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Abstract: Prehospital electrocardiogram (PH-ECG) transmission is an important technology for
reducing door-to-balloon time, but the decision to transmit often depends on the discretion of
emergency medical technicians (EMTs). Additionally, studies based on real-world data remain
insufficient. This study reports a machine learning-based method for classifying the severity of
PH-ECG images and explores its feasibility. PH-ECG data were compiled from 120 patients between
September 2017 and September 2020. The model we created from these data was the first classification
model for PH-ECG images using data from a Japanese study population and showed a weighted
F1-score of 0.85 and an Area Under the Curve (AUC) of 0.93. This result can be interpreted as
having an excellent balance of sensitivity and specificity. The Cohen’s Kappa coefficient between AI’s
inferences and the correct labels created by two cardiologists was 0.68 (p < 0.05), which is considered
“substantial” according to the guidelines presented by Landis and Koch. In this study, although we
were not able to remove noise caused by patient movement or electrode detachment, the results
indicate that image-based abnormality detection from PH-ECGs is feasible and effective, particularly
in regions like Japan where ECG data are often stored and transmitted as images. In addition, in our
region, paramedics follow a multi-step process to decide whether to transmit an ECG, which takes
time for the first screening. However, if the ECG is transmitted when either the paramedics or the
deep learning model detects an abnormality, it is expected to reduce reading time and door-to-balloon
time, as well as decrease false negatives.
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1. Introduction

A prehospital electrocardiogram (PH-ECG) is an electrocardiogram performed by
paramedics on patients suspected of having a myocardial infarction or other conditions.
Several countries and regions have also implemented systems that transmit data from the
field to the medical facility, allowing a cardiologist to evaluate the ECG remotely. This
optimizes the time until the patient arrives and enables more prompt initiation of treatment.
This is particularly useful for patients requiring immediate medical attention, such as those
with ST-elevation myocardial infarction (STEMI) [1]. Several studies have also shown that
PH-ECGs improve door-to-balloon time and in-hospital mortality. This is because very
early ECGs can detect important signs of acute coronary syndrome (ACS) [1–4] that may
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disappear before arrival at the emergency department (ED) [5,6]. Due to these advantages,
the use and transmission of prehospital ECGs are recommended in various guidelines [7,8].
A 2016 statistical survey in Japan [9] found that 85.3% of PH-ECGs were evaluated by
paramedics, with only 2.9% of institutions performing physician evaluations. One reason
why PH-ECG transmission systems are not widely used is the high burden placed on
physicians. In our medical area, cardiologists are currently constantly carrying tablet
terminals to respond to patients even outside of working hours [10,11]. It is also difficult for
physicians to evaluate all ECGs at the first contact stage, and even in areas where PH-ECG
transmission systems have been introduced, the EMTs decide whether to transmit or not.
The criteria depend on the region and the emergency medical service (EMS) team, and if
the decision is discretionary, the sensitivity and specificity depend on the knowledge and
experience of the EMTs [12]. Using machine learning models to assist screening during the
PH-ECG transmission phase may help reduce the burden on EMTs and physicians and
contribute to the widespread use of PH-ECG transmission systems.

A major challenge in anomaly detection from PH-ECGs is the lack of data accumu-
lation. This is especially problematic with machine learning, which requires a lot of data.
A number of machine learning-based approaches for detecting anomalies from ECG data
have been reported [13–15] and offer superior generalizability compared to traditional,
rule-based approaches using Minnesota codes, etc. Few studies have constructed their own
clinical datasets [16], and specific public datasets (MIT-BIH [17], Physikalisch-Technische
Bundesanstalt (PTB) [18], etc.) are widely used, but in-hospital ECGs such as these usually
do not include important signs that can be observed in very early ECGs. Although the gold
standard for automatic ECG analysis is the signal format, in clinical practice, only digital
images of ECGs displayed by ECG Viewer may be stored, leaving room to investigate their
potential use in PH-ECGs, where data are scarce.

The purpose of this study was to evaluate the predictive power of image-based
abnormality detection from PH-ECGs. The results presented indicate that deep learning
models may be able to assist in screening PH-ECGs at the transmission stage.

2. Materials and Methods
2.1. Data Collection and Preprocessing

Patients for whom ECGs were transmitted to Iwate Prefectural Ninohe Hospital
between September 2017 and September 2020 were enrolled. Figure 1 shows the prehospital
ECG transmission criteria and flowchart. The number of patients included in this study was
120, with a mean age of 77 ± 14.5 years. Fifty percent of the patients were male. PH-ECGs
were performed and transmitted by EMTs from five fire stations in the Ninohe Medical
Area in northern Iwate Prefecture. The medical area has a population of 50,000, spans an
area equivalent to half the size of Tokyo’s metropolitan area, and includes Ninohe City, two
towns, and one village (Ichinohe Town, Karumai Town, and Kudo Village). PH-ECGs were
acquired from a PC-based electrocardiograph (EC-12RS; Labtech, Debrecen, Hungary) and
transmitted by the “Fuji no Kuni” wireless 12-lead ECG transmission system (Good Care,
Osaka, Japan) [19]. The 12-lead ECGs were placed according to the standard 12-lead ECG
placement guidelines. Data were converted to JPEG format image files by the “MFER Image
Converter” image conversion application (MFER Committee, Japan) before being sent.

The ECG signal suffers from various artifacts, and the inclusion of these noise signals
reduces diagnostic accuracy [20]. Specifically, eliminating Baseline Wander (BW) and Power
Line Interference (PLI) is crucial for an accurate cardiac disease diagnosis [21,22]. The pri-
mary causes of BW include patient motion and respiration [23], while PLI primarily stems
from electromagnetic interference originating from the AC power supply. In our process,
we employed the EC-12RS electrocardiograph’s noise reduction feature to counteract these
disturbances. The noise reduction settings are shown in Figure 2.
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Figure 1. PH-ECG transmission criteria and flowchart. Adapted with permission from [11], Elsevier, 
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in regions with a limited number of doctors, unlike in large cities, such a flowchart is effective for 
the efficient detection of STEMI and the reduction in DTBT. 

 
Figure 2. Noise reduction settings for the EC-12RS used. Smoothing of waveforms, BW removal, PLI 
removal (50 Hz), and EMG signal filter are enabled.  

Out of the 120 patients, 21 cases were found unsuitable for analysis and were ex-
cluded, leaving 99 cases for the final data analysis. The exclusion criteria are detailed in 
Table 1. The class breakdown of the 99 subjects is shown in Table 2. In the analysis of ECGs 
from images, the calibration height can impact the results. To simplify this issue, the cali-
bration of the input images in this study was standardized at 10 mm/mV, leading to the 
exclusion of 18 cases with varying heights. Furthermore, two ECGs that were printed on 
paper and then rescanned were excluded as these situations were not anticipated in this 
study. Lastly, we excluded one ECG that was excessively noisy and could not be assessed 
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2018. Ideally, all electrocardiograms should be transmitted and analyzed by physicians. However, in
regions with a limited number of doctors, unlike in large cities, such a flowchart is effective for the
efficient detection of STEMI and the reduction in DTBT.
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Figure 2. Noise reduction settings for the EC-12RS used. Smoothing of waveforms, BW removal, PLI
removal (50 Hz), and EMG signal filter are enabled.

Out of the 120 patients, 21 cases were found unsuitable for analysis and were excluded,
leaving 99 cases for the final data analysis. The exclusion criteria are detailed in Table 1.
The class breakdown of the 99 subjects is shown in Table 2. In the analysis of ECGs
from images, the calibration height can impact the results. To simplify this issue, the
calibration of the input images in this study was standardized at 10 mm/mV, leading to
the exclusion of 18 cases with varying heights. Furthermore, two ECGs that were printed
on paper and then rescanned were excluded as these situations were not anticipated in
this study. Lastly, we excluded one ECG that was excessively noisy and could not be
assessed by a cardiologist. Thus, all reasons for exclusion were due to the quality of the
recordings, and ECG findings did not influence the exclusion process. For the PH-ECG
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data of each patient, the cardiologists performed a three-level classification of severity:
“normal,” “mild/moderate,” or “severe. A single label was created through cross-checking
by two cardiologists. This labeling was primarily performed on a per-lead basis. For data
where this was not possible, labeling was conducted in parts divided into three segments
per lead. The classification criteria are shown in Table 3. The definitions of ECG findings
in this study are based on the ACS guidelines of the Japanese Circulation Society [24] and
adhere to the strictly defined and widely accepted standards, such as the guidelines for the
Fourth Universal Definition of Myocardial Infarction. ECG findings that are not included in
the current dataset are not listed in Table 3 (e.g., Wide QRS complex tachycardia). During
this labeling, the cardiologists had access to the patient’s final diagnosis. To make the image
size suitable for network input, we first extracted 12 single-lead ECG images from one
12-lead ECG. Each of these single-lead ECGs was then further divided into three segments.
Thus, from one 12-lead ECG, we obtained a total of 36 single-lead ECG images. Each image
was thinned and binarized. Of the 3564 final data images, 2439 showed normal waveforms
and 1125 had abnormal (mild/moderate or severe) waveforms. The breakdown is shown
in Table 4. In the experiments described in the next section, 80% of the data were used as
training data and 20% as test data. Additionally, 20% of the training data were used as
validation data and cross-validated five times. A flow diagram of the dataset is shown in
Figure 3.

Table 1. Number of cases excluded and reasons.

Reason Number of Cases Excluded

Calibration differing from 10 mm/mV 18
ECGs printed and rescanned 2

Excessive noise-preventing analysis 1

Table 2. Subject classification.

Class Subjects n

Normal 14
Mild/moderate 34

Severe 51

Table 3. Definition of severity. The “Examples” column consists of preprocessed data that were
randomly selected from each severity.

Severity Abnormal Findings Examples

Mild

Sinus tachycardia, left axis deviation, low voltage, counterclockwise
rotation, flat T wave, premature atrial contraction (PAC), premature

ventricular contraction (PVC), mild ST depression of 0.5 mm,
incomplete right bundle branch block (IRBBB), negative T waves in

V1-2, first-degree atrioventricular block (AVB), and sinus
bradycardia.

Emerg. Care Med. 2024, 1, FOR PEER REVIEW 5 
 

 

Table 1. Number of cases excluded and reasons. 

Reason Number of Cases Excluded 
Calibration differing from 10 mm/mV 18 

ECGs printed and rescanned 2 
Excessive noise-preventing analysis 1 

Table 2. Subject classification. 

Class Subjects n 
Normal 14 

Mild/moderate 34 
Severe 51 

Table 3. Definition of severity. The “Examples” column consists of preprocessed data that were ran-
domly selected from each severity. 

Severity Abnormal Findings Examples 

Mild 

Sinus tachycardia, left axis deviation, low voltage, counterclockwise rota-
tion, flat T wave, premature atrial contraction (PAC), premature ventricu-

lar contraction (PVC), mild ST depression of 0.5 mm, incomplete right 
bundle branch block (IRBBB), negative T waves in V1-2, first-degree atri-

oventricular block (AVB), and sinus bradycardia.  

Moderate 
Right bundle branch block (RBBB), negative T wave, atrial fibrillation, 

right ventricular hypertrophy, QT prolongation, ST depression of 1 mm, 
QS pattern in V1-3, and paroxysmal supraventricular tachycardia (PSVT). 

 

Severe 

Q wave formation, left bundle branch block, pacemaker rhythm, ST ele-
vation, reduced R wave amplitude, Q waves in II, III, and aVF leads, com-

plete right bundle branch block (CRBBB) with negative T waves in pre-
cordial leads, second-degree AVB, and third-degree AVB. 

 

Table 4. Waveform classification. 

Class Waveforms n 
Normal 2439 

Mild/moderate 489 
Severe 636 

2.2. Neural Network 
The conceptual figures of this study and the model structure are shown in Figures 4 

and 5. EfficientNetB0 [25] was used as the basis for the severity classification model from 
PH-ECG. Unless otherwise noted, hyperparameters and the network architecture con-
form to the original EfficientNetB0. All input images were resized to 224 × 224 pixels using 
a linear interpolation algorithm. The mini-batch size was set to 512 and the epochs to 100. 
The Adam optimizer [26] was selected as the optimization method. The Adam optimizer 
has four hyperparameters, all of which are considered important [27]. The search was 
therefore conducted using Bayesian optimization, a method of searching for the optimal 
solution of a target function from an unknown space using a prior distribution of Gaussian 
processes. Four search iterations were conducted for the following hyperparameters: 𝛽ଵ 
and 𝛽ଶ, which represent the exponential decay rates used for moment estimation; ε, an 

Moderate

Right bundle branch block (RBBB), negative T wave, atrial fibrillation,
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tachycardia (PSVT).
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Severe

Q wave formation, left bundle branch block, pacemaker rhythm, ST
elevation, reduced R wave amplitude, Q waves in II, III, and aVF

leads, complete right bundle branch block (CRBBB) with negative T
waves in precordial leads, second-degree AVB, and third-degree AVB.
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Table 4. Waveform classification.

Class Waveforms n

Normal 2439
Mild/moderate 489

Severe 636
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Figure 3. A flow diagram of the dataset. The training data are divided into 5 folds for cross-validation.
This technique evaluates the performance of a model by dividing the data into multiple subsets. The
model is trained on some subsets and tested on the remaining ones. This process is repeated several
times, and the results are averaged to ensure the model’s robustness and to mitigate overfitting.

Data augmentation was not implemented because preliminary experiments showed
no significant effect. In particular, affine transformations resulted in a decrease in accuracy,
likely due to the loss of positional information in the waveforms, making it more difficult
to detect abnormalities.

2.2. Neural Network

The conceptual figures of this study and the model structure are shown in Figures 4
and 5. EfficientNetB0 [25] was used as the basis for the severity classification model from
PH-ECG. Unless otherwise noted, hyperparameters and the network architecture conform
to the original EfficientNetB0. All input images were resized to 224 × 224 pixels using a
linear interpolation algorithm. The mini-batch size was set to 512 and the epochs to 100. The
Adam optimizer [26] was selected as the optimization method. The Adam optimizer has
four hyperparameters, all of which are considered important [27]. The search was therefore
conducted using Bayesian optimization, a method of searching for the optimal solution of
a target function from an unknown space using a prior distribution of Gaussian processes.
Four search iterations were conducted for the following hyperparameters: β1 and β2, which
represent the exponential decay rates used for moment estimation; ε, an offset to prevent
zero division; and α, the initial learning rate. The ranges for these values were set as 0.8
to 0.99, 0.9 to 0.999, 1 × 10−9 to 1 × 10−7, and 1 × 10−6 to 1 × 10−2, respectively. After
50 iterations of search, the resulting estimated optimal solutions were 0.97167, 0.97262,
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2.9343 × 10−8, and 0.0010413, respectively. However, over the 50 searches, no solution
exceeded the results obtained when the Adam optimizer parameters were set to the default
values of β1 = 0.9, β2 = 0.999, ε = 1 × 10−8, and α = 0.001. Model depth, width, and input
resolution are also hyperparameters that affect learning, but were fixed to the initial values
of EfficientNetB0 and were not explored. This is because these values are correlated and
width and depth are already appropriately adjusted according to the input resolution at
the baseline of Tan et al. [25].
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Figure 5. Adapted with permission from [25], arXiv, 2019. The structure of the convolutional neural
network used is based on EfficientNet. The MBConv block refers to the Inverted Residual Blocks
with an added Squeeze-and-Excitation module.

Input ECG images were feature-extracted by a convolution layer responsible for local
feature extraction of the image and a pooling layer that summarizes the features for each
locality. The batch normalization layer eliminated differences in distribution between
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layers while maintaining sample distribution characteristics. Global average pooling (GAP)
calculated the average value in the image space direction for each channel of the feature
map, and the average value was used as the value for each feature map. Dropout (0.25)
was performed just before the fully connected layer to suppress overfitting of the model.
The final output layer was activated using a SoftMax function that provides probabilities.
To account for class imbalances in the dataset, we gave the loss function for each class an
inverse class frequency weight.

As a result of training, validation loss was minimized at Epoch 7, and validation
accuracy continued to level off from around Epoch 15, as shown in Figure 6. Even with
dropout, the loss function tended to overfit. This may be due to the paucity of data.
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Figure 6. Learning curve for the best fold. Blue represents accuracy; red represents loss, and black
represents validation.

2.3. Visualization of Features Identified by Neural Networks

To visualize what the proposed model sees, a class activation map (CAM) [28] of the
final convolution layer was generated. A heat map was outputted showing the areas the
model focused on. If the index of the fully connected layer is k, the weight connecting the
GAP layer and output layer is ωc

k, and the output corresponding to the (x, y) coordinates
of the kth feature map is fk(x, y). The output Sc for class c is calculated as follows:

SC = ∑
k

ωc
k ∑

x, y
fk(x, y) = ∑

x, y
∑
k

ωc
k fk(x, y)

The equation was generalized to eliminate model constraints (Grad-CAM).

3. Results

Four classifiers were created using the proposed network, and ECG images from the
test dataset were classified. A summary of each classifier is shown in Table 5. The class
breakdown of the test data is shown in Table 6. Accuracy, kappa coefficient, F1-score,
and weighted F1-score resulting from inference on the test data are shown in Table 7 and
Figure 7. The definition of accuracy is given in Equation (1) [29].

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(1)
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Table 5. Overview of each model.

Models Bayesian Optimization Classes

1 No Normal/mild or
moderate/severe

2 Yes Normal/mild or
moderate/severe

3 No Normal/STEMI

4 No Normal/mild or
moderate/severe

Table 6. Number of test data by class.

Class n

Normal 489
Mild/moderate 99

Severe 128

Table 7. Prediction performance comparison.

Fold Accuracy Kappa F1-Score Weighted
F1-Score

Model 1
1 0.86 0.69 0.78 0.85
2 0.85 0.67 0.76 0.84
3 0.85 0.67 0.78 0.85
4 0.86 0.70 0.79 0.86
5 0.84 0.67 0.77 0.84

Avg. 0.85 0.68 0.78 0.85
Model 2

1 0.85 0.67 0.77 0.84
2 0.85 0.69 0.79 0.85
3 0.86 0.70 0.80 0.86
4 0.85 0.68 0.77 0.85
5 0.85 0.68 0.78 0.84

Avg. 0.85 0.68 0.78 0.85
Model 3

1 0.90 0.71 0.85 0.90
2 0.92 0.78 0.89 0.92
3 0.91 0.73 0.86 0.91
4 0.91 0.72 0.86 0.91
5 0.91 0.71 0.86 0.90

Avg. 0.91 0.73 0.86 0.91
Model 4

1 0.84 0.66 0.76 0.84
2 0.82 0.63 0.73 0.82
3 0.83 0.64 0.75 0.83
4 0.84 0.66 0.77 0.84
5 0.82 0.63 0.75 0.82

Avg. 0.83 0.65 0.75 0.83

Precision and recall are shown in Table 8. The confusion matrices are shown in Table 9.
The ROC curves and AUCs for each model are shown in Figures 8 and 9.
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Table 8. Precision and recall.

Classes Precision Recall

Model 1
Normal 0.88 0.92

Mild/moderate 0.73 0.59
Severe 0.79 0.77
Avg. 0.80 0.80

Weighted avg. 0.85 0.85

Model 2
Normal 0.89 0.92

Mild/moderate 0.79 0.62
Severe 0.79 0.77
Avg. 0.80 0.77

Weighted avg. 0.85 0.85

Model 3
Normal 0.92 0.97
STEMI 0.88 0.71
Avg. 0.90 0.84

Weighted avg. 0.91 0.91

Model 4
Normal 0.89 0.89

Mild/moderate 0.72 0.56
Severe 0.69 0.81
Avg. 0.77 0.75

Weighted avg. 0.83 0.83
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Table 9. Confusion matrix.

Model 1 Confusion
Matrix

Fold 1 Predicted

Normal Mild/moderate Severe
Normal 452 33 29

Actual Mild/moderate 15 60 6
Severe 22 6 93

Fold 2 Predicted

Normal Mild/moderate Severe
Normal 445 32 19

Actual Mild/moderate 18 63 6
Severe 26 4 103

Fold 3 Predicted

Normal Mild/moderate Severe
Normal 455 34 26

Actual Mild/moderate 14 64 6
Severe 20 1 96

Fold 4 Predicted

Normal Mild/moderate Severe
Normal 457 43 21

Actual Mild/moderate 14 53 7
Severe 18 3 100

Fold 5 Predicted

Normal Mild/moderate Severe
Normal 439 30 21

Actual Mild/moderate 22 65 7
Severe 28 4 100

Model 2 Confusion
matrix

Fold 1 Predicted

Normal Mild/moderate Severe
Normal 495 25 23

Actual Mild/moderate 21 86 8
Severe 15 4 117

Fold 2 Predicted

Normal Mild/moderate Severe
Normal 486 34 26

Actual Mild/moderate 28 77 6
Severe 17 4 116

Fold 3 Predicted

Normal Mild/moderate Severe
Normal 499 27 33

Actual Mild/moderate 25 83 1
Severe 7 5 114

Fold 4 Predicted

Normal Mild/moderate Severe
Normal 504 34 33

Actual Mild/moderate 23 79 5
Severe 4 2 110
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Table 9. Cont.

Fold 5 Predicted

Normal Mild/moderate Severe
Normal 489 29 38

Actual Mild/moderate 32 83 9
Severe 10 3 101

Model 3 Confusion matrix

Fold 1 Predicted

Normal STEMI
Actual Normal 283 26

STEMI 11 61

Fold 2 Predicted

Normal STEMI
Actual Normal 282 17

STEMI 12 70

Fold 3 Predicted

Normal STEMI
Actual Normal 290 29

STEMI 4 58

Fold 4 Predicted
Normal STEMI

Actual Normal 282 23
STEMI 12 64

Fold 5 Predicted
Normal STEMI

Actual Normal 288 29
STEMI 6 58

Model 4 Confusion
matrix

Fold 1 Predicted

Normal Mild/moderate Severe
Normal 445 39 18

Actual Mild/moderate 12 52 5
Severe 32 8 105

Fold 2 Predicted

Normal Mild/moderate Severe
Normal 435 30 17

Actual Mild/moderate 16 49 6
Severe 38 20 105

Fold 3 Predicted

Normal Mild/moderate Severe
Normal 443 38 24

Actual Mild/moderate 17 52 3
Severe 29 9 101

Fold 4 Predicted

Normal Mild/moderate Severe
Normal 439 36 18

Actual Mild/moderate 11 57 6
Severe 39 6 104
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Table 9. Cont.

Fold 5 Predicted

Normal Mild/moderate Severe
Normal 419 25 19

Actual Mild/moderate 23 65 7
Severe 47 9 102
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Figure 8. ROC curves at the time of validation for each model. Models 1, 2, and 4: blue line—ROC
curve for the normal class; orange line—ROC curve for the mild/moderate class; yellow line—ROC
curve for the severe class; and purple line—macro average. Model 3: blue line—ROC curve for the
normal class; orange line—ROC curve for the STEMI class; and yellow line—macro average.

Model 1 recorded a weighted F1-score of 0.85 and an AUC of 0.93. The kappa coeffi-
cient was 0.68. The kappa coefficient is a statistic that expresses the degree of agreement
between observations of a phenomenon by two different observers. This was within the
range of 0.61–0.80, which is considered “substantial” under the guidelines provided by
Landis and Koch [30]. Model 2 explored the Adam optimizer hyperparameters based on
Bayesian optimization, but did not achieve greater accuracy than Model 1 on any of the
evaluation measures.



Emerg. Care Med. 2024, 1 292

Emerg. Care Med. 2024, 1, FOR PEER REVIEW 13 
 

 

curve for the severe class; and purple line—macro average. Model 3: blue line—ROC curve for the 
normal class; orange line—ROC curve for the STEMI class; and yellow line—macro average. 

 

 
Figure 9. ROC curves at the time of testing for each model. Models 1, 2, and 4: blue line—ROC curve 
for the normal class; orange line—ROC curve for the mild/moderate class; yellow line—ROC curve 
for the severe class; purple line—Macro average. Model 3: blue line—ROC curve for the normal 
class; orange line—ROC curve for the STEMI class; and yellow line—macro average. 

Model 1 recorded a weighted F1-score of 0.85 and an AUC of 0.93. The kappa coeffi-
cient was 0.68. The kappa coefficient is a statistic that expresses the degree of agreement 
between observations of a phenomenon by two different observers. This was within the 
range of 0.61–0.80, which is considered “substantial” under the guidelines provided by 
Landis and Koch [30]. Model 2 explored the Adam optimizer hyperparameters based on 
Bayesian optimization, but did not achieve greater accuracy than Model 1 on any of the 
evaluation measures. 

Because it is important not to miss STEMI, which represents the most lethal form of 
acute coronary syndrome (ACS), we created Model 3, a binary normal/STEMI classifica-
tion, using normal and STEMI cases in the dataset. Therefore, Model 3 is unable to per-
form a three-class classification of severity. Then, based on the output of Model 1, Model 
4 was created to classify test data determined to be STEMI in Model 3 as severe. Compared 
to Model 1, Model 4 decreased precision for the severe class by 0.10 but improved recall 
by 0.04. In general, there is a trade-off between recall and precision, and since recall is 
more important than precision in the diagnosis of the severe class, Model 4, which com-
pensates for the shortcomings of Model 1, has room for adoption. The lower F1-scores for 
atypical syndromes in Models 1, 2, and 4 compared to Model 3 may be attributed to an 
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Because it is important not to miss STEMI, which represents the most lethal form of
acute coronary syndrome (ACS), we created Model 3, a binary normal/STEMI classification,
using normal and STEMI cases in the dataset. Therefore, Model 3 is unable to perform a
three-class classification of severity. Then, based on the output of Model 1, Model 4 was
created to classify test data determined to be STEMI in Model 3 as severe. Compared to
Model 1, Model 4 decreased precision for the severe class by 0.10 but improved recall by
0.04. In general, there is a trade-off between recall and precision, and since recall is more
important than precision in the diagnosis of the severe class, Model 4, which compensates
for the shortcomings of Model 1, has room for adoption. The lower F1-scores for atypical
syndromes in Models 1, 2, and 4 compared to Model 3 may be attributed to an insufficient
number of data points for certain abnormalities. Our study had limitations, and apart
from STEMI, we were unable to access the exact number of abnormalities, which may have
resulted in data imbalances.

The results obtained by applying CAM to Model 1, which had the highest AUC, are
shown in Figure 10.
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Figure 10. Prediction using a class activation map (CAM) applied to a case of myocardial infarction,
and the correct labels. In the prediction, severe cases are colored red. In the correct labels, the
physician has circled areas of abnormality with red lines. In this case, the focus is on the ST segment.
Although an elevated ST segment is not definitive of myocardial infarction [31], it is suggested that
this visualization may assist the EMTs in determining the PH-ECG transmission.

4. Discussion

The severity classification of ECGs from ambulances using real-world data shows
various limitations. Compared to ECGs performed in the hospital, the accumulated data
were small. For example, the STEMI rate was only 12.5% (447/3564). The classification of
severity was experimental in order to allow for some lump-sum weighting correction of
such data biases, and there is room for improvement in how to select abnormal findings
(i.e., the “Severe” class) that should be preferentially detected. Additionally, the ECG data
from our study population were transmitted and stored as images rather than as actual
waveforms. The ability to remove noise depends on the hardware, and in our case, it was
difficult to remove noise that may have been caused by patient body movement or electrode
dropout (Figure 11). Models thus needed to be constructed with the noise that could not
be removed from ECG data. In Japan, prehospital 12-lead ECG is not routinely performed
by emergency medical service personnel at first medical contact sites [32], making a large
dataset difficult to construct. The performance of the classification model created in this
study thus tended to show low recall for classes with small datasets. In particular, the
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amount of data required for feature training is considered to be large for cases that change
over time, such as STEMI, and we speculate that classification accuracy can be markedly
improved by increasing the amount of training data.
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Figure 11. Cases with noise. V3 and V4 inductions show abnormalities, most likely due to ambulance
vibrations or patient body movements, which may have caused electrode misalignment or dropout.

We next discuss the trade-offs between precision and recall. Model 4, which is a
composite model of Model 1 and Model 3 and prioritizes not missing STEMI cases, had the
lowest precision and AUC but the highest recall. Considering the importance of minimizing
false negatives in medical situations, Model 4 can be considered superior to Models 1 and 2.

Diagnosis using PH-ECG images is worthwhile because ECGs performed in the
field by emergency personnel often show earlier ECG changes in cardiac disease and
different characteristics than in-hospital ECGs. A small number of machine learning-based
prediction algorithms using PH-ECG transmission have been reported (Table 10). However,
most of these are waveform-based algorithms, making them difficult to apply to image
data. Al-Zaiti et al. predicted ACS for PH-ECG signals in 1244 Americans and showed
an AUC of 0.82 with a combination of logistic regression, gradient boosting machine, and
artificial neural network [33]. Chen et al. performed STEMI prediction on 2907 PH-ECG
signals obtained from ambulances in central Taiwan and showed an AUC of 0.997 using a
combination of a 1D-convolutional neural network and long short-term memory [34]. This
method is highly effective when waveform data are accessible, but it cannot be applied
to our current data or to many hospitals in our region. Also, based on the differences in
reference values of ECGs between races shown by Simonson [35], we can infer that the use
of race-specific models is preferable for AI analyses of ECGs, and only one study appears to
have been conducted on Japanese subjects [36]. Takeda et al. [36] used 17 features including
vital signs, three-lead ECG monitoring, and symptoms from 555 individuals obtained in an
urban area of Japan to predict diagnoses and subcategories of ACS using a support vector
machine, showing an AUC of 0.864.

To the best of our knowledge, no examples of severity classification of PH-ECG images
from ambulances have been provided for Japanese populations. While the acquisition of
signals directly from instruments is efficient for processing ECGs in a computer, PH-ECG
data are scarce, and it can be difficult to collect large amounts of data in signal form alone. In
addition, the ECG standards used vary among ECG device manufacturers of ECG devices,
and many data formats do not provide interoperability [37]. The advantage of image-based
analysis over digital signal-based analysis is the versatility since the method can be applied
relatively easily, even to viewers from different manufacturers, as long as the recording
speed and calibration are consistent.
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Table 10. Comparison with previous studies.

Target Method Race Training
Data

Test
Data Input AUC

(95% CI)

Ours
Severity

classification DL Japanese 2848 716 1-lead PH-ECG
images

0.933
[0.915–0.951]

Prediction of
STEMI DL Japanese 1563 381 1-lead PH-ECG

images
0.943

[0.920–0.966]

Al-Zaiti et al.
[33] (2020)

Prediction of
ACS ML American 745 499 12-lead PH-ECG

signals
0.82

[0.77–0.86]
Prediction of
NSTE-ACS ML American 745 499 12-lead PH-ECG

signals
0.78

[0.73–0.84]

Chen, K.-W. et al.
[34] (2022)

Prediction of
STEMI DL

(Data
acquired in

Taiwan)
2907 362 12-lead PH-ECG

signals 0.997

M. Takeda et al.
[36] (2022)

Prediction of
ACS ML Japanese 555 61

Vital signs
3-lead ECG
monitoring

43 symptoms

0.839
[0.734–0.931]

Prediction of
AMI ML Japanese 555 61

Vital signs
3-lead ECG
monitoring

17 symptoms

0.850
[0.817–0.882]

Prediction of
STEMI ML Japanese 555 61

Vital signs
3-lead ECG
monitoring

17 symptoms

0.862
[0.831–0.894]

Interpretability is an issue when using the developed models in medical practice [38].
Since the days when rule-based analysis was mainstream, reports have found that auto-
mated analyses of ECGs by computer should be used as an adjunct [39,40], and the difficulty
in explaining model results from machine learning-based analyses, which have a more
black box nature than rule-based analyses, has hindered confidence. Various reports have
described CAM feature visualization in hospital ECG signals, with promising results [41],
but further research is needed to determine if the same holds true for PH-ECG images.

5. Limitations

There are several constraints we have not yet discussed. Due to restrictions on sensitive
information and data accessibility of the study subjects, detailed patient demographics and
comorbidities could not be ascertained. Analysis at this stage also requires data acquired in
a uniform environment, including the same ECG device and its settings. Future research
needs to validate our findings in diverse real-world settings. Additionally, because of the
limited sample size, further studies are necessary to establish the reliability and clinical
utility of our method.

6. Conclusions

This study suggests that image-based anomaly detection from PH-ECGs is feasible and
effective, particularly in regions like Japan where ECG data are often stored and transmitted
as images.

In our region, EMTs decide whether to transmit ECGs according to the flow shown in
Figure 1. If we modify this flow so that ECGs are transmitted whenever either the EMTs
or the deep learning models detect an anomaly, it is expected to reduce reading time and
door-to-balloon time, as well as decrease false negatives.

However, despite these promising results, we faced significant limitations related
to noise removal from ECG data. Noise is a critical factor in accurately assessing heart
problems, and our model’s performance is influenced by the quality of the input data. Our
model theoretically accounts for noise caused by patient movement or electrode detach-
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ment, but unlike waveform-based methods, it has difficulty removing noise embedded in
the images.

In conclusion, while deep learning models hold promise for clinical application in
PH-ECG screening, further research is needed to verify the impact of noise and ensure the
model’s reliability and clinical utility.
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