to be proved.

Li et al. [104] presented a novel FL scheme called PGC-FedSGD that integrates per-
sonalized LDP and the Federated Stochastic Gradient Descent (FedSGD) algorithm. In this
solution, PGC-LDP is utilized by the clients to ensure local DP of the gradient, while
FedSGD is used by the server for the aggregation. In this framework, users can choose
their privacy levels regarding a FedSGD algorithm with LDP. The experiments on the
MNIST and CIFAR-10 datasets demonstrated good results, as PGC-FedSGD has a simple
architecture and algorithm design with a strong privacy assurance. However, the proposed
approach, which results in clients uniformly selecting their privacy level within an em-
pirical domain, appears unreasonable, as most participants tend to seek robust privacy
guarantees if possible.

Unlike [103,104] approaches where DP is applied locally on the clients’ side,
Weng et al. [101] proposed another approach, in which DP is used by both the server
and clients to obtain stronger privacy protection. Their scheme also applies sparse gradi-
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ents and momentum gradient descent (MGD) to enhance accuracy performance and decrease
communication overhead. The main findings include outperforming other DP-based FL
schemes concerning model accuracy and providing a more robust privacy assurance [101].
The proposed scheme can achieve optimal accuracy performance while reducing communi-
cation costs by up to 90%. However, the potential degradation of accuracy performance
due to the injection of noise for privacy protection and the need to choose the noise scale
carefully to balance privacy protection and model performance are some limitations of
this approach.

The work of Khanna et al. [105] proposed an FL algorithm that implements DP for ML
model training on distributed healthcare data. The framework was tested for forecasting
breast cancer status based on gene expression data and achieved similar accuracy and
precision as a non-private model, demonstrating its effectiveness. However, there are
still some challenges for their proposition including privacy concerns when models were
trained on data from various institutions and hospitals and the need to set the privacy
parameter by a user with expertise to mitigate potential privacy breaches.

Gu et al. [25] introduced a PPFL framework using DP for artificial IoT systems. Their
approach includes two techniques, gradient perturbation and gradient permutation, to
safeguard both the privacy of data and the identity of clients throughout the FL process.
The gradient perturbation mechanism involves adding exponential noise to the computed
gradient on the client side to satisfy data privacy, while the gradient shuffling mechanism
guarantees that the server cannot discern which gradient belongs to which client, preserving
the client’s identity [25].

Maria et al. [106] introduced an Optimized DP (ODP) approach to safeguard the
privacy of individual data points while facilitating the extraction of useful insights. Their
scheme is evaluated on the MNIST dataset and analyzed with the FedAvg aggregator.
The main findings include leveraging DP within FL to bolster privacy, experimentation
with diverse DP parameters to optimize outcomes, and presentation of quantitative results
detailing the accuracy of trained models alongside their corresponding privacy guarantees.
Moreover, it demonstrates that maintaining constant epsilon values while varying noise
levels and delta values leads to heightened privacy protections.

Nevertheless, strategies based on noise necessitate the algorithm to meticulously fine-
tune the generation of noise to keep the model’s performance, including accuracy. Failure
to do so could significantly impair performance.

4.2. SMPC-Enabled Federated Learning

SMPC is an advanced cryptographic method that permits decentralized participants to
collaboratively compute an objective function without disclosing their individual data [28].
It allows multiple users to collaborate when performing computations on their raw data
without the need to share them. SMPC utilizes some advanced cryptographic protocols,
such as secret sharing, garbled circuits, and HE, to facilitate confidential computations over
private data.

While there is limited literature on integrating SMPC with FL for privacy preservation,
some authors have explored this area. For instance, Kanagavelu et al. [78] introduced a
two-phase mechanism using Multi-Party Computation (MPC) to enhance privacy in FL.
The key findings of their approach include the successful integration of MPC for model
aggregation in FL, enabling companies to collectively train models while preserving privacy.
However, the limitations of the study involve high communication overhead and scalability
issues with MPC-enabled model aggregation, the complexity introduced by the need for a
small committee, and the focus on neural network models limiting generalizability to other
machine learning models.
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In addition, Tran et al. [79] proposed an approach called ComEnc-FL, a PPFL frame-
work that leverages SMPC and parameter encryption for protecting privacy and reducing
communication and computational costs. It surpasses typical SMC systems in training
duration and data transfer capacity, matching the fundamental FL framework and out-
performing DP-secure frameworks. However, while enhancing privacy and reducing
computational and communication costs in FL, ComEnc-FL may still be susceptible to
collusion between clients and the server, potentially compromising the model confiden-
tiality. Overall, SMPC schemes prevent inquisitive or untrustworthy aggregators from
inspecting private models without impacting accuracy [79]. SMPC schemes offer advan-
tages in preventing unauthorized access to private models without compromising accuracy.
However, challenges such as communication overhead, scalability issues, and susceptibility
to collusion underscore the necessity of in-depth research and advancement to overcome
the limitations and ensure robust privacy-preserving mechanisms within FL frameworks.

4.3. Homomorphic Encryption-Enabled Federated Learning

HE can be defined as a cryptographic mechanism that permits arithmetic operations
on encrypted data without decryption requirement [11]. Thus, a fundamental property of
HE is that decrypting the operated ciphertext should yield the same output as would be
obtained by operating on the unencrypted data. This property allows to execute intricate
mathematical operations on encrypted data while maintaining the security of the raw data.

HE encompasses a variety of encryption techniques capable of conducting diverse
computations on encrypted data. It includes several types, such as partially homomorphic,
somewhat homomorphic, and fully HE [11,107,108].

• Partially HE (PHE) enables computations involving a single type of operation, like
addition or multiplication. PHE incurs lower computational costs compared to alter-
native forms of HE, yet its applicability remains limited [109].

• Somewhat HE (SWHE) enables both addition and multiplication but with restrictions
on the number of operations permitted [11,110]. SWHE is more computational cost
compared to PHE while providing enhanced functionalities [109].

• Fully HE allows an unlimited number of additions or multiplications on cipher-
texts [68,110]. It allows unrestricted computations on encrypted data, including
conditional operations, branching, and iterative processes [110–112].

This flexibility in conducting computations while maintaining data privacy makes
HE an invaluable tool for scientific research and applications. Based on the encryption
mechanism, this technique avoids sharing raw data and the model during the training
process in FL between clients and the server. Therefore, it is very difficult for a third party
to access user sensitive information. Several studies have proposed privacy-preserving
solutions based on HE in the FL context. Table 5 compares HE-based PPFL methods based
on key metrics such as privacy level, key technologies, datasets, accuracy, and limitations.

For instance, Park et al. [75] introduced a system that enables homomorphic operations
with different encryption keys and the implementation of a system model involving a cloud
server and multiple clients for secure model aggregation and averaging. They presented
an algorithm for secure aggregation of local models which facilitates the update of the
global model parameters by the server using local model parameters with noise that can
be reversed out through participant collaboration. Their model involves a trusted key
generation center, cloud server, computation provider, and multiple clients, ensuring data
privacy through encryption and decryption processes [75]. The challenges addressed in [75]
include the need for extra operations to enhance data privacy in FL-based frameworks,
while limitations involve the balance between computational overhead and security level,
especially with increasing key sizes.
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Shi et al. [76] introduced a method that combines HE and secret sharing to ensure the
confidentiality of local parameters, withstand collusion threats, and simplify aggregation
without sharing keys. However, the proposed scheme faces challenges such as collusion
threats among clients or with the server, network disruptions leading to communication
issues, and the complexity of implementing encryption techniques in practical applications.
Moreover, Wang et al. [77] propose a scheme using HE to secure model parameters in
healthcare data applications, addressing privacy concerns and communication efficiency
challenges. The scheme introduces client authentication mechanisms and access control to
prevent attacks, ensuring data privacy and model performance while reducing communi-
cation overhead. However, the proposed scheme has some limitations including potential
communication overhead due to users dropping out during training, hardware quality
issues, network delays, and the need for an Acknowledgment (ACK) mechanism to handle
unresponsive users, which may increase waiting delays and affect overall training progress.

Table 5. HE-based PPFL approaches.

Schemes Privacy Level Key Technologies Datasets Accuracy (%) Limitations

Park et al. [75] Very high FL, HE Not specified 90 Computational overhead,
key sizes impact

Shi et al. [76] Very high FL, DP, HE, CNN,DNN MNIST, CIFAR-10 Over 90

The need for a common
key pair negotiation
among clients and

vulnerability to collusion
attacks between clients

and the server

Wang et al. [77] Very high FL, HE, AC Mechanism,
ACK Mechanism

APTOS 2019 Blindness
Detection, CIFAR-10 81.53 Time cost,

communication overhead

Walskaar et al. [113] Very high FL, HE, xMK-CKKS COVID-19 X-ray lung
scans 93.8 High execution time,

higher memory usage

Zhang et al. [114] Very high FL, HE, CNN HAM10000 76.9 Communication
overhead

Shen et al. [99] High FL, HE, SVM, DP HCV and diabetes
databases 86.4–98.6 High computational cost,

communication overhead

Notations: AC: access control; ACK: acknowledgment mechanism; HCV: hepatitis C virus; SVM: support
vector machine.

In addition, Walskaar et al. [113] also proposed another approach enhanced with
Ring Learning With Errors (RLWE)-based multi-key HE. The proposed approach utilizes
the xMK-CKKS scheme, a multi-key HE scheme based on the CKKS scheme, to ensure
the data confidentiality during the training processes in untrusted environments while
also addressing the shortcomings and trade-offs associated with privacy preservation in
medical data analysis. Although [113] proposed a comprehensive and detailed method to
addressing privacy concerns in the ML context for healthcare institutions by integrating
multi-key HE within the FL framework, their approach presents some limitations, including
the increased computational overhead and data expansion associated with homomorphic
encryption, which can reduce system performance and require additional storage and
communication resources. Additionally, the accumulation of noise in HE poses a significant
challenge, potentially leading to undecryptable ciphertext over time, necessitating the use
of noise management techniques to mitigate this issue.

Zhang et al. [114] developed a new masking scheme that integrates HE and SMPC for
FL, which considers data quality in model aggregation and provides a dropout-tolerable
and participants collusion-resistible solution. It also implements an FL prototype system
for medical data, performing comprehensive experiments utilizing authentic skin cancer
datasets to validate both the privacy preservation and the effectiveness of their approach.
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However, the proposed approach has certain limitations such as the potential impact of
HE on computational overhead, the need for further tuning in heterogeneous environ-
ments, and the lack of consideration for malicious server attacks and tampering of the
aggregated model.

Shen et al. [99] introduced a privacy-preserving and efficient online diagnosis method
for e-healthcare systems leveraging FL. The proposed scheme effectively protects patients’
privacy, achieves high accuracy in clinical diagnosis, and demonstrates practicality for
real-world SHSs. However, some limitations of the proposed scheme include potential
damage to the raw data and model accuracy due to the use of DP, increased computational
complexity from the complex HE algorithm, inefficient diagnosis result retrieval, and
relatively low accuracy of the diagnosis model obtained using the SVM algorithm.

Kumar et al. [70] proposed a sophisticated scheme that integrates blockchain technol-
ogy and HE with FL to address the challenges of privacy-preserving collaborative model
aggregation for the analysis of the medical image, particularly for COVID-19 detection
and classification. The proposed framework offers a novel approach to data sharing and
collaborative training across multiple healthcare institutions, laying the groundwork for
enhanced privacy, security, and accuracy in medical image analysis. However, the approach
may face challenges in latency and scalability as a result of the decentralized nature of the
blockchain network and the need for continuous updates to address new mutations of the
COVID-19 virus. Recently, Liu et al. [115] introduced a novel framework wherein users
encrypt their data using a joint public key determined by the server over three rounds of
interactions. This scheme offers several advantages, including accommodating dynamic
user participation, generating compact ciphertexts that remain independent of the number
of participants involved, and reducing the number of interactions per round from three to
two, thus mitigating concerns regarding user dropout during computation [115]. However,
the security of the proposed scheme may be compromised in scenarios where all users
collude with the server.

HE emerges as a pivotal technique for privacy preservation in FL systems within
the healthcare domain. Offering the capacity of performing computations on encrypted
data without decryption, HE provides a crucial opportunity to safeguard sensitive medical
information while enabling collaborative model training. However, the diverse types of
HE present trade-offs between computational costs and capabilities, necessitating careful
consideration in system design. Despite the promising advancements and proposals of HE-
based solutions to address privacy concerns, noise accumulation, computational overhead,
as well as security vulnerabilities persist as challenges. Further studies and refinements are
essential to overcome these obstacles to fully realize the potential of HE in FL-based smart
healthcare applications.

4.4. Comparison of Key Privacy-Enhancing Technologies in FL

To compare the effectiveness of the aforementioned privacy-preserving techniques
in FL, a comprehensive comparison is presented in Table 6, highlighting key aspects such
as privacy guarantees, computational overhead, scalability, key features, and limitations
between different methods.

Table 6. Comparison between main privacy-enhancing technologies in FL.

Privacy
Techniques Schemes Privacy Level Computation

Overhead Scalability Function Limitations

SMPC [78,79] Medium Medium High
Joint computation
without revealing

private inputs

High
communication

overhead
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Table 6. Cont.

Privacy
Techniques Schemes Privacy Level Computation

Overhead Scalability Function Limitations

DP [83,101,103–106] High Medium High

Addition of
calibrated noise

to ensure
individual

privacy

Reduction in data
utility due to

noise addition

HE [75,77,99,113,114] High High Low
Operation
directly on

encrypted data

High
communication

overhead

FHE [116] Very High High Medium

Computation
directly on

encrypted data,
flexibility in

model training

High
communication

overhead, system
complexity

The existing privacy protection frameworks for FL have certain limitations to varying
degrees, rendering them unable to achieve a comprehensive resolution of all challenges
within a single scheme. As shown in Table 6, we compare these technologies, focusing on
aspects crucial for smart healthcare. SMPC is noted for its good privacy level and moderate
computational overhead, offering the advantage of joint computation without exposing
private inputs, albeit at the cost of high communication overhead. DP provides strong
privacy but with a risk of reduced data utility. Data utility refers to the ability to maintain
the usability and accuracy of data as well as preserving the validity and reliability of the
insights derived from them after the application of a privacy protection mechanism [117].
Utility measures the ability of the system to maintain model performance. HE allows for
computation on encrypted data, ensuring high privacy but suffering from high computa-
tional costs. Fully HE extends this capability with increased flexibility for model training
but introduces system complexity and still retains considerable communication overhead.
These insights are essential to determine the appropriate technology for a reliable smart
healthcare system that balances privacy, efficiency, and practical limitations.

4.5. Privacy-Enhancing Technologies Meet FL-Based Smart Healthcare

In this section, we investigate the integration of PETs in FL-based SHSs, especially
in health data management, remote health monitoring, medical imaging, and health
finance management.

4.5.1. Application in Health Data Management

PETs such as DP, HE, and SMPC are often combined with FL in FL-based smart
healthcare to enhance data privacy while training ML models. For example, the work
in [118] presented a secure framework integrating SMPC and blockchain with FL to enable
heterogeneous models to collaboratively learn from healthcare institutions’ data while
protecting users’ privacy. In [84], authors proposed a privacy-preserving method that com-
bines FL and DP for Alzheimer’s disease detection based on patients’ audio data collected
by IoT devices. Authors in [6] developed a framework for disease prediction that combines
FL, DP, and SMPC to protect users’ data privacy during the training process. Similarly,
ref. [119] employed DP-enabled FL for disease diagnosis in IoMT. Studies in [77,114] pro-
posed homomorphic encryption-based FL schemes to protect the privacy of healthcare data
in SHSs.
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4.5.2. Application in Remote Health Monitoring

The rapid developments in IoT leading to Internet of Medical Things (IoMT) have
boosted the expansion of remote health monitoring [120]. It consists of remote health
services delivery through the Internet and IoT devices and sensors for remotely monitoring
blood sugar levels, vital signs, heart rate, or other relevant health metrics. AI and FL
have been introduced in this SHSs application field in several manners. Although FL by
nature ensures privacy protection in this context, privacy enhancement measures are still
needed, and several approaches using PETs are proposed. Shen et al. [99] introduced a
privacy-preserving approach for remote disease diagnosis integrating HE with FL. HE is
used to encrypt patients’ physiological data during the training process. This application
of smart healthcare is still evolving with further privacy-preserving FL methods from
researchers to remotely monitor patients’ health in various manners.

4.5.3. Application in Medical Imaging

Nowadays, medical imaging associated with AI is widely used in SHSs for many rea-
sons, including disease prediction, disease diagnosis, and tumor classification. To enhance
privacy during ML model training in medical imaging, several schemes that integrate PETs
with FL have been proposed by researchers. For instance, ref. [121] proposed an adaptive
DP-based FL method COVID-19 disease detection based on chest X-ray images. Similarly,
ref. [122] introduced a DP-based FL approach for COVID-19 detection using a genera-
tive adversarial network and CT scan images. In [11], authors developed a framework
integrating HE and FL for CNN-based COVID-19 detection.

4.5.4. Application in Health Finance Management

The management of medical finance is an important topic in SHSs since healthcare
service providers are still looking for a more modern, reliable, and efficient system. AI has
been introduced in this application of SHSs to improve financial transactions and efficiency.
To the best of our knowledge, there is not yet a privacy-preserving FL method specifically
tailored for financial transactions management in SHSs systems. However, regarding the
fast-ever growing interest in AI-enabled healthcare, this field necessitates further attention
from scholars.

5. Blockchain-Enabled Privacy-Preserving Federated Learning
In this section, we first review the foundational concepts of blockchain technology.

We then discuss blockchain integration with FL based on three main aspects: blockchain-
enabled model storage, blockchain-enabled aggregation, and blockchain-enabled gradient
upload. Next, we compare some blockchain–FL schemes proposed in recent studies. Finally,
we discuss the integration of blockchain in FL-based SHSs for health data management,
remote health monitoring, medical imaging, and health finance management.

5.1. Background

Blockchain is a Distributed Ledger-based Technology (DLT) that stores transactions by
packing them into chained blocks [21,23]. According to [95,123], blockchain refers to a
shared, distributed, and decentralized ledger that is used to record transactions. The
ledger is technically defined as a list of sequential and time-stamped transactions. This
definition of blockchain outlines the capability of the blockchain technology to provide
modern techniques of storing and sharing data with transparency in decentralized and
distributed environments.

Blockchain has been revealed to the public along with Bitcoin in 2008 [88]. Initially
linked to Bitcoin, blockchain has become a widely used technology in various fields of life.
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Blockchains are thus widely believed to be impossible to be hacked due to the distributed
consensus [124]. Overall, we simply define blockchain as a ledger-based, distributed, and
decentralized technology of storing data into chained blocks. Its fundamental principles
include cryptography, consensus algorithms, smart contracts, and peer-to-peer network
as key technologies [125]. The basic general architecture of blockchain consists of six
main layers, including the data layer, network layer, consensus layer, incentive layer,
contract layer, and business or application layer [126]. The data layer contains the data
blocks. A block consists of two main parts including the block header and the block
body [21,127–129]. The former mainly contains the version number of the current block,
the hash of the previous block, timestamp, nonce, the root value of the Merkle tree, the
block size, and the block height. The Merkle tree serves as the generator of the hash value
of all transactions in the block [127], and the hash of the previous block helps to link the
current block with the previous one. A transaction can be defined as an atomic operation
that the successful execution changes the state of a system.

According to [123], three types of records are stored on a blockchain, namely asset
transactions, smart contract, and digital signature and certificates. A smart contract is a
computer program that can perform a transaction with pre-specified instructions built
into it [123]. As a revolutionary trustworthy technology for data storage and transac-
tion verification, blockchain is progressively adopted through the internet. It provides
platforms to conduct trusted transactions without the intervention of a third party [127].
Typically, blockchain can be classified into three main types [21,128]. These basic types are
public blockchain, private blockchain and consortium blockchain. However, according
to [123,130], there are four types of blockchain, including the three types cited above, and
the fourth and added one, that is hybrid blockchain. In this section, we describe each of
these four types of blockchain. In the public blockchain, any user can create, read, and
submit transactions [123]. This type of blockchain generally fits with pure decentralized
computing environment [21]. Each member of the public blockchain can publicly access
the transactions, and his identity is anonymous [128]. In contrast to the process in public
blockchain, only authorized users or organizations can create, read or submit transactions
in private blockchain [21,128,130]. This type of blockchain is also called “permissioned
blockchain” [130].

As a DLT, blockchain possesses some foundational technical characteristics which
make its particularity. According to [126], blockchain has four main features including
traceability, transparency, privacy, and high system reliability. In addition, ref. [128] listed
five characteristics of blockchain such as anonymity, immutability, decentralization, trans-
parency, and traceability. According to [21], there are four main characteristics of blockchain:
auditability, persistency, decentralization, anonymity. Also, ref. [131] has defined four main
characteristics of blockchain involving anonymity, immutability, decentralization, and
transparency. Finally, in this section, we focus on the following characteristics that are
the most cited in the literature on blockchain: anonymity, transparency [123,128], decen-
tralization [21,127,128], auditability, persistency [21], traceability [129], and immutabil-
ity [123,127].

5.2. Blockchain Integration into Federated Learning

Combining blockchain with FL introduces a promising approach to enhance privacy
preservation, data security, and trust in decentralized ML systems. Blockchain technol-
ogy [22,23], with its inherent characteristics such as decentralization, immutability, and
transparency, offers solutions to privacy concerns within the FL context. Furthermore, its
incorporation offers a more robust and protected FL process [23].
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Concerning privacy preservation, the integration of blockchain with FL frameworks
addresses privacy concerns by allowing clients to exchange model updates instead of raw
data, thus safeguarding the privacy of sensitive information stored by the clients [132]. This
method mitigates privacy violations associated with centralized processing and data falsifi-
cation, which are common challenges in traditional FL systems [132]. Blockchain-enabled
FL offers theories and techniques to improve FL performance from various perspectives,
attracting significant attention from academia and industry. Wang et al. [128] were amongst
the first to propose a blockchain-based FL approach for privacy protection. In this survey,
we present and focus on five key advantages of the combination of blockchain with FL,
which are described as follows.

Enhanced data privacy and security: Blockchain can securely manage access control [133]
in FL by utilizing smart contracts, which are self-executing contracts with the terms of
the agreement directly written into code [118,134]. These smart contracts [89] can enforce
privacy-preserving data sharing and processing rules, ensuring the confidentiality and
security of data throughout the learning process.

Improved trustworthiness and transparency: The blockchain’s immutable ledger can
record all FL activities, including data usage, model updates, and participant contribu-
tions [95]. This transparency ensures that any malicious or dishonest behavior is detectable,
thereby improving trust among stakeholders [135,136]. Additionally, the ledger provides a
verifiable and auditable trail [118] that ensures adherence to data regulations.

Incentive mechanisms: The integration of blockchain in FL can facilitate the implemen-
tation of token-based incentive mechanisms to encourage users to contribute their data
and computational resources. By rewarding users with tokens for their contributions, the
system can encourage more active participation, leading to improved model performance
and faster convergence.

Decentralized model management: Blockchain is adapted for managing and storing FL
models in a decentralized way [95], ensuring that no user has exclusive control over the
global model and thereby avoiding the problem of a single point of failure and malicious
poison of the server [89]. This not merely improves security and privacy but also promotes
a democratic approach to model development and deployment.

Robustness against attacks: The decentralized and tamper-resistant feature of blockchain
makes it more challenging for attackers to manipulate model updates or compromise
data integrity [95]. This additional security is vital for applications in sensitive areas such
as healthcare.

To comprehensively analyze the integration of blockchain into FL frameworks, our
investigation centers on three key technical dimensions: aggregation, global model storage,
and gradients upload. These dimensions are shown in Figure 6. Through a meticulous
examination of these aspects, we aim to elucidate the implications, challenges, and potential
benefits associated with integrating blockchain technology into FL.

5.3. Blockchain-Enabled Model Storage

As a digital ledger technology, blockchain ensures that stored data cannot be tempered.
This feature makes blockchain technology a better way of storing the global model in the FL
context. For example, Zhang et al. [24] put forth a privacy-preserving FL framework based
on blockchain where the server in normal FL process is replaced by blockchain to avoid
the risk of single point failure. Furthermore, for the proposed approach, blockchain stores
the global model and the clients download the model for local training on their respective
local data. Once the model parameters have stabilized, the training process can be halted,
and then the final global model is transferred to the blockchain for permanent storage [24].
This approach ensures that the global model is securely stored and accessible to all client



Blockchains 2025, 3, 1 23 of 38

nodes. Kumar et al. [70] proposed a scheme in which a blockchain ledger stores the global
mode and also serves as a distributed ledger for aggregation. According to the approach
proposed by Moulahi et al. [90], blockchain is also used to store the global model in order
to protect it against attacks.

Furthermore, Lei et al. [137] developed an innovative blockchain-based client selection
in FL. In their approach, blockchain also stores the global model and after each iteration,
the updated model from the aggregation process is also stored in the blockchain. By using
this storage, the model is protected from attacks and cannot be tempered. Almost in the
same way, blockchain is used in many existing works to store the global model [138–140].

In conclusion, leveraging blockchain technology in FL for storing the global model
emerges as a robust solution to ensure data integrity and prevent tampering. This ap-
proach is echoed in various existing schemes such as [24,70,90,91,141,142], highlighting its
effectiveness. Using blockchain in place of the central server can significantly mitigate the
chance of a single point of failure, enhancing security and reliability of FL. The decentralized
nature of blockchain ensures that the global model is securely stored and readily accessible,
showcasing its pivotal role in safeguarding FL processes against potential attacks.

Figure 5. Taxonomy of FL-based privacy mechanisms in SHSs. SMPC-enabled FL (Abaoud et al. [6]),
BC+HE+DP-enabled FL (Rahman et al. [93]), BC+DP-enabled FL (Ngan et al. [96]), SMPC+BC-enabled
FL (Abou et al. [97]), HE-enabled FL (Shen et al. [99]), HE+SMPC-enabled FL (Zhang et al. [114]),
DP-enabled FL (Stephanie et al. [118]), BC+HE-enabled FL (Shu et al. [139]), BC-enabled FL (Mazzocca
et al. [143]).
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Figure 6. Technical dimensions of blockchain-enabled PPFL covered in this survey.

5.4. Blockchain-Enabled Aggregation

Many studies on blockchain-enabled PPFL proposed to use blockchain for model
aggregation. Yang et al. [89] introduced a blockchain-based approach for trustworthy
FL where blockchain is not used for aggregation. Their approach relies on several edge
servers and clients that generate a blockchain linked by cryptography to confirm data
correctness and immutability. The aggregation mechanism in this scheme involves the
primary edge server validating local models, aggregating them into a global model using
a smart contract, and packing them into a new block. This block is then distributed to
edge servers, in charge of validating the correctness of the global model using consensus
protocols like PoW and Practical Byzantine Fault Tolerance (PBFT). PBFT, along with Proof
of Work (PoW), is employed across several edge servers to avoid model tampering from
malicious servers, ensuring the trustworthiness of the global model aggregation platform
while mitigating attacks and ensuring transparency and immutability in the gradient
upload process [89]. Blockchain, through consensus protocols like PBFT, facilitates secure
aggregation and validation, ensuring the trustworthiness of the aggregation platform. This
approach ensures a trustworthy aggregation platform supported by distributed consensus
protocols, mitigating single points of failure and malicious attacks on edge servers.

Kumar et al. [70] also proposed a B-PPFL approach in which is employed blockchain
to gather the encrypted gradients from different client nodes and aggregates the local and
global models using a Directed Acyclic Graph (DAG) with the PoW consensus algorithm.
The blockchain performs the aggregation of the local and global models using the smart
contract [70]. In this way, the adoption of blockchain provides a secure mechanism for
various clients, enabling the aggregation of local model updates and providing authentica-
tion of the data. Moulahi et al. [90] developed a blockchain-based PPFL approach where
the central server is replaced by blockchain technology. Furthermore, the aggregation is
made by blockchain through a smart contract. Using a smart contract in blockchain for
aggregation and global model storage leads to a secured and non-falsifiable mechanism.
Liu et al. [69] also introduced a blockchain-based aggregation in the FL context using smart
contracts combined with privacy technologies.

Significant contributions are made in FL-based healthcare systems by [93,94,143]. In
their proposed framework, Passerat-Palmbach et al. [94] emphasized privacy protection in
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FL-based electronic healthcare systems by leveraging blockchain for decentralized model
aggregation and using secure multi-party computation and hardware-based encryption.
Mazzocca et al. [143] proposed FRAMH, a middleware for healthcare combining FL and
blockchain, where localized training ensures privacy, and blockchain secures model aggre-
gation in risk-based healthcare applications. In addition, blockchain secures model updates,
preventing tampering and maintaining data integrity in emergency and routine medical
scenarios. Rahman et al. [93] proposed an Internet of Health Things (IoHT) framework in
which blockchain replaces the centralized aggregator with a decentralized gradient mining
system. Each federated client node performs local training, and encrypted gradient updates
are aggregated using blockchain consensus mechanisms, ensuring privacy in Internet of
Health Things.

Lei et al. [137] presented a method in which the aggregation is performed using smart
contracts in blockchain. In fact, there is a control node in charge of collecting gradients
uploaded by the the clients and after verification to ensure that they are not being tampered
with, then the aggregation is performed using the criteria defined in the smart contract.

The utilization of blockchain in FL, specifically for aggregation, presents a significant
advancement in ensuring data integrity, transparency, and security [12,69]. This method
is increasingly recognized across various schemes, where blockchain not only facilitates
secure aggregation through consensus protocols like PBFT and PoW but also enables a
decentralized and trustworthy platform for FL. Such approaches mitigate risks of tampering
and attacks, underscoring blockchain’s role in enhancing the robustness and reliability of
PPFL frameworks.

5.5. Blockchain-Enabled Gradient Upload

The combination of blockchain with FL also mitigates privacy and security concerns
in gradient upload mechanisms. For instance, in the work by [89], the gradient upload
process involves participants transmitting their local models to edge servers, which then
disseminate the shared global model over wireless links. Blockchain integration ensures
data authenticity and integrity through digital signatures, validating transactions, and
guaranteeing that information is not tampered with [89]. In the approach proposed by [24],
the gradient upload process involves participants locally training their models using FL,
calculating the average gradient of their local data, and then adding Laplace noise to the
locally updated model parameters. The updated model parameters are then sent to the
Interplanetary File System (IPFS), and only the hashes calculated by IPFS are uploaded to the
blockchain, ensuring the security and privacy of the uploaded gradients [24].

In their work, Lei et al. [137] proposed a scheme in which clients used a consortium
blockchain to upload gradients after a round of local training on their raw data. Similarly,
blockchain is used in many studies for gradients upload in the FL process [138–140,144,145].

The integration of blockchain into the FL process enhances the security and privacy of
gradient uploads. By utilizing digital signatures and decentralized storage solutions like the
IPFS, these approaches ensure data integrity and confidentiality across the network. This
method guarantees that gradients are securely uploaded and protected from tampering,
significantly bolstering the overall security and privacy framework of FL.

5.6. Comparison of Blockchain-Enabled Federated Learning Schemes

In the burgeoning field of FL, the quest for robust privacy preservation mechanisms is
critical, especially within the sensitive domain of healthcare data. This section explores a
comparison of contemporary schemes that integrate blockchain to fortify the FL process
against privacy and security threats. Pioneering works such as those by Zhang et al. [24]
and Kumar et al. [70] have paved the way for innovations that couple the immutable assur-
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ance of blockchain with the collaborative essence of FL. Meanwhile, novel propositions like
the privacy-focused methodologies in [90,142] and the energy-efficient frameworks in [98]
illustrate the dynamic evolution of this interdisciplinary field. Each scheme contributes
uniquely to the landscape, whether through enhancing data security or streamlining
healthcare monitoring, marking significant strides toward a more secure and efficient
FL paradigm. Through this lens, we examine the multifaceted contributions that not
only bolster data protection but also navigate the inherent challenges posed by integrat-
ing blockchain, revealing a complex yet promising horizon for FL in healthcare. Table 7
presents a comparative analysis of recent works on Blockchain enabled-Privacy-Preserving
FL (B-PPFL) in SHS, highlighting key contributions, privacy technologies, functionalities,
and limitations. The reviewed schemes predominantly utilize FL in combination with
blockchain and other privacy-preserving technologies such as DP, SMPC, and HE. These
approaches aim to enhance data security and user privacy, offering benefits like improved
scalability, secure collaboration, and efficient healthcare monitoring. However, they also
face significant challenges, including high communication overhead, complex data man-
agement, scalability issues, and computational overhead. Addressing these limitations
is crucial for the practical deployment of B-PPFL systems, suggesting a need for future
research focused on optimizing communication efficiency, reducing computational burdens,
and enhancing system scalability and real-world applicability.

Table 7. Comparative analysis of recent works on B-PPFL.

Schemes Contribution Key Technologies Function Limitations

Zhang et al. [24]
MPBC: blockchain-based

privacy-preserving medical
data-sharing scheme using FL

FL, DP Hight privacy and security
level, trustworthiness

Limited performance, scalability
and throughput bottlenecks

Singh et al. [47]

A mechanism for privacy
preservation of IoT healthcare

data using FL and
blockchain technology

FL Privacy preservation,
scalability improvement

Long communication delays,
data management complexity

Zakaria et al. [97]
HealthFed: collaborative FL and

blockchain framework for
privacy protection in healthcare

FL, SMPC Privacy preservation, secure
collaboration, high accuracy High communication overhead

Moulahi et al. [90]

A blockchain-based FL
mechanism for privacy

preservation of healthcare
IoT data

FL
Privacy preservation, data

security, efficient
healthcare monitoring

Data heterogeneity, network
connectivity issues, high latency

Singh et al. [98]

Blockchain-enabled FL
mechanism for smart healthcare,
emphasizing energy efficiency

and privacy protection

FL, HE Privacy protection,
energy efficiency

Complexity in association
formulation, NP-hardness of
utility maximization problem

Yang et al. [142]
A medical data privacy

protection framework by
combining blockchain and FL

FL, HE

Privacy preservation, using SC
to dynamically choose

aggregation nodes instead of
fixed server

High computational overhead

Alsamhi et al. [91]

Conceptual framework and
technical synergy between FL

and blockchain for privacy
preservation in healthcare

FL, encryption Privacy preservation, flexibility
in model training

Lack of practical applications,
system complexity

PT: privacy technologies.

5.7. Blockchain Enabled FL-Based Smart Healthcare

In this section, we review the latest developments on this topic regarding the four key
applications of SHSs considered in this study.
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5.7.1. Health Data Management

Nowadays, huge amounts of sensitive data are generated and managed in SHSs
from various heterogeneous sources including labs databases, EHRs, and IoT sensors and
devices. Managing such a health data warehouse is challenging and necessitates the com-
bination of innovative technologies to ensure privacy and security. Several studies have
tackled the integration of blockchain in FL-based SHSs to enhance privacy and security
of health data. Ngan et al. [96] proposed PriFL-Chain, a privacy-preserving framework
that integrates FL, DP and blockchain to address privacy and communication challenges
in SHS. DP is utilized to ensure privacy of the user’s sensitive data during local training,
while blockchain is utilized to transparently track contributions and reward data owners,
fostering collaboration. Despite its strengths, the proposed approach has shown potential
limitations in computational overhead, ensuring fair rewards, and securing the IPFS storage
system, which the authors suggest addressing through attribute-based encryption in future
work. A blockchain-based FL proposed by [146] utilized the combined potential of FL
and blockchain to protect the privacy of patients’ data stored in EHRs. The work by [147]
introduced an approach for protecting personal healthcare records by combining FL and
blockchain. The proposed method leverages FL to preserve patient privacy during collab-
orative model training and uses blockchain technology to ensure secure and immutable
storage of model updates. Although this combination improves privacy and security, it
is constrained by the inherent scalability and latency challenges of blockchain systems. A
blockchain-based FL framework tailored for SHSs, addressing privacy and energy efficiency
challenges, is introduced by [98]. Key technologies include DP for securing sensitive data,
HE for encrypted computations, and blockchain for decentralized and tamper-resistant
model aggregation. Despite its innovative utility for an optimization strategy for WBANs
and miners, the framework faces challenges in managing computational overhead due to
HE and maintaining efficiency in highly heterogeneous networks. Authors in [148,149]
have also proposed blockchain-based FL frameworks to share COVID-19 patient data in a
privacy-preserving way.

5.7.2. Medical Imaging

Medical imaging has revolutionized SHSs by allowing researchers and health profes-
sionals to learn more about the human body. FL can enhance model training for disease
detection and prediction through patterns identification in medical imaging. The asso-
ciation with blockchain can improve the framework by enhancing privacy, security, and
transparency. Authors have tackled the topic in various ways. Kumar et al. [150] proposed
a privacy-preserving framework that integrates blockchain with FL and deep learning for
COVID-19 detection using CT imaging. While blockchain ensures secure data sharing
and model authenticity, FL enables collaborative model training across hospitals without
compromising data privacy. However, the proposed approach faces challenges related to
computational overhead and scalability due to the integration of blockchain and the need
for diverse, high-quality datasets. Similarly, ref. [70] introduced a blockchain-based FL
framework for collaborative medical image analysis for COVID-19 detection using CT scans.
By integrating blockchain, homomorphic encryption, and FL, the approach ensures secure,
privacy-preserving data sharing and decentralized model training. Blockchain eliminates
reliance on central servers and enhances trust, while homomorphic encryption safeguards
gradient privacy. However, challenges remain about computational overhead and potential
latency from blockchain operations. The authors in [151] presented a blockchain-enhanced
FL framework for brain tumor segmentation, integrating FL with blockchain’s decentral-
ization, traceability, and tamper-proof features to ensure privacy, trust, and robustness in
collaborative model training. This approach faces similar challenges as the above studies.
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Authors in [152,153] also investigated the potential of combining FL and blockchain for
secure medical imaging frameworks in SHSs.

5.7.3. Remote Health Management

Remote healthcare monitoring has revolutionized SHSs by enabling remote data col-
lection and remote healthcare service delivery through various IoT and wearable devices.
The integration of FL in RHM significantly improved data privacy, as users’ data are kept
locally. Few studies focused on integrating FL with blockchain to enhance privacy and
security in the context of remote health monitoring. For example, ref. [154] introduced
a BC-FL framework for remote disease detection. While FL serves for collaborative ML
model training, blockchain ensures secure and transparent data sharing among users. The
authors in [155] proposed a blockchain-integrated FL framework for real-time patient mon-
itoring in the IoMT. While blockchain enhances data integrity and security by recording all
model updates and device authentications, FL ensures privacy by keeping sensitive patient
data localized. However, balancing energy efficiency with computational demands and
addressing the scalability of the system in large-scale IoMT networks remains a challenge.
In [156], authors developed a blockchain-enabled FL method for personalized healthcare
using IoMT devices, combining FL for on-device data privacy and blockchain for secure,
decentralized data management and communication. Specifically, blockchain ensures
tamper-proof storage, data integrity, and secure access in remote healthcare monitoring
systems, avoiding risks of single points of failure and enhancing trust. Authors in [20]
proposed a secure health monitoring system in healthcare 5.0 that integrates blockchain
with FL to detect malicious activities in a healthcare network and enable physicians to
remotely monitor patients. FL and blockchain have been combined for COVID-19 detection
through remote frameworks [150,157].

5.7.4. Health Finance Management

Blockchain [158] with its features including privacy, security, transparency, and im-
mutability stands as a suitable approach to ensure trustworthiness in SHSs. Blockchain can
ensure secure financial transactions through cryptocurrency payment in SHSs and consid-
erably reduce administrative costs and eliminate financial frauds. For example, insurance
service is one of the most frustrating for patients because insurers need to verify all the
provided evidence to avoid fraudulent claims and fake documents. Blockchain can enhance
the claim process by providing risk-free management and transparency and allowing the
insurers to take ownership of assets to be insured for insurers [159]. The integration of
blockchain technology in FL-based SHSs can significantly improve the financial services
in many ways, including traceability in financial management, cryptocurrency payment,
trustworthy insurance claim processing, audit, and billing.

6. Discussions and Future Work
In this section, a few findings and challenges are presented in Section 6.1 along with

related opportunities in Section 6.2.

6.1. Discussions

Privacy-preserving FL holds substantial promise for revolutionizing healthcare sys-
tems by addressing the critical need for maintaining patient privacy while leveraging the
collective intelligence of distributed data sources. Through our survey, several key insights
emerged that shed light on the current landscape, opportunities, and challenges in this
burgeoning field.

We classified privacy threats in SHSs into five main types, including data breaches,
insider threats, technical vulnerabilities, user privacy concerns, and regulatory compliance
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issues. These threats pose significant risks to patient privacy, data integrity, and trust in
SHSs. We highlighted the complexities and challenges inherent in protecting sensitive
health information and underscored the need for robust privacy-preserving mechanisms.
After discussing FL principles and its potential benefits in SHSs, FL stands as a suitable so-
lution to address privacy challenges in SHSs, facilitating collaborative model training while
ensuring data integrity and confidentiality. However, as FL alone cannot ensure strong
privacy protection, a new paradigm known as PPFL was discussed and a classification of
FL-based privacy-enhancing mechanisms in SHSs was proposed. The proposed taxonomy
relies on three main groups of techniques including PETs, DLT, and hybrid techniques,
along with existing approaches and applications of each approach in SHSs.

On one hand, we identified DP, HE, and SMPC as the leading PETs that, when inte-
grated with FL, significantly enhance privacy guarantees. Each technique presents unique
strengths and challenges: DP is highly scalable but may suffer from utility loss; HE ensures
robust security but incurs substantial computational overhead; SMPC provides strong
security guarantees with moderate overhead. On the other hand, blockchain emerges as an
efficient technology for addressing several inherent challenges in FL, particularly in decen-
tralized and trustless environments. Blockchain enhances the integrity and transparency of
FL processes, ensuring that model updates are tamper-proof and auditable. However, the
integration of blockchain with FL also introduces challenges such as increased latency and
computational requirements, which necessitate further optimization.

Furthermore, to comprehensively discuss the blockchain applications in FL for privacy
protection, we focus on three key dimensions such as model storage, aggregation, and
gradient upload, highlighting how blockchain’s features can specifically address and
mitigate privacy challenges in FL systems. The combination of blockchain with FL not
only secures data transactions and model updates but also fosters a cooperative and
reliable environment for participants across various sectors, particularly in SHSs, where
data sensitivity is paramount. Although the reviewed schemes share common benefits
in enhancing privacy and security, they face distinct challenges such as performance
limitations, communication overhead, and computational intensity.

Another notable finding is the growing interest and adoption of PPFL methods within
smart healthcare, especially for health data management, remote health monitoring, med-
ical imaging, and health finance management. Researchers and practitioners alike are
increasingly recognizing the significance of privacy-preserving techniques in safeguarding
sensitive medical data, especially in light of strict regulatory requirements such as HIPAA
and GDPR. The proliferation of PPFL frameworks specifically tailored for healthcare ap-
plications underscores the urgency and importance of addressing privacy concerns in
this context.

Despite the promising advancements in FL-based privacy-preserving frameworks,
several challenges remain. Chief among these is the inherent trade-off between privacy
and utility in FL settings. While PPFL schemes strive to protect patient privacy, they must
also ensure that the resulting models retain sufficient accuracy and generalizability for
clinical use. Balancing these competing objectives remains a complex and ongoing research
endeavor, requiring innovative solutions at the intersection of ML, cryptography, and
healthcare domain knowledge.

Another critical consideration is the diversity of healthcare stakeholders and the
varying levels of trust among participants. Building secure and resilient PPFL systems
requires the establishment of robust governance structures, transparent communication
channels, and mechanisms to verify the integrity of the participants.

Moreover, blockchain-enabled privacy-preserving FL presents several challenges
such as latency, energy consumption, interoperability, and data storage costs. In fact,
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the consensus mechanisms introduced by blockchain such as Proof of Work and Practical
Byzantine Fault Tolerance can cause delays in large-scale FL–SHSs frameworks. This
situation can significantly affect the efficiency of SHSs which require real-time blockchain
protocols that are also known as high-energy consumers, which may not satisfy the SHSs’
sustainability goals. Data storage is another challenge for blockchain-enabled PPFL, as the
implementation of blockchain needs huge storage capacity to store models and gradients.
It can be more challenging in SHSs with the management of high-dimensional healthcare
data. Finally, the integration of blockchain into PPFL within SHSs requires seamless
interoperability, which remains an ongoing challenge.

Joint efforts between researchers, healthcare providers, policymakers, and technology
providers are required to foster trust and cooperation in FL-based smart healthcare ecosystems.

6.2. Future Works

This survey explored FL, PETs, and blockchain as well as their integration into SHSs,
highlighting their potential to address the critical challenge of privacy protection and their
combined capability to significantly enhance privacy and security in data handling. Each
technology contributes uniquely to PPFL by training models on decentralized data [160],
PETs by securing data at rest and in transit [106], and blockchain by ensuring data integrity
and traceability [62]. As demonstrated, while each technology has its merits, their combined
application can significantly enhance the privacy and security standards of data processing
in the healthcare sector.

While FL enhances model utility without compromising data privacy [84], PETs add
an additional layer of data protection, and blockchain provides a secure, immutable ledger
for transparent and traceable transactions [90]. Our work highlights several critical findings
and implications that can motivate future advancements in this domain. Given the heavy
computational demands of blockchain-based frameworks and the resources constraints
nature of smart healthcare devices, further research could focus on lightweight blockchain
solutions, enabling efficient and secure computing for various SHS applications.

In addition, the scalability and efficiency of PPFL frameworks need further investiga-
tion. As healthcare datasets continuously grow in size and complexity, the computational
and communication overhead associated with FL presents significant challenges. Efforts
to optimize and streamline PPFL protocols, while maintaining robust privacy guarantees,
are imperative to reap the full benefit of FL in healthcare. Despite the promising syn-
ergies identified, integrating these technologies into existing healthcare infrastructures
presents notable challenges, including technical complexities and scalability concerns [25].
To address these challenges, a shift in regulatory frameworks and ongoing technological
refinement are necessary to support innovative solutions.

Future research should therefore focus on advancing these technologies’ seamless
integration, developing methods that balance privacy with utility, privacy with computa-
tional demands, and crafting adaptive frameworks that respond to the dynamic nature of
healthcare data and privacy standards. By continuing to innovate and rigorously evaluate
PETs, the field of smart healthcare progresses toward a future where data-driven insights
and patient privacy are not at odds but are instead facets of a harmonious and highly
effective healthcare system.

7. Conclusions
This survey addresses a critical challenge of privacy protection in FL-based smart

healthcare systems, highlighting the high potential of blockchain to be combined with PETs
for the strongest privacy-preserving schemes. Specifically, this survey comprehensively
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reviewed the latest advancements on the integration of PETs and blockchain into FL-based
SHSs with a focus on four main applications of SHSs such as health data management,
remote healthcare monitoring, medical imaging, and health finance management. To
better explain the integration of blockchain in FL-based SHSs, this survey focuses on three
technical dimensions, including model storage, gradients upload, and aggregation. Among
the key findings of this survey, it is worth noting the potential of combining blockchain with
PETs in mitigating privacy threats in FL-based SHSs. Despite significant progress in this
field, challenges remain, including computational overhead, communication inefficiencies,
latency, and the need for better regulatory alignment. By bridging the gaps identified, this
work aims to inspire continued innovation toward robust and privacy-preserving SHSs,
ultimately contributing to a trustworthy and more efficient healthcare ecosystem.
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